Integral Means of Certain Analytic Functions

Tadayuki Sekine, Shigeyoshi Owa and Rikuo Yamakawa
Dedicated to Professor Dumitru Acu on his 60th anniversary

Abstract

We introduce the analytic functions $f(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k}(n \in$ $\mathbb{N})$ and $p(z)=z+\sum_{s=1}^{m} b_{s j-s+1} z^{s j-s+1}(j \geq n+1 ; n \in \mathbb{N})$ in the open unit disk \mathbb{U}. By means of the subordination theorem of J.E. Littlewood, we shall investigate the integral means with coefficients inequalities of analytic functions $f(z)$ and $p(z)$. Some applications of the integral mean of $f(z)$ are considered.

2000 Mathematics Subject Classification: 30C45.
Keywords: Integral means inequalities, analytic functions, Hölder inequality, subordination.

1 Introduction

Let \mathcal{A}_{n} denote the class of functions $f(z)$ normalized by

$$
f(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k} \quad(n \in \mathbb{N}:=\{1,2,3, \ldots\})
$$

that are analytic in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$.
Denote by $p(z)$ the analytic function in \mathbb{U} defined by

$$
p(z)=z+\sum_{s=1}^{m} b_{s j-s+1} z^{s j-s+1} \quad(j \geq n+1 ; n \in \mathbb{N})
$$

We recall the concept of subordination between analyric functions. Given two functions $f(z)$ and $g(z)$, which are analytic in \mathbb{U}, the function $f(z)$ is said to be subordinate to $g(z)$ in \mathbb{U} if there exists a function $w(z)$ analytic in \mathbb{U} with $w(0)=0$ and $|w(z)|<1$, such that $f(z)=g(w(z))$. We denote this subordination by $f(z) \prec g(z)$.

The following subordination theorem will be required in our present investigation.

Theorem A.(Littledood[1]) If $f(z)$ and $g(z)$ are analytic in \mathbb{U} with $f(z) \prec g(z)$, then, for $\mu>0$ and $z=r e^{i \theta}(0<r<1)$

$$
\int_{0}^{2 \pi}|f(z)|^{\mu} d \theta \leq \int_{0}^{2 \pi}|g(z)|^{\mu} d \theta
$$

Applying the theorem of Littlewood above, H. Silverman[3] has considered the integral means of $f(z)$ and $p(z)$, which are analytic functions with negative coefficients of the case of $n=1, m=1$ and $j=2$. Recently, S. Owa and T. Sekine[2] have shown the integral means of $f(z) \in \mathcal{A}_{n}$ and $p(z)$ for the case of $m=2$ and 3 . In the present paper, we aim at investigating some conditions of coefficients for integral means of $f(z) \in \mathcal{A}_{n}$ and $p(z)(m \geq 2)$.

2 Integral means for $f(z)$ and $p(z)$

We begin by proving the following Lemma.
Lemma 1. Let $P_{m}(t)$ denote the polynominal of degree $m(m \geq 2)$ of the form

$$
P_{m}(t)=c_{1} t^{m}-c_{2} t^{m-1}-\cdots-c_{m-1} t^{2}-c_{m} t-d \quad(t \geq 0)
$$

where $c_{i}(i=1,2, \cdots, m)$ are arbitrary positive constant and $d \geq 0$. Then $P_{m}(t)$ has unique solution for $t>0$. If we denote the solution by $t_{0}, P_{m}(t)<$ 0 for $0<t<t_{0}$ and $P_{m}(t)>0$ for $t>t_{0}$.

Proof. We shall prove Lemma 1 by mathematical induction. In the case where $m=2$, it is clear that $P_{2}(t)$ has unique solution t_{0} for $t>0$ and $P_{2}(t)<0$ for $0<t<t_{0}$ and $P_{2}(t)>0$ for $t>t_{0}$. Next, assuming that it is valid for $P_{m}(t)$, we prove that it is valid for $P_{m+1}(t)$. If we put $t=t_{0}$ as the solution of $P_{m+1}^{\prime}(t)$, by assumption of mathematical induction $P_{m+1}(t)$ is monotone increasing for $t>t_{0}$ and monotone decreasing for $0<t<t_{0}$. Thus, since $P_{m+1}(0)=-d \leq 0, P_{m+1}\left(t_{0}\right)<0$. On the other hand, there exists some $t_{1}\left(t_{1}>t_{0}\right)$ such that $P_{m+1}\left(t_{1}\right)>0$, because of $P_{m+1}(t) \uparrow \infty$ as $t \uparrow \infty$. Therefore there exists unique solution $t_{2}\left(t_{0}<t_{2}<t_{1}\right)$ of $P_{m+1}(t)$ by intermediate value theorem and monotone increasing state of $P_{m+1}(t)$ for $t>t_{0}$. It is cerear that $P_{m+1}(t)<0$ for $0<t<t_{0}$ and $P_{m+1}(t)>0$ for $t>t_{0}$. This completes the proof of Lemma 1 .

Our first result for integral means is contained in the following theorem.

Theorem 2.1. Let the functions $f(z) \in \mathcal{A}_{n}$ and $p(z)(m \geq 2)$ satisfy

$$
\sum_{k=n+1}^{\infty}\left|a_{k}\right| \leq\left|b_{m j-m+1}\right|-\sum_{s=1}^{m-1}\left|b_{s j-s+1}\right|
$$

with

$$
\sum_{s=1}^{m}\left|b_{s j-s+1}\right|<\left|b_{m j-m+1}\right| .
$$

If there exists an analytic function $w(z)$ in U defined by

$$
\begin{equation*}
\sum_{s=1}^{m} b_{s j-s+1} w(z)^{s(j-1)}-\sum_{k=n+1}^{\infty} a_{k} z^{k-1}=0 \tag{2.1}
\end{equation*}
$$

then for $\mu>0$ and $z=r e^{i \theta}(0<r<1)$,

$$
\int_{0}^{2 \pi}|f(z)|^{\mu} d \theta \leq \int_{0}^{2 \pi}|p(z)|^{\mu} d \theta \quad(\mu>0)
$$

Proof. Putting $z=r e^{i \theta}(0<r<1)$, it follows that

$$
\int_{0}^{2 \pi}|f(z)|^{\mu} d \theta=r^{\mu} \int_{0}^{2 \pi}\left|1+\sum_{k=n+1}^{\infty} a_{k} z^{k-1}\right|^{\mu} d \theta
$$

and

$$
\int_{0}^{2 \pi}|p(z)|^{\mu} d \theta=r^{\mu} \int_{0}^{2 \pi}\left|1+\sum_{s=1}^{m} b_{s j-s+1} z^{s j-s}\right|^{\mu} d \theta
$$

Applying Theorem A, it would suffice to show that

$$
\begin{equation*}
1+\sum_{k=n+1}^{\infty} a_{k} z^{k-1} \prec 1+\sum_{s=1}^{m} b_{s j-s+1} z^{s j-s} . \tag{2.2}
\end{equation*}
$$

Let us define the function $w(z)$ by

$$
\begin{aligned}
& 1+\sum_{s=1}^{m} b_{s j-s+1}\{w(z)\}^{s(j-1)} \\
& \quad=b_{m j-m+1} w(z)^{m(j-1)}+b_{(m-1) j-m+2} w(z)^{(m-1)(j-1)} \\
& \quad+b_{(m-2) j-m+3} w(z)^{(m-2)(j-1)}+\cdots+b_{2 j-1} w(z)^{2(j-1)} \\
& \quad+b_{j} w(z)^{j-1}=1+\sum_{k=n+1}^{\infty} a_{k} z^{k-1} .
\end{aligned}
$$

or, by

$$
\begin{aligned}
& \sum_{s=1}^{m} b_{s j-s+1}\{w(z)\}^{s(j-1)} \\
& \qquad \begin{array}{l}
=b_{m j-m+1} w(z)^{m(j-1)}+b_{(m-1) j-m+2} w(z)^{(m-1)(j-1)} \\
\\
\quad+b_{(m-2) j-m+3} w(z)^{(m-2)(j-1)}+\cdots+b_{2 j-1} w(z)^{2(j-1)} \\
\\
\quad+b_{j} w(z)^{j-1}=\sum_{k=n+1}^{\infty} a_{k} z^{k-1} .
\end{array}
\end{aligned}
$$

Thus, it follows that

$$
\begin{aligned}
& w(0)^{j-1}\left\{b_{m j-m+1} w(0)^{(m-1)(j-1)}+b_{(m-1) j-m+2} w(0)^{(m-2)(j-2)}\right. \\
& \left.\quad+b_{(m-2)(j-m+3} w(0)^{(m-3)(j-3)}+\cdots+b_{2 j-1} w(0)^{j-1}+b_{j}\right\}=0
\end{aligned}
$$

Therefore, if there exists an analytic functions $w(z)$ which satisfies the equality (2.1), we have an analytic function $w(z)$ in \mathbb{U} such that $w(0)=0$.

Further, we prove that the analytic function $w(z)$ satisfies $|w(z)|<1(z \in$ \mathbb{U}) for

$$
\sum_{k=n+1}^{\infty}\left|a_{k}\right| \leq\left|b_{m j-m+1}\right|-\sum_{s=1}^{m}\left|b_{s j-s+1}\right| \quad\left(\sum_{s=1}^{m}\left|b_{s j-s+1}\right|<\left|b_{m j-m+1}\right|\right) .
$$

From the equality (2.1), we know that

$$
\begin{aligned}
& \mid b_{m j-m+1} w(z)^{m j-m}+b_{(m-1) j-m+2} w(z)^{(m-1) j-(m-1)} \\
& \qquad \begin{array}{l}
+b_{(m-2) j-m+3} w(z)^{(m-2) j-(m-2)}+\cdots+ \\
b_{2 j-1} w(z)^{2 j-2}+b_{j} w(z)^{j-1} \mid \\
\end{array} \quad \leq \sum_{k=n+1}^{\infty}\left|a_{k} z^{k-1}\right|<\sum_{k=n+1}^{\infty}\left|a_{k}\right|
\end{aligned}
$$

for $z \in \mathbb{U}$, so that

$$
\begin{aligned}
&\left|b_{m j-m+1}\right|\left|w(z)^{m j-m}\right|-\left|b_{(m-1) j-m+2}\right|\left|w(z)^{(m-1) j-(m-1)}\right| \\
&-\left|b_{(m-2) j-m+3}\right|\left|w(z)^{(m-2) j-(m-2)}\right|+\cdots-\left|b_{2 j-1}\right|\left|w(z)^{2 j-2}\right| \\
&-\left|b_{j}\right|\left|w(z)^{j-1}\right|-\sum_{k=n+1}^{\infty}\left|a_{k}\right|<0
\end{aligned}
$$

for $z \in \mathbb{U}$.
Putting $t=|w(z)|^{j-1}(t \geq 0)$, we define the polynominal $P(t)$ of degree m by

$$
\begin{aligned}
P(t)=\left|b_{m j-m+1}\right| t^{m}-\left|b_{(m-1) j-m+2}\right| & t^{m-1}-\left|b_{(m-2) j-m+3}\right| t^{m-2} \\
& -\cdots-\left|b_{2 j-1}\right| t^{2}-\left|b_{j}\right| t-\sum_{k=n+1}^{\infty}\left|a_{k}\right|
\end{aligned}
$$

By means of Lemma 1, if $P(1) \geq 0$, we have $t<1$ for $P(t)<0$. Hence for $|w(z)|<1(z \in \mathbb{U})$, we need the following inequality

$$
\begin{aligned}
P(1)=\left|b_{m j-m+1}\right|-\left|b_{(m-1) j-m+2}\right| & -\left|b_{(m-2) j-m+3}\right| \\
& -\cdots-\left|b_{2 j-1}\right|-\left|b_{j}\right|-\sum_{k=n+1}^{\infty}\left|a_{k}\right| \geq 0
\end{aligned}
$$

so that,

$$
\sum_{k=n+1}^{\infty}\left|a_{k}\right| \leq\left|b_{m j-m+1}\right|-\sum_{s=1}^{m-1}\left|b_{s j-s+1}\right| .
$$

Therefore the subordination in (2.2) holds true, and this evidently completes the proof of Theorem 1.

Corollary 2.1. Let the functions $f(z) \in \mathcal{A}_{n}$ and $p(z)(m \geq 2)$ satisfy the conditions in Theorem 1 then, for $0<\mu \leq 2$ and $z=r e^{i \theta}(0<r<1)$,

$$
\begin{aligned}
\int_{0}^{2 \pi}|f(z)|^{\mu} d \theta & \leq 2 \pi r^{\mu}\left(1+\sum_{s=1}^{m}\left|b_{s j-s+1}\right|^{2} r^{2 s(j-1)}\right)^{\frac{\mu}{2}} \\
& <2 \pi\left(1+\sum_{s=1}^{m}\left|b_{s j-s+1}\right|^{2}\right)^{\frac{\mu}{2}}
\end{aligned}
$$

Proof. Since,

$$
\int_{0}^{2 \pi}|p(z)|^{\mu} d \theta=\int_{0}^{2 \pi}|z|^{\mu}\left|1+\sum_{s=1}^{m} b_{s j-s+1} z^{s j-s}\right|^{\mu} d \theta
$$

applying the inequality of Hölder for $0<\mu<2$, we obtain that

$$
\begin{aligned}
& \int_{0}^{2 \pi}|p(z)|^{\mu} d \theta \\
& \leq\left(\int_{0}^{2 \pi}\left(|z|^{\mu}\right)^{\frac{2}{2-\mu}} d \theta\right)^{\frac{2-\mu}{2}}\left\{\int_{0}^{2 \pi}\left(\left|1+\sum_{s=1}^{m} b_{s j-s+1} z^{s j-s}\right|^{\mu}\right)^{\frac{2}{\mu}} d \theta\right\}^{\frac{\mu}{2}} \\
& =\left(r^{\frac{2 \mu}{2-\mu}} \int_{0}^{2 \pi} d \theta\right)^{\frac{2-\mu}{2}}\left(\int_{0}^{2 \pi}\left|1+\sum_{s=1}^{m} b_{s j-s+1} z^{s j-s}\right|^{2} d \theta\right)^{\frac{\mu}{2}} \\
& =\left(2 \pi r^{\frac{2 \mu}{2-\mu}}\right)^{\frac{2-\mu}{2}}\left\{2 \pi\left(1+\sum_{s=1}^{m}\left|b_{s j-s+1}\right|^{2} r^{2 s(j-1)}\right)\right\}^{\frac{\mu}{2}} \\
& =2 \pi r^{\mu}\left(1+\sum_{s=1}^{m}\left|b_{s j-s+1}\right|^{2} r^{2 s(j-1)}\right)^{\frac{\mu}{2}} \\
& <2 \pi\left(1+\sum_{s=1}^{m}\left|b_{s j-s+1}\right|^{2}\right)^{\frac{\mu}{2}} .
\end{aligned}
$$

In case of $\mu=2$, it is easy to see that

$$
\begin{aligned}
\int_{0}^{2 \pi}|f(z)|^{2} d \theta & \leq 2 \pi r^{2}\left(1+\sum_{s=1}^{m}\left|b_{s j-s+1}\right|^{2} r^{2 s(j-1)}\right) \\
& <2 \pi\left(1+\sum_{s=1}^{m}\left|b_{s j-s+1}\right|^{2}\right)
\end{aligned}
$$

This comples the proof of Corollary 2.1.

3 Integral means for $f^{\prime}(z)$ and $p^{\prime}(z)$

Using the same techniques in Theorem 2.1, we obtain the following theorem.
Theorem 2.2 Let the functions $f(z) \in \mathcal{A}_{n}$ and $p(z)(m \geq 2)$ satisfy

$$
\sum_{k=n+1}^{\infty} k\left|a_{k}\right| \leq(m j-m+1)\left|b_{m j-m+1}\right|-\sum_{s=1}^{m-1}(s j-s+1)\left|b_{s j-s+1}\right|
$$

with

$$
(m j-m+1)\left|b_{m j-m+1}\right|>\sum_{s=1}^{m-1}(s j-s+1)\left|b_{s j-s+1}\right| .
$$

If there exists an analytic function $w(z)$ in \mathbb{U} defined by

$$
\sum_{s=1}^{m}(s j-s+1) b_{s j-s+1}\{w(z)\}^{s(j-1)}-\sum_{k=n+1}^{\infty} k a_{k} z^{k-1}=0,
$$

then for $\mu>0$ and $z=r e^{i \theta}(0<r<1)$,

$$
\int_{0}^{2 \pi}\left|f^{\prime}(z)\right|^{\mu} d \theta \leq \int_{0}^{2 \pi}\left|p^{\prime}(z)\right|^{\mu} d \theta
$$

Futher, with the help of the inequality of Hölder, we obtain
Corollary 2. If the functions $f(z) \in \mathcal{A}_{n}$ and $p(z)(m \geq 2)$ satisfy the conditions in Theorem 2, then for $0<\mu \leq 2$ and $z=r e^{i \theta}(0<r<1)$,

$$
\begin{aligned}
\int_{0}^{2 \pi}\left|f^{\prime}(z)\right|^{\mu} d \theta & \leq 2 \pi\left(1+\sum_{s=1}^{m}(s j-s+1)^{2}\left|b_{s j-s+1}\right|^{2} r^{2 s(j-1)}\right)^{\frac{\mu}{2}} \\
& <2 \pi\left(1+\sum_{s=1}^{m}(s j-s+1)^{2}\left|b_{s j-s+1}\right|^{2}\right)^{\frac{\mu}{2}}
\end{aligned}
$$

References

[1] J.E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc. , (2) 23 (1925), 481-519.
[2] S. Owa and T. Sekine, Integral means for analytic functions, J. Math. Anal. Appl., 304(2005), 772-782.
[3] H. Silverman, Integral means for univalent functions with negative coefficients, Houston J. Math., 23(1997),169-174.

Tadayuki Sekine
Office of Mathematics, College of Pharmacy, Nihon University,
7-1 Narashinodai 7chome, Funabashi-shi,
Chiba 274-8555, Japan
E-mail:tsekine@pha.nihon-u.ac.jp

Shigeyoshi Owa
Department of Mathematics, Kinki University,
Higashi-Osaka, Osaka 577-8520, Japan
E-mail:owa@math.kindai.ac.jp

Rikuo Yamakawa
Department of Natural Sciences, Shibaura Institute of Technology,
Fukusaku(Omia), Saitama 330-8570, Japan
E-mail:yamakawa@sic.shibaura-it.ac.jp

