New Classes of Univalent Functions

Amelia Anca Holhoss

Dedicated to Professor Dumitru Acu on his 60th anniversary

Abstract

In this paper we define and study some properties of the classes $B_{n}(A)$ of univalent functions.

2000 Mathematics Subject Classification: 30C45.
Keywords: Univalent functions, Sălăgean differential operator.

1 Introduction

Let U denote the open unit disc: $U=\{z ; z \in \mathbb{C},|z|<1\}$, let \mathcal{A} denote the class of functions

$$
f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}
$$

which are analytic in U, and let S denote the class of functions of this form wich are analytic and univalent in U.

A function $f(z) \in \mathcal{A}$ is said to be starlike of order $\alpha(0 \leq \alpha<1)$ in the unit disk U if

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>\alpha
$$

for all $z \in U$. The class of starlike functions of order α it is denoted by $S^{*}(\alpha)$ and $S^{*}(0)=S^{*}$.

For $f \in S$ we define the Sălăgean's differential operator D^{n} (see [2])

$$
\begin{aligned}
D^{0} f(z) & =f(z) \\
D^{1} f(z) & =D f(z)=z f^{\prime}(z)
\end{aligned}
$$

and

$$
D^{n} f(z)=D\left(D^{n-1} f(z)\right) \quad ; \quad n \in \mathbb{N}^{*}=\{1,2,3, \ldots\}
$$

For $\alpha \in[0,1)$ and $n \in \mathbb{N}$ Sălăgean introduced the class of n-starlike functions of order α

$$
S_{n}(\alpha)=\left\{f \in \mathcal{A}: \operatorname{Re} \frac{D^{n+1} f(z)}{D^{n} f(z)}>\alpha, \quad z \in U\right\}
$$

and for this class be obtained the following results:

Theorem 1.(see [2]) For $n \in \mathbb{N}$ and $\alpha \in[0,1)$ we have $S_{n+1}(\alpha) \subset$ $S_{n}(\delta(\alpha))$, where

$$
\delta(\alpha)= \begin{cases}\frac{2 \alpha-1}{2\left(1-2^{1-2 \alpha}\right)}, & \alpha \in[0,1) \backslash\left\{\frac{1}{2}\right\} \\ \frac{1}{2 \ln 2}, & \alpha=\frac{1}{2}\end{cases}
$$

and the result is sharp.

Corollary 1.(see [2]) $S_{n+1}(\alpha) \subset S_{n}(\alpha)$, for all $n \in \mathbb{N}$ and $\alpha \in[0,1)$.

Remark 1. Since

$$
S_{n}(\alpha) \subset S_{n-1}(\alpha) \subset \ldots \subset S_{1}(\alpha) \subset S_{0}(\alpha)=S^{*}(\alpha)
$$

and $S^{*}(\alpha) \subseteq S^{*}(0)=S^{*}$, all functions of $S_{n}(\alpha), n \in \mathbb{N}$ and $\alpha \in[0,1)$ are starlike and univalent, and because $S_{1}(\alpha)=K(\alpha) \subseteq K(0)=K$, all functions of $S_{n}(\alpha), n \in \mathbb{N}^{*}=\mathbb{N} \backslash\{0\}, \alpha \in[0,1)$ are convex.

Theorem 2.(see [1]) Let $-1 \leq B \leq 1$, let $A, \beta, \gamma \in \mathbb{C}$ with $\beta \neq 0$ and $A \neq B$ such that $\beta(A-B) \in \mathbb{R}, \operatorname{Re}(\beta+\gamma)>0$,

$$
\left\{\begin{array}{l}
\operatorname{Re}[\beta(1+A)+\gamma(1+B)] \geq 0, \quad \text { if } B \neq-1 \\
\operatorname{Re}[\beta(1-A)+\gamma(1-B)] \geq 0, \quad \text { if } B \neq 1
\end{array}\right.
$$

and

$$
|\beta A+\gamma B| \leq|\beta+\gamma| .
$$

Then the differential equation

$$
q(z)+\frac{z q^{\prime}(z)}{\beta q(z)+\gamma}=\frac{1+A z}{1+B z}
$$

has a univalent solution q, with $q(0)=1$, given by

$$
q(z)=\left\{\begin{array}{ll}
\frac{z^{\beta+\gamma}(1+B z)^{\beta \frac{A-B}{B}}}{\beta \int_{0}^{z} t^{\beta+\gamma-1}(1+B t)^{\beta \frac{A-B}{B}} d t}-\frac{\gamma}{\beta}, & \text { if } \quad B \neq 0 \\
\frac{z^{\beta+\gamma} e^{\beta A z}}{\beta \int_{0}^{z} t^{\beta+\gamma-1} e^{\beta A t} d t}-\frac{\gamma}{\beta}, & \text { if } \quad B=0
\end{array} .\right.
$$

If the function p is analytic in U and satisfy the differential subordination

$$
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \prec \frac{1+A z}{1+B z}
$$

then

$$
p(z) \prec q(z) \prec \frac{1+A z}{1+B z}
$$

and the function q it is the best dominant.

Definition 1. Let $n \in \mathbb{N}^{*}$ and let $A \in(0,1)$. We define the class

$$
\mathcal{B}_{n}(A)=\left\{f \in \mathcal{A}: \frac{D^{n+1} f(z)}{D^{n} f(z)} \prec 1+A z, \quad z \in U\right\} .
$$

Remark 2. $\mathcal{B}_{n}(A) \subset S_{n}(1-A)$. From this we deduce that all functions of $B_{n}(A)$ are univalent.

2 Some properties of the classes $\mathcal{B}_{n}(A)$.

Theorem 3. Let $n \in N^{*}$ and $A \in(0,1)$, The $\mathcal{B}_{n+1}(A) \subset \mathcal{B}_{n}(A)$.
Proof. Let $f \in \mathcal{B}_{n+1}(A)$. Then from definition of the class $\mathcal{B}_{n}(A)$ we have

$$
\frac{D^{n+2} f(z)}{D^{n+1} f(z)} \prec 1+A z .
$$

Let

$$
\begin{equation*}
p(z)=\frac{D^{n+1} f(z)}{D^{n} f(z)}, \quad z \in \dot{U} \quad \text { and } \mathrm{p}(0)=1 \tag{1}
\end{equation*}
$$

We observe that p is analityc in U, and from definition of the Sălăgean's differential operator D^{n} we have

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{p(z)}=\frac{D^{n+2} f(z)}{D^{n+1} f(z)} \prec 1+A z . \tag{2}
\end{equation*}
$$

Since the conditions by the hypothessis of Theorem 4 are satisfied for $B=0$, $\beta=1, \gamma=0$ and $A \in(0,1)$, then the differential equation

$$
q(z)+\frac{z q^{\prime}(z)}{q(z)+1}=1+A z
$$

has a univalent solution given by

$$
q(z)=\frac{z e^{A z}}{\frac{e^{A z}}{A}-\frac{1}{A}}
$$

and because p is analytic in U and satisfies (2) we have

$$
\begin{equation*}
p(z) \prec q(z) \prec 1+A z \tag{3}
\end{equation*}
$$

and q is the best dominant. From (3) and (1) we have

$$
\frac{D^{n+1} f(z)}{D^{n} f(z)} \prec \frac{z e^{A z}}{\frac{e^{A z}}{A}-\frac{1}{A}} \prec 1+A z
$$

therefore $f \in \mathcal{B}_{n}(A)$ and hence $\mathcal{B}_{n+1}(A) \subset \mathcal{B}_{n}(A)$.

Theorem 4. If $A \in(0,1), c \geq A-1$ and $f \in \mathcal{B}_{n}(A)$, then $I(f) \in \mathcal{B}_{n}(A)$
where

$$
I(f)(z)=\frac{c+1}{z^{c}} \int_{0}^{z} f(t) t^{c-1} d t .
$$

Proof. Since $f \in \mathcal{B}_{n}(A)$ we have

$$
\begin{equation*}
\frac{D^{n+1} f(z)}{D^{n} f(z)} \prec 1+A z . \tag{4}
\end{equation*}
$$

If we denote

$$
g(z)=I(f)(z)=\frac{c+1}{z^{c}} \int_{0}^{z} f(t) t^{c-1} d t
$$

then

$$
f(z)=\frac{c g(z)}{c+1}+\frac{z g^{\prime}(z)}{c+1}
$$

and

$$
\frac{D^{n+1} f(z)}{D^{n} f(z)}=\frac{D^{n+1} g(z)}{D^{n} g(z)} \frac{c+\frac{D^{n+2} g(z)}{D^{n+1} g(z)}}{c+\frac{D^{n+1} g(z)}{D^{n} g(z)}}
$$

If we get

$$
p(z)=\frac{D^{n+1} g(z)}{D^{n} g(z)}
$$

then

$$
p(z)+\frac{z p^{\prime}(z)}{p(z)}=\frac{D^{n+2} g(z)}{D^{n+1} g(z)}
$$

and

$$
\begin{equation*}
\frac{D^{n+1} f(z)}{D^{n} f(z)}=p(z)+\frac{z p^{\prime}(z)}{c+p(z)} \tag{5}
\end{equation*}
$$

From (4) and (5) and because the conditions of Theorem 4 are satisfied for $B=0, \beta=1, \gamma=c \geq A-1>-1$ then we have that the differential equation

$$
q(z)+\frac{z q^{\prime}(z)}{q(z)+c}=1+A z
$$

has a univalent solution given by

$$
q(z)=\frac{z^{1+c} e^{A z}}{\int_{0}^{z} t^{c} e^{A t} d t}-c
$$

Since p is analityc in U, then

$$
p(z) \prec q(z) \prec 1+A z
$$

and q is the best dominant. Hence

$$
p(z)=\frac{D^{n+1} g(z)}{D^{n} g(z)} \prec \frac{z^{1+c} e^{A z}}{\int_{0}^{z} t^{c} e^{A t} d t}-c \prec 1+A z
$$

then $g \in \mathcal{B}_{n}(A)$ and $I(f) \in \mathcal{B}_{n}(A)$.

References

[1] S. S. Miller, P. T. Mocanu, Univalent solutions of Briot - Bouquet differential equations, J.of Differential Equations, 56, 3(1985), 297-309.
[2] G. Sălăgean, Subclasses of univalent functions, Lecture Notes in Math. (Springer-Verlag) 1013(1983), 362-372.

