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From Finsler Geometry to Noncommutative

Geometry

Laurian Pişcoran

Abstract

One link between Finsler geometry and noncommutative geome-

try is given by a differential operator, which is called the Dirac op-

erator. In this paper, we construct such an operator and we analyze

some of its properties. Also, in this paper is presented an elocvent

example. After that we continued the construction of this operator

for the case of Randers spaces, which are some particular example of

Finsler spaces.
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1 Preliminaries

Definition A Finsler space is a real differential manifold endowed with a

norm bundle with some properties, so for any p ∈ M , we have a norm over
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TpM :

||...||p : TpM → R

ξp → ||ξp||p

Next, we will note with ξp the elements of TpM and with αp or ξ∗p the

elements of the cotangent space.

We construct the map

Gp : TpM × TpM → R

(ξp, ηp) → Gp(ξp, ηp)

with:

Gp(ξp, ηp) =
1

4
(||ξp + ηp||2p − ||ξp − ηp||2p)

This is a nondegenerate application in a Finsler space, in the sense that

this application define a Finsler duality:

Γp : TpM → T ∗
p M

defined by: Γp(ξp) = Gp(ξp, ηp), ξp → Γp(ξp).

In this way, we define a norm in the cotangent space:

||...||∗p : TpM → R

ξ∗p → ||ξ∗p ||∗p
where: ||ξ∗p ||∗p = ||ξp||p , so we have: ||ξ∗p ||∗p=||Γ−1

p (ξ∗p)||p.
All of this, can be extended for maps, vector fields and forms, C∞(M),

χ(M), Ω1(M):

||...||p : χ(M) → C∞(M)
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X → χ(X)

where ||X||p(p) = ||X|p ||p. We also have

G : χ(M)× χ(M) → C∞(M)

(X,Y ) → G(X,Y )

where G(X,Y )(p) = Gp(X|p , Y|p).

Also,we have Finsler duality:

Γ : χ(M) → Ω1(M)

X → Γ(X)

where: Γ(X)(Y ) = G(X,Y ), so, we have: Γ(X)|p(ηp) = Gp(X|p , ηp). Finaly,

we have:

||...||∗p : Ω1(M) → C∞(M)

α → ||α||∗

where ||α||∗(p) = ||α|p ||∗p and ||α||∗ = ||Γ−1(α)||.
Next, we will remember some well known notions about differentials

operators:

Let be given two bundles (E,M) and (F, M) over the same manifold

M , and we consider thecoresponding section of this bundles Γ(M, E) and

Γ(M,F ).

Next, we consider:

HomR(Γ(M, E), Γ(M, F )) ≡ LR(E,F )
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and

Hom C∞(M)(Γ(M, E), Γ(M,F )) ≡ L C∞(M)(E,F )

Let f ∈ C∞(M) and we define:

f : Γ(M,E) → Γ(M, F )

u → uf

and we consider: ad(f)(D) = f D −Df , so we have:

ad(f)(D) : Γ(M, E) → Γ(M,F )

u → (f D −Df )(u)

and also:

ad(f)(D) : LR(E,F ) → LR(E, F )

D → ad(f)(D)

and

ad(f)(D)|p : Ep → F|p

up → [(Du)f ]|p − [D(uf)]|p

. Properties:

1) ad(f1)◦ad(f2)=ad(f2)◦ad(f1)

2) for f, g ∈ C∞(M) with df = dg we have: ad(f) = ad(g)

3) for f1,...,fk, g1, ..., gk ∈ C∞
R (M) with dfi = dgi, we have:

ad(f1) ◦ ... ◦ ad(fk) = ad(g1) ◦ ... ◦ ad(gk)
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Let consider now the set: d( C∞(M)) ⊆ Ω1(M) of exact forms and

P ∈ Diff (k)(E, F ) . We define:

σk(P ) : d( C∞(M)) → LR(E,F )

df → (−1)k

k!
ζ(df, ..., df)

In particular we start with: D ∈ Diffk(E, F ) ⊂ LR(E, F ), where D:

Γ(M,E) → Γ(M, F ), u → Du and if D ∈ Diffk(E, F ), we have σk(P ) 6= 0,

we say that the operator D has order k.

If P ∈ Diff (k)(E,F ) and Q ∈ Diff (k,)(F,G), we have P◦Q ∈ Diffk+k,
(E, G)

and also σk+k,(Q ◦ P ) = σk(Q) ◦ σk,(P ).

Definition We say that the operator P ∈ Diff (2)(E, F ) is a generalized

Laplacian, if σ2(P )(f) = (||df ||∗)2 · 1Γ(M,E)

2 Dirac Finsler Operator

Let consider now some notions about C∗-algebras

Definition: A right module over a C∗-algebra is a set endowed with

two aplications: the sum and an external operation over E , the right

multiplication with scalars, such that:

1) (E, +) is an Abelian group

2) (x+y)λ = xλ+yλ, x(λ+µ) = xλ+xµ, (xµ)λ = x(µλ) with x, y ∈ E

Definition: Let A be a C∗-algebra and A+ be the positive elements

of the algebra. An A−Finsler module, is an module E, endowed with an

aplication ρ : E → A+, with the following properties:

1) ||.||E, x → ρ(x), is a Banach norm over E
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2) ρ2(ax) = aρ2(x)a∗, where a ∈ A, x ∈ E

We have: ||ax||2E = ||ρ2(ax)||2E = ||aρ2(x)a∗||2E ≤ ||a||2E||x||2E
Let (E, M, π) be an Banach module over an A−Finsler module E.

We define now a map c : Γ(M, E)⊗Ω1(A) → Γ(M,E) and also we define

a connection :

5 : Γ(M, E) → Γ(M,E)⊗ Ω1(A)

5(as) = a5 s + s⊗ da

With this notations we can define the Dirac Finsler operator:

D : Γ(M, E) → Γ(M, E),

D = c ◦ 5,

where Γ(M,E) represent the section of the Banach bundle.

We say that D is a Dirac operator if D2 is a generalized Laplacian.

If we consider now, two bundle (E, M), (F,M) over the Finsler manifold

M , we say that P ∈ Diff 2(E,F ) is a generalized laplacian, if σ2(P )(df) =

(|||df |||∗)2 · 1Γ(M,E).

If we have a covariant derivative 5 over the bundle (E, M), with

5 : Γ(M, E) → Γ(M,E)⊗ C∞(M) Ω1(A)

and if we have a Clifford Finsler action, i.e. a map: γ : Γ(M, E)⊗Ω1(A) →
Γ(M, E). Then, we can define Dirac Finsler operator D : Γ(M,E) →
Γ(M, E) with D = γ ◦ 5
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Example:

On R we define the following euclidian-Finsler norm:

|||ξ|||x = |ξ|+ sgn(xξ)xξ = |ξ|(1 + sgn(x)x) = |ξ|(1 + |x|) = |ξ|m(x),

where we make the notation m(x) = 1 + |x|.
We consider now the following identifications: χ(R) ≡ C∞(R), Ω1(R) ≡

C∞(R).

We have: Gx(ξ, η) = m2(x)ξη, i.e. G(X,Y ) = m2XY with X,Y ∈
C∞(R)

The following Finsler duality holds

Γ : χ(R) → Ω1(R),

X → Γ(X)

and if we consider Γ(X) as an element from C∞(R) one obtain: Γ(g)(X) =

Gx(g(x), 1) = m2(x)g(x).

Also, we have:

Γ−1 : C∞(R) → C∞(R)

g → m−2g

Observe that: ||g||∗ = ||Γ−1(g)|| = ||m−2g|| = m|m−2g| = m−1|g|, so

one obtain (||g||∗)2 = m−2g2.

We can define a cvasi-Clifford action by:

χ(R)⊗ C∞(M) Ω1(R) ' C∞(R) → χ(R) ' C∞(M)

with γ : C∞(M) → C∞(M), g → m−1and it follows that: (γ ◦ γ)(g) =

(m−1g)2 = m−2g2 =(||g||∗)2.
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Let us consider the covariant derivative:

5 : C∞(R) → C∞(R)

g → g′.

In this way we obtain the Dirac Finsler operator D = γ ◦ 5 where:

D : C∞(M) → C∞(M)

g → m−1g′

and we have σ1(D)(df) = m−1f ′1 C∞(R), and after computation one obtain:

σ2(D
2)(df) = m−2(f ′)21 C∞(R)

Also we have: (||df ||∗)2 = m−2(f ′)2 and after that we obtain: σ2(D
2)(df) =

(||df ||∗)2 which means that D is a generalized Laplacian.

Proposition. The Dirac Finsler operator defined above is an differen-

tial eliptic operator.

Proof. Using the definition given by Narasimhan ([1]), we can eas-

ily verify the following property:from D(f) = D(g) we obtain: γ(5(f)) =

γ(f ,) = γ(g,) = γ(5(g)) and using the fact that D is a generalized Lapla-

cian, we obtain that D is an elliptic operator.

In the case of Randers spaces, with the norm: F (x, ξ) =
√

gijξiξj +

bi(x)ξi, where gij are the coeficients of a Riemann metric g and bi(x) are the

coeficients of an 1-form, we can construct the Dirac Finsler operator in the

following way: first, we consider F (x, ξ) = ξi

(√
gij

ξi

ξj
+ bi

)
= ξi ·m(x, ξ) ,

where m(x, ξ) =
√

gij
ξi

ξj
+ bi.
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Second, we have: Gx(ξ, η) = m2(x)ξη, i.e. G(X, Y ) = m2XY with

X,Y ∈ F(M).

Then :

Γ : χ(R) → Ω1(R)

X → Γ(X)

with: Γ(g)(X) = Gx(g(x), 1) = m2(x)g(x).

Also, we obtain:

Γ−1 : C∞(M) → C∞(M)

g → m−2g

Then: ||g||∗ = ||Γ−1(g)|| = ||m−2g|| = m|m−2g| = m−1|g|, so one obtain

(||g||∗)2 = m−2g2.

We can define:

γ : C∞(M) → C∞(M)

g → m−1g

and one obtain: (γ ◦ γ)(g) = (m−1g)2 = m−2g2 =(||g||∗)2.

Let us consider the covariant derivative:

5 : C∞(M) → C∞(M)

f →5(f).

We obtain the Dirac Finsler operator D = γ ◦5 and we say that he is a

Dirac type operator if it is a generalized Laplacian. For the case of Randers

spaces, in local coordinate we obtain:

γ =


 1√

gij
ξi

ξj
+ bi


 g
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D =


 1√

gij
ξi

ξj
+ bi


∇(g)

.
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