Inequalities concerning starlike functions and their n -th root

Maria Pettineo

Abstract

If A is the class of all analytic functions in the complex unit disc Δ, of the form: $$
f(z)=z+a_{2} z^{2}+\cdots
$$ and if $f \in A$ satisfies in Δ the condition: $$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|
$$ then $\operatorname{Re} \sqrt[n]{f(z) / z} \geq(n+1) /(n+2)$. We show also that if f is starlike in Δ (i.e. $\operatorname{Re} z f^{\prime}(z) / f(z)>0$ in Δ), then $\operatorname{Re} \sqrt[n]{f(z) / z}>n /(n+2)$.

Mathematical Subject Classification: Primary: 30C45
Keywords: starlike function, uniformly starlike function, uniformly convex function.

1 Introduction

Let $\Delta=\{z \in \mathbb{C}:|z|<1\}$ be the unit disc in the complex plane and let A be the set of all analytic functions in Δ, having the power series development:

$$
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots
$$

The subclass ST of A consists of functions f which satisfy in Δ the condition:

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0 \quad z \in \Delta
$$

ST is named the class of starlike functions in A
The subclass $\mathbf{C V}$ of $\mathbf{S T}$ (named the class of convex functionsin A) consists of functions $f \in A$ which satisfy in Δ the condition:

$$
\operatorname{Re}\left[1+\frac{z f^{\prime}(z)}{f^{\prime}(z)}\right]>0 \quad z \in \Delta
$$

We denote also by QUST(quasi-uniformly starlike functions) the subclass of ST which contains the functions satisfying the condition:

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|
$$

and by UCV (uniformly convex functions) the subclass of CV which contains functions satisfying the condition:

$$
\begin{equation*}
\left.\operatorname{Re}\left[1+\frac{z f^{\prime}(z)}{f^{\prime}(z)}\right] \geq\left|\frac{z f^{\prime}(z)}{f^{\prime}(z)}\right|, z \in \Delta\right\} \tag{1}
\end{equation*}
$$

We mention here that the class UCV was introduced (together with the class UST of uniformly starlike functions in A) by A.W.Goodman ([2], [3]) who defined the uniformly starlike and convex functions as functions in A with the property that the image of every circular arc contained in Δ, having the center $\zeta \in \Delta$ is starlike with respect to ζ (respectively convex). These properties are expressed by using two complex variables. In 1993, Frode Ronning shoved (in [8]) that $f \in \mathbf{U C V}$ if and only if relation (1) holds. By using the theory of differential subordinations (S.S. Miller and P.T. Mocanu, [6], [7]), A. Mannino showed in 2004 ([4]) that every function $f \in$ QUST satisfies the property:

$$
\operatorname{Re} \sqrt{\frac{f(z)}{z}} \geq \frac{2}{3} \text { in } \Delta
$$

(the root is considered with the principal determination). The purpose of this paper is to generalize this last result, together with the former result of A. Marx $([5])$ (with states that the principal determination of the square root of $f^{\prime} \in A$ is greater than $1 / 2$ if f is convex in $\left.\Delta\right)$. We will show that:

$$
f \in \mathrm{CV} \text { implies } \operatorname{Re} \sqrt[n]{f^{\prime}(z)} \geq \frac{n}{n+2}
$$

and

$$
f \in \text { QUST implies } \operatorname{Re} \sqrt[n]{\frac{f(z)}{z}} \geq \frac{n}{n+1}
$$

2 Preliminaries

For proving our principal result we will need the following definitions and results:

Definition 1. A function is said to be in the class $\mathbf{S T}(\alpha)$ if and only if f is in A and $\operatorname{Re} z f^{\prime}(z) / z>\alpha$ in Δ.

Lemma 1. [1] A function $f \in A$ is convex in Δ if and only if the function $z f^{\prime}(z)$ is starlike in Δ

Lemma 1 is well-known as "Alexanderş duality theorem" and has a very simple proof based on the characterization of starlike and convex functions in the unit disc.

Lemma 2. [6] Let a be a complex number with $\operatorname{Re} a>0$ and let $\psi: \mathbb{C} \times \Delta \longrightarrow \mathbb{C}$ a function satisfying:
$\operatorname{Re} \psi(\mathrm{i} x, y ; z) \leq 0$ in Δ and for all x and y, with $y \leq-\frac{|a-\mathrm{i} x|^{2}}{2 \operatorname{Re} a}$. If

$$
p(z)=a+p_{1} z+p_{2} z^{2}+\cdots \quad \text { is analytic in } \Delta, \text { then }:
$$

$\left[\operatorname{Re} \psi\left(p(z), z p^{\prime}(z) ; z\right)>0\right.$ for all $\left.z \in \Delta\right]$ implies $\operatorname{Re} p(z)>0$ in Δ.
Proofs of more general forms of Lemma 2 can be found in [6] and in [7].

3 Main result

Theorem 1. If $f \in \mathbf{S T}$ then:

$$
\operatorname{Re} \sqrt[n]{\frac{f(z)}{z}}>\frac{n}{n+2}
$$

where the determination of the n-th root is the principal one.
Proof. Let

$$
p(z)=\sqrt[n]{\frac{f(z)}{z}}-\frac{n}{n+2}
$$

We have that $p(0)=2 /(n+2)>0$ and: $f(z) / z=[p(z)=n /(n+2)]^{n}$. Thus:

$$
\frac{z f^{\prime}(z)}{f(z)}=1+n \frac{z p^{\prime}(z)}{p(z)+\frac{n}{n+2}}
$$

Denote by $\psi: \mathbb{C} \times \Delta \rightarrow \mathbb{C}, \psi(\alpha, \beta ; z)=1+n \frac{\alpha}{\beta+n /(n+2)}$. Because $f \in \mathbf{S T}$, we have that $\operatorname{Re} \psi\left[p(z), z p^{\prime}(z) ; z\right]>0$ in Δ. In order to prove that this relation implies that $\operatorname{Re} p(z)>0$ in Δ, we will use Lemma 2 with $a=2 /(n+2)$.

$$
\operatorname{Re} \psi(\mathrm{i} x, y ; z)=\operatorname{Re}\left[1+n \frac{y}{\mathrm{i} x+\frac{n}{n+2}}\right]=1+\frac{n^{2}(n+2) y}{n^{2}+(n+2)^{2} x^{2}}
$$

If

$$
y \leq-\frac{|\operatorname{Re} p(0)-\mathrm{i} x|}{2 \operatorname{Re} p(0)}=-\frac{4+(n+2)^{2} x^{2}}{4(n+2)}
$$

we have:

$$
\operatorname{Re} \psi(\mathrm{i} x, y ; z) \leq 1-n^{2} \frac{4+(n+2)^{2} x^{2}}{4\left[n^{2}+(n+2)^{2} x^{2}\right]}
$$

But:

$$
\frac{4+(n+2)^{2} x^{2}}{n^{2}+(n+2)^{2} x^{2}} \geq \frac{4}{n^{2}}
$$

because the minimum of the real function $g:[0, \infty) \rightarrow \mathbb{R}$

$$
g(t)=\frac{4+(n+2)^{2} t}{n^{2}+(n+2)^{2} t}
$$

is $4 / n^{2}$. It follows that $\operatorname{Re} \psi(\mathrm{i} x, y ; z) \leq 0$ for all real x and $y \leq-\frac{|\operatorname{Re} p(0)-\mathrm{i} x|}{2 \operatorname{Re} p(0)}$. By Lemma 2 we have that $\operatorname{Re} \psi\left[p(z), z p^{\prime}(z) ; z\right]>0$ in Δ implies $\operatorname{Re} p(z)>0$ in Δ, which is equivalent to: $f \in \mathbf{S T}$ implies that $\operatorname{Re} \sqrt[n]{\frac{f(z)}{z}}>n /(n+2)$ in Δ and the theorem is proved.

Theorem 2. Let $f \in$ QUST. Then we have:

$$
\operatorname{Re} \sqrt[n]{\frac{f(z)}{z}}>\frac{n}{n+1} \text { in } \Delta
$$

where the n-th root is considered with the principal determination.
Proof. Let $f \in$ QUST. we put, like in Theorem 1,

$$
p(z)=\sqrt[n]{\frac{f(z)}{z}}-\frac{n}{n+1}
$$

It follows easily that $p(0)=1 /(n+1)>0$ and:

$$
\frac{z f^{\prime}(z)}{f(z)}=1+n(n+1) \frac{z p^{\prime}(z)}{n+(n+1) p(z)}
$$

Let:

$$
\psi(\alpha, \beta ; z)=1+n(n+1) \frac{\beta}{n+(n+1) \alpha}-\left|n(n+1) \frac{\beta}{n+(n+1) \alpha}\right|
$$

$f \in$ QUST is equivalent to:

$$
\operatorname{Re} \psi\left[p(z), z p^{\prime}(z) ; z\right] \geq 0 \text { in } \delta
$$

We will apply Lemma 2 for proving that this relation implies $\operatorname{Re} p(z)>0$ in Δ, which is equivalent to: $\operatorname{Re} \sqrt[n]{f(z) / z}>n /(n+1)$. In order to apply Lemma 2 we have to compute $\operatorname{Re} \psi(\mathrm{i} x, y ; z)$ and to show that this number is less or equal to zero for all real x and

$$
\begin{equation*}
y \leq-\frac{|\operatorname{Re} p(0)-\mathrm{i} x|}{2 \operatorname{Re} p(0)}=-\frac{1+(n+1)^{2} x^{2}}{2(n+1)} \tag{2}
\end{equation*}
$$

A simple calculation shows that:

$$
\begin{gathered}
\operatorname{Re} \psi(\mathrm{i} x, y ; z)=1+n^{2}(n+1) \frac{y}{n^{2}+(n+1)^{2} x^{2}}- \\
-n(n+1) \frac{|y|}{\sqrt{n^{2}+(n+1)^{2} x^{2}}}
\end{gathered}
$$

From (2) we have that $y=|y| \leq-\frac{1+(n+1)^{2} x^{2}}{2(n+1)}$ and thus:

$$
\begin{gather*}
\operatorname{Re} \psi(\mathrm{i} x, y ; z) \leq 1-n(n+1) \frac{1+(n+1)^{2} x^{2}}{2(n+1)\left[n^{2}+(n+1)^{2} x^{2}\right]}- \tag{3}\\
-n(n+1) \frac{1+(n+1)^{2} x^{2}}{2(n+1) \sqrt{n^{2}+(n+1)^{2} x^{2}}}
\end{gather*}
$$

Let $g_{1}, g_{2}:[0, \infty) \rightarrow \mathbb{R}$ given by:

$$
\begin{aligned}
g_{1}(t) & =\frac{n^{2}}{2} \frac{1+(n+1)^{2} t}{n^{2}+(n+1)^{2} t} \\
g_{2}(t) & =\frac{n}{2} \frac{1+(n+1)^{2} t}{\sqrt{n^{2}+(n+1)^{2} t}}
\end{aligned}
$$

From (3) it is easy to see that $\operatorname{Re} \psi(\mathrm{i} x, y ; z)) \leq 1-g_{1}\left(x^{2}\right)-g_{2}\left(x^{2}\right)$. But g_{1} and g_{2} are increasing functions on $[0, \infty)$ and thus, $g_{1}\left(x^{2}\right) \geq g_{1}(0)=1 / 2$ and $g_{2}\left(x^{2}\right) \geq g(0)=1 / 2$ for all real x. It follows that

$$
\operatorname{Re} \psi(\mathrm{i} x, y ; z) \leq 1-1 / 2-1 / 2=0
$$

and the theorem is proved by applying Lemma 2.

4 A particular case

If we consider in Theorem 1 and in Theorem 2, $f(z)=z g^{\prime}(z)$, then the starlikeness of f is equivalent (by Lemma $\mathbf{1}$) with the convexity of g and a simple calculation shows also that $f \in \mathbf{Q U S T}$ if and only if $g \in \mathbf{U C V}$. We can then apply Theorem 1 and Theorem 2 to the function $z g^{\prime}(z)$ and obtain the following result:

Corolary 1. If $g \in \mathbf{C V}$, then we have:

$$
\operatorname{Re} \sqrt[n]{g^{\prime}(z)} \geq \frac{n}{n+2}
$$

and if $g \in \mathbf{U C V}$ we have

$$
\operatorname{Re} \sqrt[n]{g^{\prime}(z)} \geq \frac{n}{n+1}
$$

where the n-th roots are considered with their principal determinations.

References

[1] J.W. Alexander, Functions that map the interior of the unit circle upon simple regions, Ann. of Math., $\mathbf{1 7}(1915)$, pp. 12-22.
[2] A.W. Goodman, On uniformly starlike functions, J.Math. Anal. Appl. 155) (1991), pp. 364-370.
[3] A.W. Goodman, On uniformly convex functions, Annales Polonici Mathematici LVI.1) (1991), pp. 88-93.
[4] A. Mannino, Some inequalities concerning starlike and convex functions, General Mathematics vol. 12 no. 1 (2004), Sibiu, pp. 5-12.
[5] A. Marx, Untersuchungen űber schlichte Abbildungen, Math. Ann. 107 (1932/33), pp. 40-67.
[6] S.S.Miller, P.T.Mocanu, Differential subordinations and univalent functions, Michigan Math. Journal 28, (1981), pp. 151-171.
[7] S.S.Miller, P.T.Mocanu, The theory and applications of second order differential subordinations, Studia Univ. Babeş-Bolyai, Math. 34, 4(1989),3-33.
[8] Frode Ronning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993), 189-196.
[9] Frode Ronning, Some radius results for univalent functions, J. Math. Anal. Appl. 194, 1995), pp. 319-327.

Maria Pettineo
Dipartimento di Matematica e Applicazioni
Via Archirafi n ${ }^{\circ} 34$
90123 Palermo, Italia.

