An intermediate point property in the quadrature formulas of type Gauss

Petrică Dicu

Abstract

In this paper we study a property of the intermediate point (see [1], [2], [3], [6], [7]) from the quadrature formulas of Gauss type.

2000 Mathematics Subject Classification: 41A55, 65D32 Keywords and phrases: quadrature formulas of Gauss type

1. In [6] B. Jacobson studied a property of the intermediate point which appear in the mean-value theorem for integrals. This property has been studied for others mean-value formulas in the articles [1], [2], [3], and [7]. In this paper we will study this property for two particular cases of the quadrature formulas of Gauss type.

The quadrature formulas of Gauss type have the form (see [5]).
(1) $\int_{a}^{b} f(x) d x=(b-a)\left[c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)+\ldots+c_{n} f\left(x_{n}\right)\right]+R_{n}(f)$
where $f:[a, b] \rightarrow \mathbb{R}, f \in C^{2 n}[a, b]$.

$$
\begin{equation*}
R_{n}(f)=\frac{(n!)^{4} \cdot 2^{2 n+1}}{[(2 n)!]^{3}(2 n+1)} \cdot\left(\frac{b-1}{2}\right)^{2 n+1} \cdot f^{(2 n)}\left(\xi_{b}\right), \xi_{b} \in(a, b) \tag{2}
\end{equation*}
$$

the nodes $x_{i}, i=\overline{1, n}$ which appears in (1) are given by

$$
\begin{equation*}
x_{i}=\frac{a+b}{2}+\frac{b-a}{2} y_{i}, i=\overline{1, n} \tag{3}
\end{equation*}
$$

where $y_{i}, i=\overline{1, n}$ are the zeros of the Legendre polynomial

$$
\begin{equation*}
L_{n}(y)=\frac{1}{2^{n} \cdot n!}\left[\left(y^{2}-1\right)^{n}\right]^{(n)}, n \geq 1 \tag{4}
\end{equation*}
$$

and the coefficients $c_{1}, c_{2}, \ldots, c_{n}$ from (1) are the solution of the system

$$
\left\{\begin{array}{l}
c_{1}+c_{2}+\ldots+c_{n}=1 \tag{5}\\
c_{1} y_{1}+c_{2} y_{2}+\ldots+c_{n} y_{n}=0 \\
c_{1} y_{1}^{2}+c_{2} y_{2}^{2}+\ldots+c_{n} y_{n}^{2}=\frac{1}{3} \\
c_{1} y_{1}^{3}+c_{2} y_{2}^{3}+\ldots+c_{n} y_{n}^{3}=0 \\
c_{1} y_{1}^{4}+c_{2} y_{2}^{4}+\ldots+c_{n} y_{n}^{4}=\frac{1}{9} \\
\ldots \ldots
\end{array}\right.
$$

Remark 1. The quadrature formula (1) has the algebraic degree of exactness $2 n-1$.
2. Now, let us consider the quadrature formula (1) for the particular case $n=2$. Taking into account of the formulas (2), (3), (4) and (5) we obtain:

$$
c_{1}=c_{2}=\frac{1}{2}, x_{1}=\frac{a+b}{2}+\frac{b-a}{2} y_{1}, x_{2}=\frac{a+b}{2}+\frac{b-a}{2} y_{2},
$$

where y_{1}, y_{2} are the zeros of the polynom $L_{2}(y)=\frac{1}{2}\left(3 y^{2}-1\right)$, and $R_{2}(f)=$ $\frac{1}{135}\left(\frac{b-a}{2}\right)^{5} \cdot f^{(I V)}(\xi), \xi \in(a, b)$.

In this case we have that if $f:[a, b] \rightarrow \mathbb{R}, f \in C^{4}[a, b]$ then for any $x \in(a, b]$ there is $c_{x} \in(a, x)$ such that

$$
\begin{gather*}
\int_{a}^{x} f(t) d t= \tag{6}\\
=(x-a)\left[\frac{1}{2} f\left(\frac{a+x}{2}-\frac{x-a}{2} y_{1}\right)+\frac{1}{2} f\left(\frac{a+x}{2}+\frac{x-a}{2} y_{1}\right)\right]+ \\
+\frac{1}{135}\left(\frac{x-a}{2}\right)^{5} f^{(I V)}\left(c_{x}\right)
\end{gather*}
$$

with $y_{1}^{2}=\frac{1}{3}$.
We now prove the following theorem

Theorem 1. If $f \in C^{6}[a, b]$ and $f^{(5)}(a) \neq 0$ then for the intermediate point c_{x} which appears in formula (6) we have

$$
\lim _{x \rightarrow a} \frac{c_{x}-a}{x-a}=\frac{1}{2}
$$

Proof. Let us consider $F, G:[a, b] \rightarrow \mathbb{R}$ defined by

$$
\begin{gathered}
F(x)=\int_{a}^{x} f(t) d t-(x-a)\left[\frac{1}{2} f\left(\frac{a+x}{2}-\frac{x-a}{2} y_{1}\right)+\frac{1}{2} f\left(\frac{a+x}{2}+\frac{x-a}{2} y_{1}\right)\right]- \\
-\frac{1}{135}\left(\frac{x-a}{2}\right)^{5} f^{(I V)}(a), \\
G(x)=(x-a)^{6} .
\end{gathered}
$$

We have that F and G are six times derivable on $[a, b], G^{(i)}(x) \neq 0$, $i=\overline{1,5}$ for any $x \in(a, b]$ and $F^{(k)}(a)=0, G^{(k)}(a)=0, k=\overline{1,5}$.

By using successive l-Hospital rule, we obtain

$$
\lim _{x \rightarrow a} \frac{F(x)}{G(x)}=\lim _{x \rightarrow a} \frac{F^{(V I)}(x)}{G^{(V I)}(x)}
$$

Now, from

$$
\begin{gathered}
F^{(V I)}(x)=f^{(V)}(x)-3 f^{(V)}\left(\frac{a+x}{2}-\frac{x-a}{2} y_{1}\right)\left(\frac{1}{2}-\frac{y_{1}}{2}\right)^{5}- \\
-3 f^{(V)}\left(\frac{a+x}{2}+\frac{x-a}{2} y_{1}\right)\left(\frac{1}{2}+\frac{y_{1}}{2}\right)^{5}- \\
-\frac{(x-a)}{2}\left[f^{(V I)}\left(\frac{a+x}{2}-\frac{x-a}{2} y_{1}\right)\left(\frac{1}{2}-\frac{y_{1}}{2}\right)^{6}\right]- \\
-\frac{(x-a)}{2}\left[f^{(V I)}\left(\frac{a+x}{2}+\frac{x-a}{2} y_{1}\right)\left(\frac{1}{2}+\frac{y_{1}}{2}\right)^{6}\right], \\
G^{(V I)}(x)=6!
\end{gathered}
$$

we obtain

$$
\begin{equation*}
\lim _{x \rightarrow a} \frac{F(x)}{G(x)}=\frac{1}{6!} F^{(V I)}(a) \tag{7}
\end{equation*}
$$

It is easily to see that

$$
\begin{aligned}
& F^{(V I)}(a)=f^{(V)}(a)\left[1-3\left(\frac{1}{2}-\frac{y_{1}}{2}\right)^{5}-3\left(\frac{1}{2}+\frac{y_{1}}{2}\right)^{5}\right]= \\
& \quad=f^{(V)}(a)\left[1-\frac{3}{16}\left(1+10 y_{1}^{2}+5 y_{1}^{4}\right)\right]=\frac{1}{12} f^{(V)}(a) .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\lim _{x \rightarrow a} \frac{F(x)}{G(x)}=\frac{1}{6!12} \cdot f^{(V)}(a) . \tag{8}
\end{equation*}
$$

On the other hand, we have

$$
\begin{gathered}
\frac{F(x)}{G(x)}=\frac{\frac{1}{135}\left(\frac{x-a}{2}\right)^{5}\left[f^{(I V)}\left(c_{x}\right)-f^{(I V)}(a)\right]}{(x-a)^{6}}= \\
\quad=\frac{1}{135 \cdot 2^{5}} \cdot \frac{f^{(I V)}\left(c_{x}\right)-f^{(I V)}(a)}{c_{2}-a} \cdot \frac{c_{x}-a}{x-a}
\end{gathered}
$$

whence

$$
\begin{equation*}
\lim _{x \rightarrow a} \frac{F(x)}{G(x)}=\frac{1}{135 \cdot 2^{5}} \cdot f^{(V)}(a) \cdot \lim _{x \rightarrow a} \frac{c_{x}-a}{x-a} . \tag{9}
\end{equation*}
$$

From the relation (8) and (9) we obtain

$$
\lim _{x \rightarrow a} \frac{c_{x}-a}{x-a}=\frac{1}{2}
$$

which is exactly the assertion Theorem 1.
3. The second particular case of the quadrature formula (1) is that one in which $n=3$.

The nodes and coefficients of the corresponding quadrature formula can be obtained, from (3), (4) and (5). We find $L_{3}(y)=\frac{1}{2}\left(5 y^{3}-3 y\right)$

$$
c_{1}=\frac{5}{18}, c_{2}=\frac{8}{18}, c_{3}=\frac{5}{18}
$$

and

$$
x_{1}=\frac{a+b}{2}-\frac{b-a}{2} y_{1}, x_{2}=\frac{a+b}{2}, x_{3}=\frac{a+b}{2}+\frac{b-a}{2} y_{1}
$$

with $y_{1}^{2}=\frac{3}{5}$.
From relation (2) we obtain

$$
R_{3}(f)=\frac{1}{15750}\left(\frac{b-a}{2}\right)^{7} f^{(6)}(\xi)
$$

In this case we have that if $f:[a, b] \rightarrow \mathbb{R}, f \in C^{6}[a, b]$ then for any $x \in(a, b]$ there is $c_{x} \in(a, x)$ such that

$$
\begin{equation*}
\int_{a}^{x} f(t) d t= \tag{10}
\end{equation*}
$$

$$
=\frac{(x-a)}{18}\left[5 f\left(\frac{a+x}{2}-\frac{x-a}{2} y_{1}\right)+8 f\left(\frac{a+x}{2}\right)+5 f\left(\frac{a+x}{2}+\frac{x-a}{2} y_{1}\right)\right]+
$$

$$
+\frac{1}{15750}\left(\frac{x-a}{2}\right)^{7} f^{(6)}\left(c_{x}\right) .
$$

Our main result is contained in the following theorem.

Theorem 2. If $f \in C^{8}[a, b]$ and $f^{(7)}(a) \neq 0$ then for the intermediate point c_{x} which appears in formula (10) we have:

$$
\lim _{x \rightarrow a} \frac{c_{x}-a}{x-a}=\frac{1}{2}
$$

Proof. Let us consider $F, G:[a, b] \rightarrow \mathbb{R}$ defined by

$$
\begin{gathered}
F(x)=\int_{a}^{x} f(t) d t- \\
-\frac{(x-a)}{18}\left[5 f\left(\frac{a+x}{2}-\frac{x-a}{2} y_{1}\right)+8 f\left(\frac{a+x}{2}\right)+5 f\left(\frac{a+x}{2}+\frac{x-a}{2} y_{1}\right)\right]- \\
-\frac{1}{15750}\left(\frac{x-a}{2}\right)^{7} f^{(6)}(a) \\
G(x)=(x-a)^{8}
\end{gathered}
$$

Since F and G are eight times derivable on $[a, b], G^{(i)} \neq 0, i=\overline{1,7}$ for any $x \in(a, b]$ and $F^{(k)}(a)=0, G^{(k)}(a)=0, k=\overline{1,7}$.

By using successive l'Hospital rule, we obtain

$$
\lim _{x \rightarrow a} \frac{F(x)}{G(x)}=\lim _{x \rightarrow a} \frac{F^{(8)}(x)}{G^{(8)}(x)}
$$

Now, from

$$
\begin{aligned}
& F^{(8)}(x)=f^{(7)}(x)-\frac{4}{9}\left[5 f^{(7)}\left(\frac{a+x}{2}-\frac{x-a}{2} y_{1}\right)\left(\frac{1}{2}-\frac{y_{1}}{2}\right)^{7}+\right. \\
&\left.+\frac{1}{16} f^{(7)}\left(\frac{a+x}{2}\right)+5 f^{(7)}\left(\frac{a+x}{2}+\frac{x-a}{2} y_{1}\right)\left(\frac{1}{2}+\frac{y_{1}}{2}\right)^{7}\right]- \\
&-\frac{(x-a)}{18}\left[5 f^{(8)}\left(\frac{a+x}{2}-\frac{x-a}{2} y_{1}\right)\left(\frac{1}{2}-\frac{y_{1}}{2}\right)^{8}+\frac{1}{32} f^{(8)}\left(\frac{a+x}{2}\right)+\right. \\
&\left.++5 f^{(8)}\left(\frac{a+x}{2}+\frac{x-a}{2} y_{1}\right)\left(\frac{1}{2}+\frac{y_{1}}{2}\right)^{8}\right]
\end{aligned}
$$

$$
G^{(8)}(x)=8!
$$

we obtain

$$
\begin{equation*}
\lim _{x \rightarrow a} \frac{F(x)}{G(x)}=\frac{1}{8!} F^{(8)}(a), \tag{11}
\end{equation*}
$$

where

$$
\begin{gathered}
F^{(8)}(a)=f^{(7)}(a)\left\{1-\frac{4}{9}\left[5\left(\frac{1}{2}-\frac{y_{1}}{2}\right)^{7}+5\left(\frac{1}{2}+\frac{y_{1}}{2}\right)^{7}+\frac{1}{16}\right]\right\}= \\
=f^{(7)}(a)\left\{1-\frac{4}{9}\left[\frac{5}{2^{7}}\left(1-y_{1}\right)^{7}+\frac{5}{2^{7}}\left(1+y_{1}\right)^{7}+\frac{1}{16}\right]\right\}= \\
=f^{(7)}(a)\left\{1-\frac{4}{9}\left[\frac{5}{2^{6}}\left(1+21 y_{1}^{2}+35 y_{1}^{4}+7 y_{1}^{6}\right)+\frac{1}{16}\right]\right\}= \\
=f^{(7)}(a)\left(1-\frac{4}{9} \cdot \frac{891}{400}\right)=\frac{1}{100} f^{(7)}(a) .
\end{gathered}
$$

Hence

$$
\begin{equation*}
\lim _{x \rightarrow a} \frac{F(x)}{G(x)}=\frac{1}{100 \cdot 8!} \cdot f^{(7)}(a) \tag{12}
\end{equation*}
$$

On the other hand

$$
\begin{gathered}
\frac{F(x)}{G(x)}=\frac{\frac{1}{15750}\left(\frac{x-a}{2}\right)^{7}\left[f^{(6)}\left(c_{x}\right)-f^{(6)}(a)\right]}{(x-a)^{8}}= \\
\quad=\frac{1}{15750 \cdot 2^{7}} \cdot \frac{f^{(6)}\left(c_{x}\right)-f^{(6)}(a)}{c_{x}-a} \cdot \frac{c_{x}-a}{x-a},
\end{gathered}
$$

whence

$$
\begin{equation*}
\lim _{x \rightarrow a} \frac{F(x)}{G(x)}=\frac{1}{15750 \cdot 2^{7}} \cdot f^{(7)}(a) \cdot \lim _{x \rightarrow a} \frac{c_{x}-a}{x-a} \tag{13}
\end{equation*}
$$

From the relation (12) and (13) we obtain

$$
\lim _{x \rightarrow a} \frac{c_{x}-a}{x-a}=\frac{1}{2} .
$$

4. Open problem. For intermediate point which appear in quadrature formulas of Gauss type (1) - (2) we have

$$
\lim _{b \rightarrow a} \frac{\xi_{b}-a}{b-a}=\frac{1}{2}
$$

any natural number n.

References

[1] D. Acu, About intermediate point in the mean-value theorems, The annual session of scientifical comunications of the Faculty of Sciences in Sibiu, 17-18 May, 2001 (in romanian).
[2] D. Acu, P. Dicu, About some properties of the intermediate point in certain mean-value formulas, General mathematics, vol. 10, no. 1-2, 2002, 51-64.
[3] P. Dicu, An intermediate point property in some of classical generalized formulas of quadrature, General Mathematics, vol. 12, no. 1, 2004, 61-70.
[4] A. Ghizzetti, A. Ossicini, Quadrature Formulae, Birkhäuser Verlag Basel und Stuttgart, 1970.
[5] D. V. Ionescu, Numerical quadratures, Bucharest, Technical Editure, 1957 (in romanian).
[6] B. Jacobson, On the mean-value theorem for integrals, The American Mathematical Monthly, vol. 89, 1982, 300-301.
[7] E. C. Popa, An intermediate point property in some the mean-value theorems, Astra Matematică, vol. 1, nr. 4, 1990, 3-7 (in romanian).

"Lucian Blaga" University of Sibiu
Department of Mathematics
Str. Dr. I. Raṭiu, No. 5-7
550012 - Sibiu, Romania
E-mail address: petrica.dicu@ulbsibiu.ro

