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Abstract

An ideal I of a commutative ring R is called a cancellation ideal
of R if for any ideals A,B of R,AI = BI implies A = B, and
we call R a cancellation ideal ring if every nonzero ideal of R is a
cancellation ideal. Our purpose is to show that the ring (mZ,+, ·) is
always a cancellation ideal ring and the nontrivial ring (mZn,+, ·) is a
cancellation ideal ring if and only if

n

(m,n)
is a prime and n - (m,n)2

where (m,n) denotes the g.c.d. of m and n.
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1 Introduction

Let Z denote the ring of integers and Zn the ring of integers modulo n.

The set of all positive integers will be denoted by N. Recall that Zn =

{0, 1, . . . , n− 1} = {x | x ∈ Z}. The cardinality of a set X is denoted by

|X|.
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For nonempty subsets A and B of a ring R, let AB be the set of all finite

sums of the form
∑
aibi where ai ∈ A and bi ∈ B. Note that if A and B

are ideals of R, then so is AB.

An introduction to cancellation ideals may be found in [2]. The following

definition of cancellation ideals was provided in [1] by D. D. Anderson and

M. Roitman. An ideal I of a commutation ring R with identity is called

a cancellation ideal of R if for any ideals A and B of R, AI = BI implies

A = B. D. D. Anderson and M. Roitman [1] mentioned the following fact

which is easily seen.

Proposition 1.1. ([1]) Let R be a commutative ring with identity. Then

for a ∈ R r {0}, the principal ideal aR of R is a cancellation ideal if and

only if a is not a zero divisor of R.

In fact, D. D. Anderson and M. Roitman [1] gave a necessary and sufficient

condition for an ideal of a commutative ring with identity to be a cancella-

tion ideal. However, it is not easily seen from this characterization whether

a given ideal of R is a cancellation ideal. We can see from the definition

of cancellation ideals of a commutative ring with identity that R itself is a

cancellation ideal of R since AR = A for every ideal A of R. Some results

of cancellation ideals of certain commutative rings with identity can be seen

in [3].

In this paper, the definition of cancellation ideals is given analogously

for any commutative ring with or without identity. Then a commutative

ring R need not be a cancellation ideal of itself. An obvious example is a

nontrivial zero ring. If R is a Boolean ring, then AR = A for every ideal

A of R, so R is a cancellation ideal of itself. A Boolean ring is known to

be a commutative ring. However, it need not have an identity. If R is the

subring of the ring Z2 × Z2 × Z2 × · · · consisting of all finite sequences

(x1, x2, x3, . . .) ∈ Z2 × Z2 × Z2 × · · · , that is, xi = 0 for all but a finite

number of i ∈ N, then R is a Boolean ring without identity.
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Observe that the ideal {0} of a nontrivial commutative ring R is not a

cancellation ideal of R. By a cancellation ideal ring we mean a commutative

ring of which all nonzero ideals are cancellation ideals. It then follows from

Proposition 1.1 that every PID is a cancellation ideal ring. In particular,

the ring Z and the polynomial ring F [x] over a field F are cancellation ideal

rings with identity.

It is well-known that the set of subrings and the set of ideals of the ring Z
coincide, and it is precisely {mZ | m ∈ N∪{0}}. Let ϕ : Z→ Zn be defined

by ϕ(x) = x for all x ∈ Z. Then ϕ is an epimorphism of the ring Z onto the

ring Zn. Thus ϕ(mZ) = mZn for all m ∈ N∪{0}. If I is an ideal of Zn, then

ϕ−1(I) = mZ for some m ∈ N ∪ {0}, so I = ϕ(ϕ−1(I)) = ϕ(mZ) = mZn.

Hence the set of subrings and the set of ideals of the ring Zn are identical

and it is {mZn | m ∈ N ∪ {0}}. Observe that for every m ∈ N ∪ {0},
(−m)Z = m(−Z) = mZ and (−m)Zn = m(−Zn) = mZn. It is easily seen

that mZn = {0} if and only if n | m.

Our purpose is to show that the ring mZ is always a cancellation ideal

ring and a nontrivial ring mZn, that is, n - m, is a cancellation ideal ring

if and only if
n

(m,n)
is a prime and n - (m,n)2 where (m,n) denotes the

g.c.d. of m and n.

We give here a basic property of mZn which will be used.

Proposition 1.2. For any n,m ∈ N,

mZn = (m,n)Zn =
{

0, (m,n), 2(m,n), . . . ,
( n

(m,n)
− 1
)
(m,n)

}
,

|mZn| = n

(m,n)
.
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Proof. We know that (m,n) = mx+ ny for some x, y ∈ Z. Then

mZn = (m,n)
( m

(m,n)

)
Zn

⊆ (m,n)Zn
= (mx+ ny)Zn
= m(xZn)

⊆ mZn.

Hence mZn = (m,n)Zn. We can see that (m,n)Zn = {x(m,n) | x ∈ Z}.
If x ∈ Z, then x =

n

(m,n)
q + r for some q, r ∈ Z and 0 ≤ r <

n

(m,n)
, so

x(m,n) =
( n

(m,n)
q + r

)
(m,n) = r(m,n). Thus the second equality holds.

If i, j ∈ {0, 1, 2, . . . ,
n

(m,n)
− 1
}

are such that i ≥ j and i(m,n) = j(m,n),

then 0 ≤ i− j < n

(m,n)
and n | (i− j)(m,n) and hence

n

(m,n)
| i− j. This

implies that i− j = 0, so i = j. Therefore we deduce that |mZn| = n

(m,n)
.

2 The Rings mZ and mZn
To prove that the ring mZ is a cancellation ideal ring, the following lemma

is needed.

Lemma 2.1. Let m ∈ N and I ⊆ mZ. Then I is an ideal of the ring mZ
if and only if I = mkZ for some k ∈ N ∪ {0}.

Proof. Assume that I is an ideal of the ring mZ. Then I is a subring of

the ring mZ. But mZ is a subring of the ring Z, thus I is a subring of the

ring Z. This implies that I is an ideal of the ring Z. Hence I = xZ for

some x ∈ N ∪ {0}. Since I = xZ ⊆ mZ, it follows that x = mk for some

k ∈ N ∪ {0}. Consequently, I = mkZ.
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Since mkZ is an ideal of the ring Z and mkZ ⊆ mZ, the converse holds.

Theorem 2.2. For every m ∈ N, the ring mZ is a cancellation ideal ring.

Proof. Let I be a nonzero ideal of the ring mZ and let A and B be ideals of

mZ such that AI = BI. By Lemma 2.1, I = mxZ, A = myZ and B = mzZ
for some x, y, z ∈ Z and x 6= 0. Thus mymxZ = AI = BI = mzmxZ. But

mx 6= 0, so myZ = mzZ, that is, A = B.

Remark 2.3. Since the subrings and the ideals of Zn coincide and mZn =

mZn, it is easy to see from the proof of Lemma 2.1 that Lemma 2.1 still

holds if we replace Z by Zn. However, mZn need not be a cancellation ideal

ring. This can be seen later.

Next, we shall characterize when the ring mZn is a cancellation ideal

ring. First, we determine when it has an identity.

Lemma 2.4. For every m,n ∈ N, the ring mZn has an identity if and only

if
n

(m,n)
and m are relatively prime.

Proof. Note that mZn = {mx | x ∈ Z}. First assume that the ring mZn
has an identity, say ma. Then ma m = m which implies that n | m2a−m.

Hence
n

(m,n)
| m

(m,n)
(ma− 1). But

n

(m,n)
and

m

(m,n)
are relatively prime,

so
n

(m,n)
| ma− 1. Consequently,

n

(m,n)
x+ma = 1 for some x ∈ Z. Thus

n

(m,n)
and m are relatively prime.

Conversely, assume that
n

(m,n)
and m are relatively prime. Then there



44 Sureeporn Chaopraknoi,Knograt Savettaseranee,Patcharee Lertwichitsilp

are s, t ∈ Z such that
n

(m,n)
s+mt = 1. Hence for every x ∈ Z,

mx mt = mx
(
1− n

(m,n)
s
)

= mx− n m

(m,n)
xs

= mx

which implies that mt is the identity of the ring mZn.

Theorem 2.5. Let m,n ∈ N be such that n - m. Then the ring mZn is a

cancellation ideal ring if and only if
n

(m,n)
is a prime and n - (m,n)2. If

this is the case, mZn is the ring with identity and has exactly two ideals.

Proof. Since n - m,
n

(m,n)
> 1. Let d =

n

(m,n)
. By Proposition 1.2,

mZn = (m,n)Zn = {0, (m,n), 2(m,n), . . . , (d− 1)(m,n)} and |mZn| = d.

First, assume that the ring mZn is a cancellation ideal ring. Since

(m,n)Zn = mZn 6= {0}, it follows that ((m,n)Zn)2 6= {0}. But ((m,n)Zn)2 =

(m,n)2Zn, thus n - (m,n)2. To show that d is a prime, suppose not.

Then d = lk for some l, k ∈ N with 1 < l, k < d. Let I = l(m,n)Zn
and J = k(m,n)Zn. Then by Lemma 2.1, I and J are ideals of the

ring (m,n)Zn. Since n = d(m,n) > l(m,n) > 0 and n > k(m,n) > 0,

it follows that I = l(m,n)Zn 6= {0} and J = k(m,n)Zn 6= {0}. But

IJ = l(m,n)k(m,n)Zn = d(m,n)(m,n)Zn = n(m,n)Zn = {0}, so I and J

are not cancellation ideals of (m,n)Zn. This shows that d must be a prime.

Conversely, assume that d is a prime and n - (m,n)2. Since |mZn| = d,

it follows that {0} and mZn are the only ideals of the ring mZn. We

shall show that mZn has an identity. This result implies that mZn is a

cancellation ideal of itself. Since n - (m,n)2, we have that
n

(m,n)
- (m,n).

But
n

(m,n)
and

m

(m,n)
are relatively prime, so

n

(m,n)
-

m

(m,n)
(m,n). Hence
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n

(m,n)
- m. Since

n

(m,n)
is a prime, it follows that

n

(m,n)
and m are

relatively prime. Hence by Lemma 2.4, the ring mZn has an identity.

Therefore the proof is complete.

A direct consequence of Theorem 2.5 is as follows :

Corollary 2.6. The ring Zn is a cancellation ideal ring if and only if either

n = 1 or n is a prime.

Example 2.7. Since 2Z4 = {0, 2} and 3Z6 = {0, 3}, we can check directly

that 2Z4 is a zero ring and 3Z6 has an identity. These imply that 2Z4 is not

a cancellation ideal ring but 3Z6 is a cancellation ideal ring.

Next, consider the ring 4Z30. Then 4Z30 = 2Z30 by Proposition 1.2.

Since
30

(4, 30)
= 15 and 4 are relatively prime, by Lemma 2.4, the ring 4Z30

has an identity. From that −15 + (4× 4) = 1 and the proof of Lemma 2.4,

we have that 4× 4 = 16 is the identity of 4Z30. But
30

(4, 30)
= 15 is not

a prime, so by Theorem 2.5, 4Z30 is not a cancellation ideal ring. Since

15 = 3 × 5, we can see from the proof of Theorem 2.5 that the nonzero

ideals 6Z30 and 10Z30 of 4Z30 are not cancellation ideals.

Remark 2.8. As was mentioned in Section 1, the subring R of Z2 × Z2 ×
Z2× · · · consisting of all finite sequences of Z2×Z2×Z2× · · · is a Boolean

ring without identity. Let R be the ring Z2 × Z2 × Z2 × · · · . Then R is a

Boolean ring with identity. Hence R and R are cancellation ideals of R and

R, respectively (see page 2). The ring R is clearly a proper ideal of R and

RR = RR. Therefore R is not a cancellation ideal of R. More generally,

every Boolean ring S has no proper cancellation ideal since II = I = SI for

every ideal I of S. Since R is a nonzero proper ideal of R, we have that R

is not a cancellation ideal ring. In fact, the direct product
∏
i∈I

Ri of nonzero

rings Ri with |I| > 1 is never a cancellation ideal ring. That is because for
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every k ∈ I,

(
Rk×

∏

i∈Ir{k}
{0}
)(
{0}×

∏

i∈Ir{k}
Ri

)
=
∏
i∈I
{0} =

(∏
i∈I
{0}
)(
{0}×

∏

i∈Ir{k}
Ri

)

and Rk ×
∏

i∈Ir{k}
{0} and {0} ×

∏

i∈Ir{k}
Ri are both nonzero ideals of the ring

∏
i∈I

Ri.
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