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Abstract

The aim of this paper is to establish a closed subset E of the

complex plane C, the interior E0 of which forms one unbounded

Gleason part, nevertheless E is a set of tangential approximation by

functions meromorphic in C.
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1 Introduction

To state our main result we need some notations and facts. For arbitrary

A ⊂ C we denote by A0, ∂A,A and Ac the interior, boundary, closure and

complement of A in C, respectively. For a closed subset E ⊂ C let A(E) be

the space of all complex valued functions which are continuous on E and
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holomorphic in the interior E0 of E. For a compact K ⊂ C we denote by

R(K) the set of all functions on K which are uniform limits of functions

rational in C without poles on K. Further, let E be a relatively closed subset

of a domain D ⊆ C. Then the space M(E) denote the set of all functions

on E which are uniform limits of functions meromorphic in D without poles

on E.

Theorem 1. (Nersessian [5] ) A(E) =M(E) if and only if R(E ∩K) =

A(E ∩K) for any closed disk K ⊂ D.

On the other hand we can base on the following sufficient conditions for

the equality A(K) = R(K) for any compact K ⊂ C.

Theorem 2. (Mergelyan [4] ) If Kc has a finite number of components

then A(K) = R(K).

Theorem 3. (Vitushkin [6] )) If the interior boundary of K lies on coun-

table many C2 curves then A(K) = R(K).

(x ∈ ∂K is said to be an interior boundary point, if x /∈ ∂Ω for any

component Ω of Kc).

Theorem 2 is a consequence of Theorem 3, when the interior boundary

of K is empty.

Definition 1. A closed subset E ⊂ C is said to be a set of tangential

(Carleman) approximation with functions meromorphic in C, if for arbitrary

functions f and ε, where f ∈ A(E) and ε ∈ C(E), ε > 0, there exists a

meromorphic function g in C without poles on E such that

|f(z)− g(z)| < ε(z) for z ∈ E.
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Definition 2.

(i) For a compact K ⊂ C we say that x, y ∈ K are equivalent, x ∼ y, if

there exists a c > 0 such that

1

c
<
u(x)

u(y)
< c

for any u ∈ Re (R(K)), u > 0.

(ii) Any equivalence class of K is said to be a Gleason part of R(K).

(iii) For a closed E ⊂ C a subset G ⊂ E is called to be a Gleason part of

M(E), if K ∩ G is a Gleason part of R(K ∩ E) for any closed disk

K.

In the paper [1] the following condition is given for sets to be sets of

tangential approximation.

Theorem 4. (Boivin [1]) Let E ⊂ C be closed. If for any closed disk K

(i) there exists a disk K̃ ⊃ K such that any Gleason part of M(E) that

has a non empty intersection with K lie in K̃,

(ii) if A(K ∩ E) = R(K ∩ E),

then E is a set of tangential approximation with functions meromor-

phic in C.

In this paper we show that there exists a set E, the interior of which

forms one unbounded Gleason part ofM(E) (the condition (i) of Theorem

4 is not satisfied), but E is a set of tangential approximation by functions

meromorphic in C.
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2 (L)-type sets

Let us set

D(a, r) := {z ∈ C : |z − a| < r}, D := D(0, 1), C := ∂D.

Definition 3. A closed domain L = L({zi}∞i=1, {ri}∞i=1) := D\⋃∞i=1D(zi, ri)

is said to be an (L)-type set, if the sequences {zi}∞i=1 and {ri}∞i=1 satisfy the

following conditions:

(i) |zi| < 1, ri < 1− |zi|, i = 1, 2, . . . ,

(ii) ({zi}∞i=1)′ = C,

(iii) ri + rj < |zi − zj| for i 6= j.

(In (ii) “ ′” means the set of all cluster points).

Definition 4. An (L)-type set L is called a uniqueness set if f ∈ A(L) and

f(z) = 0 on C imply f(z) ≡ 0 on L.

In [2] A.A. Gonchar has shown that there are (L)-type non-uniqueness

sets. More precisely, the following proposition is true.

Proposition 1. For every β > 2 and ε > 0 there are

(i) (L)-type set L with the property

(1)
∞∑
i=1

(
1

ln 1
ri

)β

< ε,
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(ii) a function µ of the form

(2) µ(z) =
∞∑
i=0

Ai
z − zi

(the serie converges uniform on L)

such that µ(z) = 0 on C and µ(z) 6≡ 0 on L.

Corollary 1. For arbitrary α > 0 there exists an (L) type set with a func-

tion µ satisfying the condition (ii) of Proposition 1 so that

∞∑
i=1

rαi <∞.

In fact, for any α > 0, β > 2 we have

rαi

(
ln

1

ri

)β
→ 0 when ri → 0.

Hence,
∑∞

i=1
1

(ln 1
ri

)β
< ε implies

∑∞
i=1 r

α
i <∞.

Remark 1. The function µ is meromorphic in the unit disk.

In fact, on the circle C(zi, ri), i = 0, 1, 2, . . . , the series
∑∞

k=0
Ak
z−zk con-

verges uniformly, and from the maximum principle follows that the series
∑i−1

k=0
Ak
z−zk +

∑∞
k=i+1

Ak
z−zk uniformly converges in the circle D(zi, ri). Hence,

µ is analytic in D(zi, ri) except at the point z = zi, where µ has a sim-

ple pole. Resuming, µ is meromorphic in unit circle with the simple poles

{zi}∞i=0.

Below L denotes an (L)-type non-uniqueness set with the property
∑∞

i=1 ri <∞, and µ is the function from Proposition 1.

Let us set

C1 := {z = x+ iy : |z| = 1,−1 ≤ x < 0},

C2 := {z = x+ iy : |z| = 1, 0 < x ≤ 1}.
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Lemma 1. For any L set there exists a meromorphic function ν(z) in the

unit disk such that

lim
L3z→l

ν(z) =





0, l ∈ C1

1, l ∈ C2

.

Proof. Let us set

A1 := L \ (D(1,
√

2) ∪ C), A2 := L \ (D(−1,
√

2) ∪ C), F := A1 ∪ A2,

and take

f(z) =





0, z ∈ A1

1, z ∈ A2

.

We have f(z) ∈ A(F ). The complement of the intersection F ∩ K for

any closed disk K ⊂ D consists of a finite number of components (since

{zi}′ = C); hence, F ∩ K is a set of uniform approximation with rational

functions (Theorem 2) which implies that F is a set of uniform approxima-

tion with functions meromorphic in D (Theorem 1). Let us take the function

f/µ. The zeros of µ that lie in A2 are denoted by ξ1, . . . , ξn, . . . . Applying

Mittag-Leffler’s theorem there is a meromorphic function h(z) with poles

at ξ1, . . . , ξn, . . . (and only this points), and with principal parts of the Lau-

rent expansions coinciding with the corresponding principal parts of the

function 1/µ. In that case we have (f/µ − h) ∈ A(F ). In D there exists a

meromorphic function v without poles on F such that

∣∣∣∣
f

µ
− h− v

∣∣∣∣ < 1 on F,

which gives us |f−µ(h+v)| < |µ| on F . Because of |µ| → 0 when z → l ∈ C,
the in D meromorphic function ν := µ(h+v) satisfies the assumption of the

lemma.
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Remark 2. For an L set for every point z0 ∈ C the condition

(3) lim
δ→0

∑
D(zi,ri)⊂D(z0,δ)

ri

δ
= 0

is satisfied (cf. [2]); hence according to a result from [2] we get that the

interior X0 of X := D(0, 2) \ ∪∞i=0D(zi, ri) forms a Gleason part of R(X).

3 The main result

Theorem 5. There exists a closed subset E ⊂ C so that E0 forms an

unbounded Gleason part ofM(E) and E is a set of tangential approximation

by functions meromorphic in C.

Proof. Consider the strip

Π := {z = x+ iy : −1 ≤ y ≤ 1}

and the L set

D \
∞⋃
i=1

D(zi, ri)

and set

E := (Π \ ∪∞n=−∞ ∪∞i=1 D(zi + 3n, ri)) \ ∪∞n=−∞D(3n± i, 1

4
),

D′n := D(0, 3n) \ (D(3m, 1) ∪D(3m± i, 1

4
)),m = ±n, n = 1, . . . ,

D′′n := (D(0, 3n) ∪D(3m, 1)) \D(3m± i, 1

4
),m = ±n, n = 1, . . . .

Because of Remark 2 the interior E0 forms one Gleason part of M(E).

Let f ∈ A(E) be arbitrary, and ε ∈ C(E), ε > 0, tends to 0 if |z| → ∞.
There exists a rational function R2(z) (Theorem 3) so that

|f(z)−R2(z)| < ε(7)

4(c+ 1)
, z ∈ D′′2 ∩ E,
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where c = ||ν||L (ν is the function from Lemma 1).

Choose a rational function Q3(z) so that

|f(z)−R2(z)−Q3(z)| < ε(10)

4(c+ 1)
, z ∈ D′′3 ∩ E.

Set

µ3(z) :=





0, z ∈ D′2,
ν(z), z ∈ D(6, 1) \D(6± i, 1

4
),

1− ν(z), z ∈ D(−6, 1) \D(−6± i, 1
4
),

1, z ∈ (D′′3 \ (D′′2)0) ∩ E.
Clearly µ3 ∈ A(D′2∪(D′′3 ∩E)). According to Theorem 3 for any given δ > 0

there exists a rational function ρ̃3 so that

i) |ρ̃3|D′2 < δ,

ii) |ρ̃3 − 1|(D′′3 \(D′′2 )0)∩E < δ,(4)

iii) |ρ̃3|(D′′3∩E)∪D′2 < c+ 1.

Let z
(3)
1 , . . . , z

(3)
m3 be the poles of Q3 in D′1 with multiplicities α

(3)
1 , . . . , α

(3)
m3 ,

respectively. According to the Cauchy integral formula for derivatives and

(4) i), from the arbitrariness of δ we can assume that

(5) |ρ̃(s)
3 (z

(3)
j )| < δ′,

for arbitrary δ′ > 0, s = 0, . . . , α
(3)
j − 1, j = 1, . . . ,m3. It is well-known

that there exists a unique polynom p3 of order
∑m3

j=1 α
(3)
j − 1, satisfying the

conditions

p
(s)
3 (z

(3)
j ) = ρ̃

(s)
3 (z

(3)
j ), j = 1, . . . ,ms, s = 0, . . . , α

(3)
j − 1.

In this connection the polynom has the form

p3(z) =

m3∑
j=1

ω(z)

(z − z(3)
j )α

(3)
j

α
(3)
j −1∑
s=0

Aj,s(z − z(3)
j )s,
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where

ω(z) =

m3∏
j=1

(z − z(3)
j )α

(3)
j ,

Aj,s =
s∑

ν=0

1

ν!(s− ν)!
ρ̃

(ν)
3 (z

(3)
j )
[ ds−ν
dzs−ν

(z − z(3)
j )α

(3)
j

ω(z)

]
z=zj

.

¿From (5) it follows that |Aj,s| and hence also ||p3||K for any compact K ⊂ C
can be assumed arbitrarily small. Summing up, it can be assumed that the

rational function ρ3 = ρ̃3 − p3 satisfies the conditions

ρ
(s)
3 (z

(3)
j ) = 0, s = 0, 1, . . . , α

(3)
j − 1, j = 1, . . . ,mj,

|ρ3|D′2 < ε,

|ρ3 − 1|(D′′3 \(D′′2 )0)∩E < ε,(6)

|ρ3|(D′′3∩E)∪D′2 < c+ 1

for any ε > 0. Observe that the function ρ3 is taken so that the rational

function R3 = ρ3Q3 has no poles in D′1. Taking ε in (6) sufficiently small,

we can assume that the rational function R3 satisfies the conditions

|R3| < 1

23
, z ∈ D′1,

|f(z)−R2(z)−R3(z)| < ε(4), z ∈ D′′1 ∩ E,
|f(z)−R2(z)−R3(z)| < ε(10)

4(c+ 1)
, z ∈ (D′′3 \D′′2) ∩ E,

|f(z)−R2(z)−R3(z)| ≤ |f(z)−R2(z)|+ |R3(z)|
<

ε(7)

4(c+ 1)
+ (c+ 1)|Q3(z)| < ε(7)

4(c+ 1)
+ (c+ 1)

( ε(7)

4(c+ 1)
+

ε(10)

4(c+ 1)

)

< ε(7), z ∈ (D′′2 \D′′1) ∩ E.
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Let now for any n > 3 the functions R2, . . . , Rn are taken so that

i) |Rk(z)| < 1

2k
, z ∈ D′k−2, k = 3, . . . , n,

ii) |f(z)−R2(z)− . . .−Rn(z)| < ε(3k + 1), z ∈ (D′′k \D′′k−1) ∩ E,(7)

k = 1, . . . , n− 1, D′′0 = ∅,
iii) |f(z)−R2(z)− . . .−Rn(z)| < ε(3n+ 1)

4(c+ 1)
, z ∈ (D′′n \D′′n−1) ∩ E.

According to Theorem 3 there exists a rational function Qn+1 satisfying the

condition

(8) |f(z)−R2(z)−. . .−Rn(z)−Qn+1(z)| < ε(3(n+ 1) + 1)

4(c+ 1)
, z ∈ D′′n+1∩E.

Arguing as for the construction of the function ρ3 we get a rational

function ρn+1 satisfying the conditions

ρ
(s)
n+1(z

(n+1)
j ) = 0, s = 0, . . . , α

(n+1)
j − 1, j = 1, . . . ,mn+1,

|ρn+1|D′n < ε,

|ρn+1 − 1|(D′′n+1\(D′′n)0)∩E < ε,(9)

|ρn+1|(D′′n+1∩E)∪D′n < c+ 1,

where ε can be arbitrarily small. In particular, we can assume ε so small

that the rational function Rn+1 = ρn+1Qn+1 satisfies the conditions

i) |Rn+1(z)| < 1
2n+1 , z ∈ D′n−1,

(10) ii) |f(z)−R2(z)− . . .−Rn+1(z)| < ε(3k + 1), z ∈ (D′′k \D′′k−1) ∩ E,

k = 1, . . . , n− 1, D′′0 = ∅,

iii) |f(z)−R2(z)− . . .−Rn+1(z)| < ε(3(n+1)+1)
4(c+1)

, z ∈ (D′′n+1 \D′′n) ∩ E.
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According to the relations (7) iii), (8) and (9), we have

|f(z)−R2(z)− . . .−Rn+1(z)| ≤ |f(z)− . . .−Rn(z)|+ |Rn+1(z)| <(11)

<
ε(3n+ 1)

4(c+ 1)
+ (c+ 1)

(ε(3(n+ 1) + 1)

4(c+ 1)
+
ε(3n+ 1)

4(c+ 1)

)
< ε(3n+ 1).

¿From (10) and (11) it follows that the relations (7) are true if n is replaced

by n+1. By induction, we can assume that there exists a sequence {Rn}∞n=2

of rational functions satisfying the conditions

|Rk(z)| < 1

2k
, z ∈ D′k−2, k = 3, 4, . . . .

Thus it follows that the serie G =
∑∞

n=2Rn uniformly converges on any

compact subset of C after dropping a finite number of summands. Since

all summands are ratioanl functions, G is meromorphic in C. On the other

hand, since for any number k = 1, 2, . . . the relation (7) ii) is valid for all

numbers n, n > k, passing to the limit when n→∞, for any z ∈ E we get

|f(z)−G(z)| < ε(z).

The theorem is proved.
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