Continuity properties relative to the intermediate point in a mean value theorem

Emil C. Popa

Abstract

This article studies the existence and the value of the limit $\lim_{x\uparrow a} \frac{x-a}{(c_x-a)^{\alpha}}$ where c_x is the intermediate point in a mean value theorem.

2000 Mathematical Subject Classification: 26A24

Keywords: mean value theorem, intermediate point.

1°. We shall consider the following mean value theorem:

Theorem 1. Let us suppose that $f : [a, b] \to \mathbb{R}$ is continuous on [a, b] and derivable on (a, b). If A(a, f(a)), B(b, f(b)), then for each $M(x, y) \in AB$, $x \notin [a, b]$, exists a point $c \in (a, b)$, such that:

$$\frac{y - f(c)}{x - c} = f'(c).$$

The geometric significance of this theorem is the fact that from any point $M(x, y) \in AB$ where $x \notin [a, b]$ one can draw a tangent to the graphic representation of f (see [3]).

In [1], [3], [4], there are studies for the classical mean value theorems, under some hypothesis, the existence and the value of the limit $\lim_{b\to a} \frac{c-a}{b-a}$, c = c(b) being the intermediate point in the respective mean value theorem.

In the following we shall prove that:

$$\lim_{x\uparrow a} \frac{x-a}{(c_x-a)^{\alpha}} = 0, \text{ for } \alpha < 2, \text{ and}$$

(1)
$$\lim_{x \uparrow a} \frac{x-a}{(c-a)^2} = \frac{f''(a)}{2[f'(a) - m_{AB}]}, \ m_{AB} = \frac{f(b) - f(a)}{b-a},$$

where "c" is the intermediate point from Theorem 1 with the additional conditions that f should be twice derivable, f'' < 0 on [a, b].

We can now prove the following:

Theorem 2. If $f : [a,b] \to \mathbb{R}$ is two times differentiable on [a,b] with f'' < 0 on [a,b] and A(a, f(a)), B(b, f(b)) then for each point M(x,y), $M \in AB$, $x \in (-\infty, a)$, there is an unique point $c \in (a,b)$ such that:

$$\frac{y - f(c)}{x - c} = f'(c).$$

Proof. We consider that exists $a < c_1 < c_2 < b$ such that:

$$y - f(c_1) = (x - c_1)f'(c_1)$$

 $y - f(c_2) = (x - c_2)f'(c_2)$

We have:

$$f'(c_2) < \frac{f(c_1) - f(c_2)}{c_1 - c_2} = f'(\xi) < f'(c_1)$$

with $\xi \in (c_1, c_2)$.

Therefore

$$(c_1 - c_2)f'(c_2) > (x - c_2)f'(c_2) - (x - c_1)f'(c_1),$$
$$(c_1 - x)f'(c_2) > (c_1 - x)f'(c_1),$$
$$f'(c_2) > f'(c_1)$$

in contradiction with $f'(c_1) > f'(c_2)$.

Hence exists an unique point $c \in (a, b)$ with

$$\frac{y - f(c)}{x - c} = f'(c).$$

 2° . Further we prove that the following theorem is valid.

Theorem 3. Let $f : [a,b] \to \mathbb{R}$ such that f'' exists and f'' < 0 on [a,b]. If $\tilde{c} \in (a,b)$ is the unique point having the property

$$f'(\widetilde{c}) = \frac{f(b) - f(a)}{b - a},$$

then:

i) whatever is $c \in (a, \tilde{c})$, the tangent to the graphic representation of fin the point (c, f(c)) cuts AB in $M(x_c, y)$ with $x_c < a$.

ii) whatever is $c \in (\tilde{c}, b)$, the tangent to the graphic representation of f in the point (c, f(c)) cuts AB in $N(x_c, y)$ with $x_c > b$.

Proof. i) The tangent to the graphic representation of f in the point (c, f(c)) cuts AB in a point having the abscissa:

$$x_{c} = \frac{cf'(c) - f(c) + f(a) - a \cdot m_{AB}}{f'(c) - m_{AB}}$$

where we have denoted

$$m_{AB} = \frac{f(b) - f(a)}{b - a}.$$

If

$$\Psi(t) = \frac{tf'(t) - f(t) + f(a) - a \cdot m_{AB}}{f'(t) - m_{AB}}, \ t \in [a, \tilde{c}),$$

we have:

$$\Psi'(t) = \frac{f(t) - [f(a) + (t - a)m_{AB}]}{[f'(t) - m_{AB}]^2} f''(t).$$

But $\Psi'(t) < 0$ on $(a, \tilde{c}), \Psi(a) = a$ and from $\Psi(a) > \Psi(c)$ it results $a > x_c$.

In a similar way we prove the second part of the above theorem.

Remark 1. Because f' is strictly decreasing on [a, b] it follows the unicity of \tilde{c} and likewise that $f'(a) - m_{AB} \neq 0$.

Theorem 4. If $f : [a,b] \to \mathbb{R}$ with f'' < 0 on [a,b] and $\tilde{c} \in (a,b)$ is the unique point having the property

$$f'(\widetilde{c}) = \frac{f(b) - f(a)}{b - a}$$

then whatever is $x \in (-\infty, a)$, there exists exactly one point $c \in (a, \tilde{c})$ such that the tangent to the graphic representation of f in the point (c, f(c)) cuts AB in M(x, y).

Proof. The existence and the uniqueness of $c \in (a, b)$ is given by Theorem 2. If $c \in (\tilde{c}, b)$ then according to Theorem 3 ii), the tangent to the graphic representation of f in (c, f(c)) cuts AB in $N(x_c, y), x_c > b$. Hence $c \in (a, \tilde{c})$.

 3° . Further let $f : [a, b] \to \mathbb{R}$ such that f'' exists and f'' < 0 on [a, b]and $\tilde{c} \in (a, b)$ the unique point which $f(\tilde{c}) = \frac{f(b) - f(a)}{b - a}$. We define the

56

function $\theta(c) = x_c$, $\theta : [a, \tilde{c}) \to (-\infty, a]$ where c and x_c have the significance from Theorem 3. It is clear that $\theta(a) = a$ and according to the Theorem 3 and 4 the function θ is bijective.

If $c_0 \in (a, \tilde{c})$ then

$$x_{c} = \frac{cf'(c) - f(c) + f(a) - a \cdot m_{AB}}{f'(c) - m_{AB}}$$

and when $c \to c_0$ we have

$$x_c \to \frac{c_0 f'(c_0) - f(c_0) + f(a) - a \cdot m_{AB}}{f'(c_0) - m_{AB}} = x_{c_0}$$

So $\theta(c) \to \theta(c_0)$ and θ is continuous on (a, \tilde{c}) .

In addition, when $c \rightarrow a$ it is evidently that

$$x_c = \frac{af'(a) - a \cdot m_{AB}}{f'(a) - m_{AB}} = a$$

Hence $\theta(c) \to \theta(a)$ and θ is also continuous in a, and on $[a, \tilde{c})$.

Because θ is bijective and continuous it follows that θ^{-1} is also continuous on $(-\infty, a]$. We denote $\theta^{-1}(x) = c_x$ and when $x \to a$, $\theta^{-1}(x) \to \theta^{-1}(a)$ that is $c_x \to a$.

Finally we shall prove the following:

Theorem 5. Under the hypothesis of the Theorem 2 we have:

$$\lim_{x\uparrow a}\frac{x-a}{c_x-a}=0,$$

and

$$\lim_{x \uparrow a} \frac{x - a}{(c_x - a)^2} = \frac{f''(a)}{2[f'(a) - m_{AB}]}.$$

Proof. From the relation

$$\frac{y - f(c_x)}{x - c_x} = f'(c_x)$$

where $y = f(a) + (x - a)m_{AB}$, we obtain:

$$f(a) - f(c_x) + (x - a)m_{AB} = (x - a)f'(c_x) + (a - c_x)f'(c_x)$$

which implies:

(2)
$$\frac{x-a}{c_x-a} = \frac{f'(c_x) - \frac{f(c_x) - f(a)}{c_x - a}}{f'(c_x) - m_{AB}}$$

and

$$\frac{x-a}{(c_x-a)^2} = \frac{(c_x-a)f'(c_x) - f(c_x) + f(a)}{(c_x-a)^2} \cdot \frac{1}{f'(c_x) - m_{AB}}$$

For $x \to a$ we have $c_x \to a$ and

$$f'(c_x) \to f'(a), \ \frac{f(c_x) - f(a)}{c_x - a} \to f'(a).$$

According to (2) we find

$$\lim_{x \uparrow a} \frac{x-a}{c_x - a} = 0.$$

If we use l'Hôspital's rule, we have:

$$\lim_{c_x \to a} \frac{(c_x - a)f'(c_x) - f(c_x) + f(a)}{(c_x - a)^2} = \frac{1}{2}f''(a)$$

and so:

$$\lim_{x \uparrow a} \frac{x - a}{(c_x - a)^2} = \frac{f''(a)}{2[f'(a) - m_{AB}]}.$$

Remark 2. It is clear that:

$$\lim_{x \uparrow a} \frac{x - a}{(c_x - a)^{\alpha}} = \begin{cases} 0, & \alpha < 2\\ \frac{f''(a)}{2[f'(a) - m_{AB}]}, & \alpha = 2\\ -\infty, & \alpha > 2 \end{cases}$$

References

- Jakobson, B., On the mean value theorem for integrals, The American Mathematical Monthly, vol. 87, 1982, p. 300-301.
- [2] Muntean, I., Extensions of some mean value theorems, "Babeş-Bolyai" University, Faculty of Mathematics, Research Seminar, Seminar on Mathematical Analysis, Preprint, no. 7, 1991, p. 7-24.
- [3] Popa, E. C., On a mean value theorem (in romanian), MGB, nr. 4, 1989, p. 113-114.
- [4] Popa, E.C., On a property of intermediary point "c" for a mean value theorems (in romanian), MGB, nr. 8, 1994, p. 348 - 350.

"Lucian Blaga" University of Sibiu Faculty of Sciences Department of Mathematics Str. Dr. I. Raţiu, no. 5-7, 550012 - Sibiu, Romania E-mail: *emil.popa@ulbsibiu.ro*