Estimations of the Error for Two-point Formula via Pre-Grüss Inequality

J. Pečarić and A. Vukelić

Dedicated to Professor Dumitru Acu on his 60th anniversary

Abstract

Generalization of estimation of two-point formula is given, by using pre-Grüss inequality.

2000 Mathematical Subject Classification: 26D10, 41A55.

Key words and phrases: Pre-Grüss inequality, generalization, two-point formula.

1 Introduction

In the recent paper [4] N. Ujević use the generalization of pre-Grüss inequality to derive some better estimations of the error for Simpson's quadrature rule. In fact, he proved the next as his main result:

Theorem 1. If $g, h, \Psi \in L_2(0,1)$ and $\int_0^1 \Psi(t)dt = 0$ then we have

(1)
$$|S_{\Psi}(g,h)| \leq S_{\Psi}(g,g)^{1/2} S_{\Psi}(h,h)^{1/2},$$

where

$$S_{\Psi}(g,h) = \int_{0}^{1} g(t)h(t)dt - \int_{0}^{1} g(t)dt \int_{0}^{1} h(t)dt - \int_{0}^{1} g(t)\Psi_{0}(t)dt \int_{0}^{1} h(t)\Psi_{0}(t)dt$$

$$and \ \Psi_{0}(t) = \Psi(t)/\|\Psi\|_{2}.$$

Further, he gave some improvements of the Simpson's inequality. For example he get:

Theorem 2. Let $I \subset \mathbb{R}$ be a closed interval and $a, b \in IntI$, a < b. If $f: I \to \mathbb{R}$ is an absolutely continuous function with $f' \in L_2(a, b)$ then we have

(2)
$$\left| \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right] - \int_a^b f(t)dt \right| \le \frac{(b-a)^{3/2}}{6} K_1,$$

where

(3)
$$K_1^2 = \|f'\|_2^2 - \frac{1}{b-a} \left(\int_a^b f'(t)dt \right)^2 - \left(\int_a^b f'(t)\Psi_0(t)dt \right)^2$$
 and $\Psi(t) = t - \frac{a+b}{2}, \Psi_0(t) = \Psi(t)/\|\Psi\|_2$.

In this paper using the Theorem 1 we will give the similar result for Euler two-point formula and for functions whose derivative of order $n, n \geq 1$, is from $L_2(0,1)$ space. We will use interval [0,1] because of simplicity and since it involves no loss in generality.

2 Estimations of the error for Euler twopoint formula

In the recent paper [3] the following identity, named Euler two-point formula, has been proved. For $n \geq 1$, $x \in \left[0, \frac{1}{2}\right]$ and every $t \in [0, 1]$ we have

(4)
$$\int_0^1 f(t)dt = D(x) - T_n(x) + R_n(x)$$

where

$$D(x) = \frac{1}{2} [f(x) + f(1-x)],$$

 $T_0(x) = 0$ and

(5)
$$T_m(x) = \frac{1}{2} \sum_{k=1}^m \frac{\tilde{B}_k(x)}{k!} \left[f^{(k-1)}(1) - f^{(k-1)}(0) \right],$$

for $1 \le m \le n$ and $x \in \left[0, \frac{1}{2}\right]$, while

$$\tilde{B}_k(x) = B_k(x) + B_k(1-x), \ k \ge 1,$$

$$R_n(x) = \frac{1}{2(n!)} \int_0^1 G_n^x(t) f^{(n)}(t) dt$$

and

$$G_n^x(t) = B_n^*(x-t) + B_n^*(1-x-t), \ t \in \mathbb{R}.$$

The identity holds for every function $f:[0,1] \to \mathbb{R}$ such that $f^{(n-1)}$ is a continuous function of bounded variation on [0,1]. The functions $B_k(t)$ are the Bernoulli polynomials, $B_k = B_k(0)$ are the Bernoulli numbers, and $B_k^*(t)$, $k \geq 0$, are periodic functions of period 1, related to the Bernoulli polynomials as

$$B_k^*(t) = B_k(t), \ 0 \le t < 1$$
 and $B_k^*(t+1) = B_k^*(t), \ t \in \mathbb{R}$.

The Bernoulli polynomials $B_k(t)$, $k \geq 0$ are uniquely determined by the following identities

$$B'_k(t) = kB_{k-1}(t), \ k \ge 1; \ B_0(t) = 1, \ B_k(t+1) - B_k(t) = kt^{k-1}, \ k \ge 0.$$

For some further details on the Bernoulli polynomials and the Bernoulli numbers see for example [1] or [2]. We have $B_0^*(t) = 1$ and $B_1^*(t)$ is a discontinuous function with a jump of -1 at each integer. It follows that $B_k(1) = B_k(0) = B_k$ for $k \geq 2$, so that $B_k^*(t)$ are continuous functions for $k \geq 2$. We get

(6)
$$B_k^{*'}(t) = k B_{k-1}^*(t), \ k \ge 1$$

for every $t \in \mathbb{R}$ when $k \geq 3$, and for every $t \in \mathbb{R} \setminus \mathbb{Z}$ when k = 1, 2.

Theorem 3. If $f:[0,1] \to \mathbb{R}$ is such that $f^{(n-1)}$ is absolutely continuous function with $f^{(n)} \in L_2(0,1)$ then we have

$$(7) \left| \int_0^1 f(t) dt - D(x) + T_n(x) \right| \le \frac{1}{2} \left[\frac{2(-1)^{n-1}}{(2n)!} \left[B_{2n} + B_{2n} (1 - 2x) \right] \right]_K^{1/2} K,$$

where

(8)
$$K^{2} = \|f^{(n)}\|_{2}^{2} - \left(\int_{0}^{1} f^{(n)}(t)dt\right)^{2} - \left(\int_{0}^{1} f^{(n)}(t)\Psi_{0}(t)dt\right)^{2}.$$

For n even

$$\Psi(t) = \begin{cases} 1, & t \in \left[0, \frac{1}{2}\right] \\ -1, & t \in \left(\frac{1}{2}, 1\right] \end{cases},$$

while for n odd we have

$$\Psi(t) = \begin{cases} t + \frac{B_{n+1}(\frac{1}{2} + x)}{2(B_{n+1}(x) - B_{n+1}(\frac{1}{2} + x))}, & t \in [0, \frac{1}{2}], \\ t + \frac{B_{n+1}(\frac{1}{2} + x) - 2B_{n+1}(x)}{2(B_{n+1}(x) - B_{n+1}(\frac{1}{2} + x))}, & t \in (\frac{1}{2}, 1]. \end{cases}$$

Proof. It is not difficult to verify that

(9)
$$\int_0^1 G_n(t)dt = 0,$$

(10)
$$\int_0^1 \Psi(t)dt = 0,$$

(11)
$$\int_0^1 G_n(t)\Psi(t)dt = 0.$$

From (4), (9) and (11) it follows that

(12)
$$\int_{0}^{1} f(t)dt - D(x) + T_{n}(x) = \frac{1}{2(n!)} \int_{0}^{1} G_{n}^{x}(t) f^{(n)}(t) dt - \frac{1}{2(n!)} \int_{0}^{1} G_{n}^{x}(t) dt \int_{0}^{1} f^{(n)}(t) dt - \frac{1}{2(n!)} \int_{0}^{1} G_{n}^{x}(t) \Psi_{0}(t) dt \int_{0}^{1} f^{(n)}(t) \Psi_{0}(t) dt = \frac{1}{2(n!)} S_{\Psi}(G_{n}^{x}, f^{(n)}).$$

Using (12) and (1) we get

(13)
$$\left| \int_0^1 f(t) dt - D(x) + T_n(x) \right| \le \frac{1}{2(n!)} S_{\Psi}(G_n^x, G_n^x)^{1/2} S_{\Psi}(f^{(n)}, f^{(n)})^{1/2}.$$

We also have (see [3])

$$S_{\Psi}(G_n^x, G_n^x) = \|G_n^x\|_2^2 - \left(\int_0^1 G_n^x(t)dt\right)^2 - \left(\int_0^1 G_n^x(t)\Psi_0(t)dt\right)^2 =$$

$$(14) = (-1)^{n-1} \frac{2(n!)^2}{(2n)!} \left[B_{2n} + B_{2n}(1-2x)\right]$$

and

$$S_{\Psi}(f^{(n)}, f^{(n)}) = \|f^{(n)}\|_{2}^{2} - \left(\int_{0}^{1} f^{(n)}(t)dt\right)^{2} - \left(\int_{0}^{1} f^{(n)}(t)\Psi_{0}(t)dt\right)^{2} = K^{2}.$$

From (13)-(15) we easily get (7).

Remark 1. Function $\Psi(t)$ can be any function witch satisfies conditions $\int_0^1 \Psi(t)dt = 0$ and $\int_0^1 G_n^x(t)\Psi(t)dt = 0$. Because $G_n^x(1-t) = (-1)^n G_n^x(t)$ (see [3]), for n even we can take function $\Psi(t)$ such that $\Psi(1-t) = -\Psi(t)$. For n odd we have to calculate $\Psi(t)$ and with not lost in generality in our theorem we take the form $\Psi(t) = \begin{cases} t+a, & t \in \left[0, \frac{1}{2}\right], \\ t+b, & t \in \left(\frac{1}{2}, 1\right]. \end{cases}$

Remark 2. For n = 1 in Theorem 3 we have

(16)
$$\left| \int_0^1 f(t) dt - D(x) \right| \le \frac{1}{2} \left[\frac{1}{3} - 2x + 4x^2 \right]^{1/2} K,$$

while

$$\Psi(t) = \begin{cases} t + \frac{1 - 12x^2}{24x - 6}, & t \in \left[0, \frac{1}{2}\right], \\ t + \frac{12x^2 - 24x + 5}{24x - 6}, & t \in \left(\frac{1}{2}, 1\right]. \end{cases}$$

Also, for n = 2 we have

(17)
$$\left| \int_0^1 f(t) dt - D(x) \right| \le \frac{1}{2} \left[\frac{1}{180} - \frac{x^2}{3} + \frac{4x^3}{3} - \frac{4x^4}{3} \right]^{1/2} K,$$

while

$$\Psi(t) = \begin{cases} 1, & t \in \left[0, \frac{1}{2}\right], \\ -1, & t \in \left(\frac{1}{2}, 1\right]. \end{cases}$$

If in Theorem 3 we choose x = 0, 1/2, 1/3, 1/4 we get inequality related to the trapezoid, the midpoint, the two-point Newton-Cotes and the two-point MacLaurin formula:

Corollary 1. If $f:[0,1] \to \mathbb{R}$ is such that $f^{(n-1)}$ is absolutely continuous function with $f^{(n)} \in L_2(0,1)$ then we have

(18)
$$\left| \int_0^1 f(t) dt - \frac{1}{2} [f(0) + f(1)] + T_n(0) \right| \le \left[\frac{(-1)^{n-1}}{(2n)!} B_{2n} \right]^{1/2} K,$$

where $T_0(0) = 0$,

$$T_n(0) = \sum_{k=1}^{\lfloor n/2 \rfloor} \frac{B_{2k}}{(2k)!} \left[f^{(2k-1)}(1) - f^{(2k-1)}(0) \right]$$

and

$$K^{2} = \|f^{(n)}\|_{2}^{2} - \left(\int_{0}^{1} f^{(n)}(t)dt\right)^{2} - \left(\int_{0}^{1} f^{(n)}(t)\Psi_{0}(t)dt\right)^{2}.$$

For n even

$$\Psi(t) = \begin{cases} 1, & t \in \left[0, \frac{1}{2}\right], \\ -1, & t \in \left(\frac{1}{2}, 1\right], \end{cases}$$

while for n odd we have

$$\Psi(t) = \begin{cases} t + \frac{2^{-n} - 1}{4 - 2^{1 - n}}, & t \in \left[0, \frac{1}{2}\right], \\ t + \frac{2^{-n} - 3}{4 - 2^{1 - n}}, & t \in \left(\frac{1}{2}, 1\right]. \end{cases}$$

Remark 3. For n = 1 in Corollary 1 we have

$$\left| \int_0^1 f(t) dt - \frac{1}{2} [f(0) + f(1)] \right| \le \frac{K}{2\sqrt{3}},$$

while

$$\Psi(t) = \begin{cases} t - \frac{1}{6}, & t \in [0, \frac{1}{2}], \\ t - \frac{5}{6}, & t \in (\frac{1}{2}, 1]. \end{cases}$$

Corollary 2. If $f:[0,1] \to \mathbb{R}$ is such that $f^{(n-1)}$ is absolutely continuous function with $f^{(n)} \in L_2(0,1)$ then we have

(19)
$$\left| \int_0^1 f(t) dt - f\left(\frac{1}{2}\right) + T_n\left(\frac{1}{2}\right) \right| \le \left[\frac{(-1)^{n-1}}{(2n)!} B_{2n} \right]^{1/2} K,$$

where $T_0\left(\frac{1}{2}\right) = 0$,

$$T_n\left(\frac{1}{2}\right) = \sum_{k=1}^{\lfloor n/2\rfloor} \frac{(2^{1-2k}-1)B_{2k}}{(2k)!} \left[f^{(2k-1)}(1) - f^{(2k-1)}(0) \right]$$

and

$$K^{2} = \|f^{(n)}\|_{2}^{2} - \left(\int_{0}^{1} f^{(n)}(t)dt\right)^{2} - \left(\int_{0}^{1} f^{(n)}(t)\Psi_{0}(t)dt\right)^{2}.$$

For n even

$$\Psi(t) = \begin{cases} 1, & t \in \left[0, \frac{1}{2}\right], \\ -1, & t \in \left(\frac{1}{2}, 1\right], \end{cases}$$

while for n odd we have

$$\Psi(t) = \begin{cases} t + \frac{1}{2^{1-n}-4}, & t \in [0, \frac{1}{2}], \\ t + \frac{3-2^{1-n}}{2^{1-n}-4}, & t \in (\frac{1}{2}, 1]. \end{cases}$$

Remark 4. For n = 1 in Corollary 2 we have

$$\left| \int_0^1 f(t) dt - f\left(\frac{1}{2}\right) \right| \le \frac{K}{2\sqrt{3}},$$

while

$$\Psi(t) = \begin{cases} t - \frac{1}{3}, & t \in [0, \frac{1}{2}], \\ t - \frac{2}{3}, & t \in (\frac{1}{2}, 1]. \end{cases}$$

Corollary 3. If $f:[0,1] \to \mathbb{R}$ is such that $f^{(n-1)}$ is absolutely continuous function with $f^{(n)} \in L_2(0,1)$ then we have

(20)
$$\left| \int_0^1 f(t) dt - \frac{1}{2} \left[f\left(\frac{1}{3}\right) + f\left(\frac{2}{3}\right) \right] + T_n\left(\frac{1}{3}\right) \right| \le \frac{1}{2} \left[\frac{(-1)^{n-1}}{(2n)!} (1 + 3^{1-2n}) B_{2n} \right]^{1/2} K,$$

where $T_0\left(\frac{1}{3}\right) = 0$,

$$T_n\left(\frac{1}{3}\right) = \frac{1}{2} \sum_{k=1}^{\lfloor n/2 \rfloor} \frac{(3^{1-2k} - 1)B_{2k}}{(2k)!} \left[f^{(2k-1)}(1) - f^{(2k-1)}(0) \right]$$

and

$$K^{2} = \|f^{(n)}\|_{2}^{2} - \left(\int_{0}^{1} f^{(n)}(t)dt\right)^{2} - \left(\int_{0}^{1} f^{(n)}(t)\Psi_{0}(t)dt\right)^{2}.$$

For n even

$$\Psi(t) = \begin{cases} 1, & t \in \left[0, \frac{1}{2}\right], \\ -1, & t \in \left(\frac{1}{2}, 1\right], \end{cases}$$

while for n odd we have

$$\Psi(t) = \begin{cases} t + \frac{1-2^n}{2^{2+n}-2}, & t \in \left[0, \frac{1}{2}\right], \\ t + \frac{1-3 \cdot 2^n}{2^{2+n}-2n}, & t \in \left(\frac{1}{2}, 1\right]. \end{cases}$$

Remark 5. For n = 1 in Corollary 3 we have

$$\left| \int_0^1 f(t) dt - \frac{1}{2} \left[f\left(\frac{1}{3}\right) + f\left(\frac{2}{3}\right) \right] \right| \le \frac{K}{6},$$

while

$$\Psi(t) = \begin{cases} t - \frac{1}{6}, & t \in [0, \frac{1}{2}], \\ t - \frac{5}{6}, & t \in (\frac{1}{2}, 1]. \end{cases}$$

Corollary 4. If $f:[0,1] \to \mathbb{R}$ is such that $f^{(2m-1)}$ is absolutely continuous function with $f^{(2m)} \in L_2(0,1)$ then we have

(21)
$$\left| \int_{0}^{1} f(t) dt - \frac{1}{2} \left[f\left(\frac{1}{4}\right) + f\left(\frac{3}{4}\right) \right] + T_{2m} \left(\frac{1}{4}\right) \right| \leq \left[\frac{-2^{-4m}}{(4m)!} B_{4m} \right]^{1/2} K,$$
where $T_{0} \left(\frac{1}{4}\right) = 0$,

$$T_{2m}\left(\frac{1}{4}\right) = \sum_{k=1}^{m} \frac{2^{-2k}(2^{1-2k}-1)B_{2k}}{(2k)!} \left[f^{(2k-1)}(1) - f^{(2k-1)}(0) \right]$$

and

$$K^{2} = \|f^{(2m)}\|_{2}^{2} - \left(\int_{0}^{1} f^{(2m)}(t)dt\right)^{2} - \left(\int_{0}^{1} f^{(2m)}(t)\Psi_{0}(t)dt\right)^{2},$$

104

while

$$\Psi(t) = \begin{cases} 1, & t \in \left[0, \frac{1}{2}\right], \\ -1, & t \in \left(\frac{1}{2}, 1\right]. \end{cases}$$

References

- [1] M. Abramowitz and I. A. Stegun (Eds), Handbook of mathematical functions with formulae, graphs and mathematical tables, National Bureau of Standards, Applied Math.Series 55, 4th printing, Washington 1965.
- [2] I.S. Berezin and N.P. Zhidkov, *Computing methods*, Vol. I. Pergamon Press, Oxford-London-Edinburgh-New York-Paris-Frankfurt, 1965.
- [3] J. Pečarić, I. Perić, A. Vukelić, Sharp integral inequalities based on general Euler two-point formulae, ANZIAM J. 46(2005), 555-574.
- [4] N. Ujević, New bounds for Simpson's inequality. Tamkang J. of Math., Vol. 33, No. 2, (2002), 129-138.

Faculty of Food Technology and Biotechnology,
Mathematics Department, University of Zagreb,
Pierottijeva 6, 10000 Zagreb, Croatia

E-mail: avukelic@pbf.hr