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Inequalities for the Polygamma Functions
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Abstract

We present some inequalities for the polygamma functions. As an

application, we give the upper and lower bounds for the expression
n∑
k=1

1
k
− lnn− γ, where γ = 0.57721... is the Euler’s constant.
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1 Inequalities for the polygamma functions

The gamma function is usually defined for Re z > 0 by

Γ(z) =

∞∫

0

tz−1e−tdt.
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The psi or digamma function, the logarithmic derivative of the gamma

function, and the polygamma functions can be expressed as

ψ(z) =
Γ′(z)

Γ(z)
= −γ +

∞∑

k=0

(
1

1 + k
− 1

z + k

)
,

ψ(n)(z) = (−1)n+1n!
∞∑

k=0

1

(z + k)n+1

for Re z > 0 and n = 1, 2, ..., where γ = 0.57721... is the Euler’s constant.

M. Merkle [2] established the inequality

1

x
+

1

2x2 +
2N∑

k=1

B2k

x2k+1
<

∞∑

k=0

1

(x+ k)2 <

<
1

x
+

1

2x2 +
2N+1∑

k=1

B2k

x2k+1

for all real x > 0 and all integers N ≥ 1, where Bk denotes Bernoulli

numbers, defined by
t

et − 1
=
∞∑
j=0

Bj

j!
tj.

The first five Bernoulli numbers with even indices are

B2 =
1

6
, B4 = − 1

30
, B6 =

1

42
, B8 = − 1

30
, B10 =

5

66
.

The following Theorem establishes a more general result.

Theorem 1. let m ≥ 0 and n ≥ 1 be integers, then we have for x > 0,

(1) ln x− 1

2x
−

2m+1∑
j=1

B2j

2j

1

x2j < ψ(x) <

< ln x− 1

2x
−

2m∑
j=1

B2j

2j

1

x2j
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and

(2)
(n− 1)!

xn
+

n!

2xn+1 +
2m∑
j=1

B2j

(2j)!

Γ(n+ 2j)

xn+2j <

< (−1)n+1ψ(n)(x) <
(n− 1)!

xn
+

n!

2xn+1 +
2m+1∑
j=1

B2j

(2j)!

Γ(n+ 2j)

xn+2j .

Proof. From Binet’s formula [6, p. 103]

ln Γ(x) =

(
x− 1

2

)
lnx− x+ ln

√
2π +

∞∫

0

(
t

et − 1
− 1 +

t

2

)
e−xt

t2
dt,

we conclude that

(3) ψ(x) = ln(x)− 1

2x
−
∞∫

0

(
t

et − 1
− 1 +

t

2

)
e−xt

t
dt

and therefore

(4) (−1)n+1ψ(n)(x) =
(n− 1)!

xn
+

n!

2xn+1 +

∞∫

0

(
t

et − 1
− 1 +

t

2

)
tn−1e−xtdt.

It follows from Problem 154 in Part I, Chapter 4, of [3] that

(5)
2m∑
j=1

B2j

(2j)!
t2j <

t

et − 1
− 1 +

t

2
<

2m+1∑
j=1

B2j

(2j)!

for all integers m ≥ 0. the inequality (5) can be also found in [4].

From (3) and (5) we conclude (1), and we obtain (2) from (4) and (5).

The proof of Theorem 1 is complete.

Note that ψ(x+ 1) = ψ(x) + 1
x (see [1, pag. 258]), (1) can be written as

(6)
1

2x
−

2m+1∑
j=1

B2j

2j

1

x2j < ψ(x+ 1)− ln x <
1

2x
−

2m+1∑
j=1

B2j

2j

1

x2j ,
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and (2) can be written as

(7)
(n− 1)!

xn
− n!

2xn+1 +
2m+1∑
j=1

B2j

2j

Γ(n+ 2j)

xn+2j <

(−1)n+1ψ(n)(x+ 1) <
(n− 1)!

xn
− n!

2xn+1 +
2m+1∑
j=1

B2j

(2j)!

Γ(n+ 2j)

xn+2j .

In particular, taking in (6) m = 0 we obtain for x > 0,

(8)
1

2x
− 1

12x2 < ψ(x+ 1)− lnx <
1

2x
,

and taking in (7) m = 1 and n = 1 we obtain for x > 0,

(9)
1

2x2 −
1

6x3 +
1

30x5 −
1

42x7 <
1

x
− ψ′(x+ 1) <

<
1

2x2 −
1

6x3 +
1

30x5 .

The inequalities (8) and (9) play an important role in the proof of The-

orem 2 in Section 2.

2 Inequalities for Euler’s constant

Euler’s constant γ = 0.57721... is defined by

γ = lim
n→∞

(
1 +

1

2
+

1

3
+ ...+

1

n
− lnn

)
.

It is of interest to investigate the bounds for the expression
n∑
k=1

1
k
− lnn− γ. The inequality

1

2n
− 1

8n2 <

n∑

k=1

1

k
− lnn− γ < 1

2n
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is called in literature Franel’s inequality [3, Ex. 18].

It is given [1, p. 258] that ψ(n) =
n−1∑
k=1

1
k
− γ, and then we get

(10)
n−1∑

k=1

1

k
− γ = ψ(n+ 1)− lnn.

Taking in (6) x = n we obtain that

(11)
1

2n
−

2m+1∑
j=1

B2j

2j

1

n2j <

n∑

k=1

1

k
− lnn− γ < 1

2n
−

2m+1∑
j=1

B2j

2j

1

n2j .

The inequality (11) provides closer bounds for
n∑
k=1

1
k
− lnn− γ.

L. Toth [5, pag. 264] proposef the following problems:

(i) Prove that for every positive integers n we have

1

2n+
2

5

<

n∑

k=1

1

k
− lnn− γ < 1

2n+
1

3

.

(ii) Show that 2
5 can be replaced by a slightly smaller number, but that

1
3 cannot be replaced by a slightly larger number.

The following Theorem 2 answers the problem due to Tóth.

Theorem 2. For every positive integers n,

(12)
1

2n+ a
≤

n∑
i=1

1

i
− lnn− γ < 1

2n+ b
,

with the posible constants

a =
1

1− γ − 2 and b =
1

3
.
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Proof. By (10), the inequality (12) can be rearranged as

b <
1

ψ(n+ 1)− lnn
− 2n ≤ a.

Define for x > 0,

φ(x) =
1

ψ(x+ 1)− ln x
− 2x.

Differentiating φ and utilizing (8) and (9) reveals that for x > 12
5 ,

(φ(x+ 1)− lnx)2ψ′(x) =
1

x
− φ′(x+ 1)− 2(ψ(x+ 1)− lnx)2 <

<
1

2x2 −
1

6x3 +
1

30x5 − 2

(
1

2x
− 1

12x2

)2

=
12− 5x

360x5 < 0,

and then the function φ strictly decreases with x > 12
5 .

φ(1) =
1

1− γ − 2 = 0.3652721186544155...,

φ(2) =
1

3

2
− γ − ln 2

− 4 = 0.35469600731465752...,

φ(3) =
1

11

6
− γ − ln 3

− 6 = 0.34898948531361115... .

Therefore, the sequence

φ(n) =
1

ψ(n+ 1)− lnn
− 2n, n ∈ N

is strictly decreasing. This leads to

lim
n→∞

φ(n) < φ(n) ≤ φ(1) =
1

1− γ − 2.
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Making use of asymptotic formula of ψ (see [1, pag. 259])

ψ(x) = ln x− 1

2x
− 1

12x2 +O(x−4)(x→∞),

we conclude that

lim
n→∞

φ(n) = lim
x→∞

φ(x) = lim
x→∞

1

3
+O(x−2)

1 +O(x−1)
.
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[4] Z. Sasvári, Inequalities for binomial coefficients, J. Math. Anal. Appl.

236, 1999, 223-226.
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