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Abstract

We look after the generalized inverses of power means in the fam-

ily of Gini means and in the family of extended means.
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1 Means

Usually the means are given by the following

Definition 1. A mean is a function M : R2
+ → R+, with the property

min(a, b) ≤M(a, b) ≤ max(a, b), ∀a, b > 0 .

The mean M is called symmetric if

M(a, b) = M(b, a), ∀a, b > 0.
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Each mean is reflexive, that is

M(a, a) = a, ∀a > 0,

which will be used also as definition of M(a, a) if it is necessary.

In what follows we use the extended mean (for r · s · (r − s) 6= 0)

Er,s(a, b) =

(
s

r
· a

r − br
as − bs

) 1
r−s

and weighted Gini means defined by

Br,s;λ(a, b) =

[
λ · ar + (1− λ) · br
λ · as + (1− λ) · bs

] 1
r−s

, r 6= s

with λ ∈ [0, 1] fixed. Weighted Lehmer means, Cr;λ = Br,r−1;λ and weighted

power means Pr,λ = Br,0;λ are also used. We can remark that P0,λ = Gλ =

Br,−r;λ is the weighted geometric mean. Also

Br,s;0= Cr;0 = Pr,0 = Π2 and Br,s;1= Cr;1 = Pr,1 = Π1 ,

where we denote by Π1 and Π2 the first respectively the second projection

defined by

Π1(a, b) = a, Π2(a, b) = b, ∀a, b ≥ 0.

Given three means M,N and P , the expression

P (M,N)(a, b) = P (M(a, b), N(a, b)), ∀a, b > 0,

defines also a mean P (M,N) . Using it we can give the following

Definition 2. The mean N is called P− complementary to M if

P (M,N) = P.
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If the P− complementary of M exists and is unique, we denote it by

MP .

Proposition 3. For every mean M we have

MM = M , ΠM
1 = Π2 , M

Π2 = Π2

and if P is a symmetric mean then

ΠP
2 = Π1 .

Remark 4. In what follows, we shall call these results as trivial cases of

complementariness.

More comments on this notion and its importance in the determination

of the limit of a double sequence can be found in [5] or [6]. We study the

complementariness with respect to the weighted geometric mean Gλ = P0,λ.

We denote the Gλ− complementary of M by MG(λ) and we call it generalized

inverse of M . We omit to write λ if it is equal with 1/2. Of course

MG(λ) =

( Gλ
Mλ

) 1
1−λ

,

but it is not always a mean. For instance, taking M = Gµ , obviously there

exists a ν such that MG(λ) = Gν . More exactly

GG(λ)
µ = Gλ(1−µ)

1−λ
,

but it is a mean if and only if

µ ≥ 2− 1

λ
, λ ∈

[
1

2
, 1

]
.

For other means it is more difficult to determine the complementary. In

what follows we present a method which can be useful in some cases.
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2 Series expansion of means

For the study of some problems related to means in [4] is used their power

series expansion. In fact, for a mean M is considered the series of the

normalized functions M(1, 1− x), x ∈ (0, 1) .

For example, in [3] is proved that the extended mean Er,s has the fol-

lowing first terms of the power series expansion

Er,s(1, 1− x) = 1− 1

2
· x+

r + s− 3

24
· x2 +

r + s− 3

48
· x3

− [2(r3 + r2s+ rs2 + s3)− 5(r + s)2 − 70(r + s) + 225
] · x4

5760

− [2(r3 + r2s+ rs2 + s3)− 5(r + s)2 − 30(r + s) + 105
] · x5

3840
+ · · · .

Also in [2] is given the series expansion of the weighted Gini mean

Bq,q−r;ν(1, 1− x) = 1− (1− ν) · x+ ν (1− ν) (2q − r − 1) · x
2

2!
− ν (1− ν)

·{ν[6q2 − 6q (r + 1) + (r + 1) (2r + 1)]− 3q (q − r)− (r − 1) (r + 1)} · x
3

3!

−ν (1− ν) · {ν2[−24q3 +36q2 (r + 1)−12q (r + 1) (2r + 1)+(r + 1) (2r + 1)

· (3r + 1)] + ν[24q3− 12q2 (3r + 1) + 12q (r + 1) (2r − 1)− 3 (r + 1) (2r + 1)

· (r − 1)]− 4q3 + 6q2 (r − 1)− 2q
(
2r2 − 3r − 1

)
+ (r − 2) (r − 1) (r + 1)}

·x
4

4!
− ν (1− ν) · {ν3

[
120q4 − 240q3 (r + 1) + 120q2(r + 1)(2r + 1)

−20q(r + 1)(2r + 1)(3r + 1) + (r + 1)(2r + 1)(3r + 1)(4r + 1)]

+ν2
[−180q4 + 180q3(2r + 1)− 90q2(r + 1)(4r − 1) + 30q(r + 1)(2r + 1)

·(3r − 2)− 6(r − 1)(r + 1)(2r + 1)(3r + 1)]+ν
[
70q4 − 20q3(7r − 2) + 10q2

·(14r2−6r−9)−10q(r+1)(7r2−12r+3)+ (r − 1)(2r + 1)(7r − 11)(r + 1)]
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−5q4 + 10q3(r − 2)− 5q2(2r2 − 6r + 3) + 5q(r − 2)(r2 − 2r − 1)

−(r + 1)(r − 1)(r − 2)(r − 3)} · x
5

5!
+ · · · .

In the special case q = r = p we get the series expansion of the weighted

power means

Pp;µ(1, 1− x) = 1− (1− µ) · x+ µ(1− µ)(p− 1) · x
2

2
+ µ(1− µ)(p− 1)

· [p (1− 2µ) + µ+ 1] · x
3

6
+ µ(1− µ)(p− 1)[p2

(
6µ2 − 6µ+ 1

)

−p (5µ2 + 3µ− 3
)

+ µ2 + 3µ+ 2] · x
4

24
+ µ(1− µ)(p− 1)

·[p3
(
24µ3 − 36µ2 + 14µ− 1

)− p2
(
26µ3 + 6µ2 − 29µ+ 6

)

p
(
9µ3 + 24µ2 + 4µ− 11

)− µ3 − 6µ2 − 11µ− 6] · x
5

120
+ · · · .

3 Generalized inverses of power means

In [1] was proved the following

Theorem 5. The first terms of the series expansion of the generalized in-

verse of Pp,µ are

P G(λ)
p,µ (1, 1− x) = 1− [1− α (1− µ)]x− α

2!
(1− µ) [1 + µp− α (1− µ)]x2

+
α

3!
(1− µ)

[
α2 (1− µ)2 − 3µpα (1− µ) + µp2 (2µ− 1)− 1

]
x3

−α
4!

(1− µ)
{−α3 (1− µ)3 + 2α2 (1− µ)2 (3µp− 1)− α (1− µ)

· [pµ (11pµ− 4p− 6)− 1] + p3µ
(
6µ2 − 6µ+ 1

)− 2p2µ (2µ− 1)− pµ+ 2
}

·x4 +
α

5!
(1− µ)

{
α4 (1− µ)4 − 5α3 (1− µ)3 (2pµ− 1) + 5α2 (1− µ)2
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· [pµ (7pµ− 2p− 6) + 1]− 5α (1− µ)
[
p3µ

(
10µ2 − 8µ+ 1

)

−pµ (11pµ− 4p− 3) + 1] + p4µ
(
24µ3 − 36µ2 + 14µ− 1

)− 5p3µ

· (6µ2 − 6µ+ 1
)

+ 5pµ (2pµ− p+ 1)− 6
} · x5 + · · · ,

where α = λ
1−λ .

Using it, we can prove the following result.

Theorem 6. The relation

PG(λ)
p,µ = Bq,q−r;ν

holds if and only if we are in one of the following cases:

(i) PG(0)
p,µ = Bq,q−r;0 ;

(ii) PG(λ)
p,1 = Bq,q−r;0 ;

(iii) PGp,0 = Bq,q−r;1 ;

(iv) PG(0)
p,0 = Bq,q−r;0 ;

(v) PG(1/3)
p,0 = Bq,−q;1/2 ;

(vi) PG(λ)
0,(3λ−1)/2λ = Bq,−q;1/2, λ ≥ 1/3;

(vii) PG(λ)
0,(2λ−1)/λ = Bq,−q;1, λ ≥ 1/2;

(viii) PGp,µ = B−p,0;1−µ ;

(ix) PGp,µ = B0,−p;1−µ .

Proof. Equating the coefficients of x , in P G(λ)
p,µ (1, 1−x) and in Bq,q−r;ν(1, 1−

x) we have the condition

(1) ν = α (1− µ) .

Then, the equality of the coefficients of x2 gives the condition

(2) α (1− µ) [µp+ (1− α + αµ) (2q − r)] = 0.
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Let us consider the following cases: a) α = 0 , which implies ν = 0 and so

the relation (i); b) µ = 1, which also implies ν = 0 and so the relation (ii);

c) µ = 0, for which (1) and (2) implies ν = α and r = 2q; passing to the

equality of the coefficients of x3, these relations imply

q2ν (1− ν) (1− 2ν) = 0.

So we have to consider the special cases: c’) ν = α = 1 which leads to

(iii); c”) ν = α = 0 which implies (iv) ; c”’) ν = α = 1/2 which gives (v).

Remark that r = 2q 6= 0, thus we pass to the case: d) p = 0 for which (2)

implies r = 2q and taking into account (1) , the coefficients of x3 imply

q2ν (1− ν) (2ν − 1) = 0,

giving (vi) and (vii); e) Replacing ν = α (1− µ) and µp = (r − 2q) (1− α + αµ)

in the coefficients of x3, x4 and x5 , we get the special cases: e’) α = 1, r =

−p = q , giving (viii), and e”) α = 1, r = p, q = 0 , that is (ix).

Corollary 7. The relation

PG(λ)
p,µ = Bq,q−r;ν

holds only in the following nontrivial cases:

(i) PG(1/3)
p,0 = Bq,−q;1/2 ;

(ii) PG(λ)
0,(3λ−1)/2λ = Bq,−q;1/2, λ ≥ 1/3;

(iii) PG(λ)
0,(2λ−1)/λ = Bq,−q;1, λ ≥ 1/2;

(iv) PGp,µ = B−p,0;1−µ ;

(v) PGp,µ = B0,−p;1−µ .

Corollary 8. The relation

PGp,µ = Bq,q−r;ν
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holds only in the following nontrivial cases:

(i) PGp,µ = B−p,0;1−µ ;

(ii) PGp,µ = B0,−p;1−µ .

Corollary 9. The relation

PG(λ)
p,µ = Cq;ν

holds only in the following nontrivial cases:

(i) PG(1/3)
p,0 = C1/2;1/2 ;

(ii) PG(λ)
0,(3λ−1)/2λ = C1/2;1/2, λ ≥ 1/3;

(iii) PG(λ)
0,(2λ−1)/λ = Cq;1, λ ≥ 1/2;

(iv) PG−1,µ = C1;1−µ ;

(v) PG1,µ = C0;1−µ .

Corollary 10. The relation

PG(λ)
p,µ = Pq,ν

holds only in the following nontrivial cases:

(i) PG(1/3)
p,0 = P0,1/2 ;

(ii) PG(λ)
0,(3λ−1)/2λ = P0,1/2, λ ≥ 1/3;

(iii) PG(λ)
0,(2λ−1)/λ = Pq,1, λ ≥ 1/2;

(iv) PGp,µ = P−p,1−µ .

Theorem 11. The relation

PG(λ)
p,µ = Er,s

holds if and only if we are in one of the following cases:

(i) PG(1/3)
p,0 = Er,−r ;

(ii) PG(λ)

0, 3λ−1
2λ

= Er,−r , λ ∈
[

1
3
, 1
)

;

(iii) PGp = E−p,−2p .
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Proof. Equating the coefficients of x , in P G(λ)
p,µ (1, 1−x) and in Er,s(1, 1−x),

we have the condition

(3) α (1− µ) =
1

2
.

The coefficients of x2 give the condition

r + s = −6µp ,

and the coefficients of x3 are equal if, moreover,

µ (2µ− 1) p2 = 0.

We consider the cases: a) µ = 0 which gives λ = 1/3 and s = −r , thus (i);

b) p = 0 which implies s = −r and from (3) we get

µ =
3λ− 1

2λ
, for

1

3
≤ λ < 1,

thus (ii); c) µ = 1/2 which gives λ = 1/2 and s = −r − 3p . Equating also

the coefficients of x4 , we obtain in this case:

p (p+ r) (2p+ r) = 0.

We have the special cases: c’) p = 0, giving (ii); c”) r = −p, thus s = −2p,

so the case (iii); c”’) r = −2p, so s = −p, thus again (iii) (because Er,s =

Es,r). By direct computation, we verify that the three cases are valid.
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