Continuity properties relative to the intermediate point in a mean value theorem

Emil C. Popa

Abstract

This article studies the existence and the value of the limit $\lim _{x \uparrow a} \frac{x-a}{\left(c_{x}-a\right)^{\alpha}}$

 where c_{x} is the intermediate point in a mean value theorem.2000 Mathematical Subject Classification: 26A24
Keywords: mean value theorem, intermediate point.
1°. We shall consider the following mean value theorem:
Theorem 1. Let us suppose that $f:[a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$ and derivable on (a, b). If $A(a, f(a)), B(b, f(b))$, then for each $M(x, y) \in A B$, $x \notin[a, b]$, exists a point $c \in(a, b)$, such that:

$$
\frac{y-f(c)}{x-c}=f^{\prime}(c) .
$$

The geometric significance of this theorem is the fact that from any point $M(x, y) \in A B$ where $x \notin[a, b]$ one can draw a tangent to the graphic representation of f (see [3]).

In [1], [3], [4], there are studies for the classical mean value theorems, under some hypothesis, the existence and the value of the limit $\lim _{b \rightarrow a} \frac{c-a}{b-a}$, $c=c(b)$ being the intermediate point in the respective mean value theorem.

In the following we shall prove that:

$$
\begin{gathered}
\lim _{x \uparrow a} \frac{x-a}{\left(c_{x}-a\right)^{\alpha}}=0, \text { for } \alpha<2, \text { and } \\
\lim _{x \uparrow a} \frac{x-a}{(c-a)^{2}}=\frac{f^{\prime \prime}(a)}{2\left[f^{\prime}(a)-m_{A B}\right]}, m_{A B}=\frac{f(b)-f(a)}{b-a},
\end{gathered}
$$

where " c " is the intermediate point from Theorem 1 with the additional conditions that f should be twice derivable, $f^{\prime \prime}<0$ on $[a, b]$.

We can now prove the following:
Theorem 2. If $f:[a, b] \rightarrow \mathbb{R}$ is two times differentiable on $[a, b]$ with $f^{\prime \prime}<0$ on $[a, b]$ and $A(a, f(a)), B(b, f(b))$ then for each point $M(x, y)$, $M \in A B, x \in(-\infty, a)$, there is an unique point $c \in(a, b)$ such that:

$$
\frac{y-f(c)}{x-c}=f^{\prime}(c)
$$

Proof. We consider that exists $a<c_{1}<c_{2}<b$ such that:

$$
\begin{aligned}
& y-f\left(c_{1}\right)=\left(x-c_{1}\right) f^{\prime}\left(c_{1}\right) \\
& y-f\left(c_{2}\right)=\left(x-c_{2}\right) f^{\prime}\left(c_{2}\right)
\end{aligned}
$$

We have:

$$
f^{\prime}\left(c_{2}\right)<\frac{f\left(c_{1}\right)-f\left(c_{2}\right)}{c_{1}-c_{2}}=f^{\prime}(\xi)<f^{\prime}\left(c_{1}\right)
$$

with $\xi \in\left(c_{1}, c_{2}\right)$.
Therefore

$$
\begin{gathered}
\left(c_{1}-c_{2}\right) f^{\prime}\left(c_{2}\right)>\left(x-c_{2}\right) f^{\prime}\left(c_{2}\right)-\left(x-c_{1}\right) f^{\prime}\left(c_{1}\right) \\
\left(c_{1}-x\right) f^{\prime}\left(c_{2}\right)>\left(c_{1}-x\right) f^{\prime}\left(c_{1}\right) \\
f^{\prime}\left(c_{2}\right)>f^{\prime}\left(c_{1}\right)
\end{gathered}
$$

in contradiction with $f^{\prime}\left(c_{1}\right)>f^{\prime}\left(c_{2}\right)$.
Hence exists an unique point $c \in(a, b)$ with

$$
\frac{y-f(c)}{x-c}=f^{\prime}(c) .
$$

2°. Further we prove that the following theorem is valid.

Theorem 3. Let $f:[a, b] \rightarrow \mathbb{R}$ such that $f^{\prime \prime}$ exists and $f^{\prime \prime}<0$ on $[a, b]$. If $\widetilde{c} \in(a, b)$ is the unique point having the property

$$
f^{\prime}(\widetilde{c})=\frac{f(b)-f(a)}{b-a}
$$

then:
i) whatever is $c \in(a, \widetilde{c})$, the tangent to the graphic representation of f in the point $(c, f(c))$ cuts $A B$ in $M\left(x_{c}, y\right)$ with $x_{c}<a$.
ii) whatever is $c \in(\widetilde{c}, b)$, the tangent to the graphic representation of f in the point $(c, f(c))$ cuts $A B$ in $N\left(x_{c}, y\right)$ with $x_{c}>b$.

Proof. i) The tangent to the graphic representation of f in the point $(c, f(c))$ cuts $A B$ in a point having the abscissa:

$$
x_{c}=\frac{c f^{\prime}(c)-f(c)+f(a)-a \cdot m_{A B}}{f^{\prime}(c)-m_{A B}}
$$

where we have denoted

$$
m_{A B}=\frac{f(b)-f(a)}{b-a}
$$

If

$$
\Psi(t)=\frac{t f^{\prime}(t)-f(t)+f(a)-a \cdot m_{A B}}{f^{\prime}(t)-m_{A B}}, t \in[a, \widetilde{c})
$$

we have:

$$
\Psi^{\prime}(t)=\frac{f(t)-\left[f(a)+(t-a) m_{A B}\right]}{\left[f^{\prime}(t)-m_{A B}\right]^{2}} f^{\prime \prime}(t)
$$

But $\Psi^{\prime}(t)<0$ on $(a, \widetilde{c}), \Psi(a)=a$ and from $\Psi(a)>\Psi(c)$ it results $a>x_{c}$.
In a similar way we prove the second part of the above theorem.

Remark 1. Because f^{\prime} is strictly decreasing on $[a, b]$ it follows the unicity of \widetilde{c} and likewise that $f^{\prime}(a)-m_{A B} \neq 0$.

Theorem 4. If $f:[a, b] \rightarrow \mathbb{R}$ with $f^{\prime \prime}<0$ on $[a, b]$ and $\widetilde{c} \in(a, b)$ is the unique point having the property

$$
f^{\prime}(\widetilde{c})=\frac{f(b)-f(a)}{b-a}
$$

then whatever is $x \in(-\infty, a)$, there exists exactly one point $c \in(a, \widetilde{c})$ such that the tangent to the graphic representation of f in the point $(c, f(c))$ cuts $A B$ in $M(x, y)$.

Proof. The existence and the uniqueness of $c \in(a, b)$ is given by Theorem 2. If $c \in(\widetilde{c}, b)$ then according to Theorem 3 ii), the tangent to the graphic representation of f in $(c, f(c))$ cuts $A B$ in $N\left(x_{c}, y\right), x_{c}>b$. Hence $c \in(a, \widetilde{c})$.
3°. Further let $f:[a, b] \rightarrow \mathbb{R}$ such that $f^{\prime \prime}$ exists and $f^{\prime \prime}<0$ on $[a, b]$ and $\widetilde{c} \in(a, b)$ the unique point which $f(\widetilde{c})=\frac{f(b)-f(a)}{b-a}$. We define the
function $\theta(c)=x_{c}, \theta:[a, \widetilde{c}) \rightarrow(-\infty, a]$ where c and x_{c} have the significance from Theorem 3. It is clear that $\theta(a)=a$ and according to the Theorem 3 and 4 the function θ is bijective.

If $c_{0} \in(a, \widetilde{c})$ then

$$
x_{c}=\frac{c f^{\prime}(c)-f(c)+f(a)-a \cdot m_{A B}}{f^{\prime}(c)-m_{A B}}
$$

and when $c \rightarrow c_{0}$ we have

$$
x_{c} \rightarrow \frac{c_{0} f^{\prime}\left(c_{0}\right)-f\left(c_{0}\right)+f(a)-a \cdot m_{A B}}{f^{\prime}\left(c_{0}\right)-m_{A B}}=x_{c_{0}} .
$$

So $\theta(c) \rightarrow \theta\left(c_{0}\right)$ and θ is continuous on (a, \widetilde{c}).
In addition, when $c \rightarrow a$ it is evidently that

$$
x_{c}=\frac{a f^{\prime}(a)-a \cdot m_{A B}}{f^{\prime}(a)-m_{A B}}=a .
$$

Hence $\theta(c) \rightarrow \theta(a)$ and θ is also continuous in a, and on $[a, \widetilde{c})$.
Because θ is bijective and continuous it follows that θ^{-1} is also continuous on $(-\infty, a]$. We denote $\theta^{-1}(x)=c_{x}$ and when $x \rightarrow a, \theta^{-1}(x) \rightarrow \theta^{-1}(a)$ that is $c_{x} \rightarrow a$.

Finally we shall prove the following:

Theorem 5. Under the hypothesis of the Theorem 2 we have:

$$
\lim _{x \uparrow a} \frac{x-a}{c_{x}-a}=0
$$

and

$$
\lim _{x \uparrow a} \frac{x-a}{\left(c_{x}-a\right)^{2}}=\frac{f^{\prime \prime}(a)}{2\left[f^{\prime}(a)-m_{A B}\right]} .
$$

Proof. From the relation

$$
\frac{y-f\left(c_{x}\right)}{x-c_{x}}=f^{\prime}\left(c_{x}\right)
$$

where $y=f(a)+(x-a) m_{A B}$, we obtain:

$$
f(a)-f\left(c_{x}\right)+(x-a) m_{A B}=(x-a) f^{\prime}\left(c_{x}\right)+\left(a-c_{x}\right) f^{\prime}\left(c_{x}\right)
$$

which implies:

$$
\begin{equation*}
\frac{x-a}{c_{x}-a}=\frac{f^{\prime}\left(c_{x}\right)-\frac{f\left(c_{x}\right)-f(a)}{c_{x}-a}}{f^{\prime}\left(c_{x}\right)-m_{A B}} \tag{2}
\end{equation*}
$$

and

$$
\frac{x-a}{\left(c_{x}-a\right)^{2}}=\frac{\left(c_{x}-a\right) f^{\prime}\left(c_{x}\right)-f\left(c_{x}\right)+f(a)}{\left(c_{x}-a\right)^{2}} \cdot \frac{1}{f^{\prime}\left(c_{x}\right)-m_{A B}} .
$$

For $x \rightarrow a$ we have $c_{x} \rightarrow a$ and

$$
f^{\prime}\left(c_{x}\right) \rightarrow f^{\prime}(a), \frac{f\left(c_{x}\right)-f(a)}{c_{x}-a} \rightarrow f^{\prime}(a)
$$

According to (2) we find

$$
\lim _{x \uparrow a} \frac{x-a}{c_{x}-a}=0 .
$$

If we use l'Hôspital's rule, we have:

$$
\lim _{c_{x} \rightarrow a} \frac{\left(c_{x}-a\right) f^{\prime}\left(c_{x}\right)-f\left(c_{x}\right)+f(a)}{\left(c_{x}-a\right)^{2}}=\frac{1}{2} f^{\prime \prime}(a)
$$

and so:

$$
\lim _{x \uparrow a} \frac{x-a}{\left(c_{x}-a\right)^{2}}=\frac{f^{\prime \prime}(a)}{2\left[f^{\prime}(a)-m_{A B}\right]}
$$

Remark 2. It is clear that:

$$
\lim _{x \uparrow a} \frac{x-a}{\left(c_{x}-a\right)^{\alpha}}=\left\{\begin{array}{cl}
0, & \alpha<2 \\
\frac{f^{\prime \prime}(a)}{2\left[f^{\prime}(a)-m_{A B}\right]}, & \alpha=2 \\
-\infty, & \alpha>2
\end{array} .\right.
$$

References

[1] Jakobson, B., On the mean value theorem for integrals, The American Mathematical Monthly, vol. 87, 1982, p. 300-301.
[2] Muntean, I., Extensions of some mean value theorems, "Babeş-Bolyai" University, Faculty of Mathematics, Research Seminar, Seminar on Mathematical Analysis, Preprint, no. 7, 1991, p. 7-24.
[3] Popa, E. C., On a mean value theorem (in romanian), MGB, nr. 4, 1989, p. 113-114.
[4] Popa, E.C., On a property of intermediary point "c" for a mean value theorems (in romanian), MGB, nr. 8, 1994, p. 348-350.
"Lucian Blaga" University of Sibiu Faculty of Sciences

Department of Mathematics
Str. Dr. I. Raţiu, no. 5-7,
550012 - Sibiu, Romania
E-mail: emil.popa@ulbsibiu.ro

