General Mathematics Vol. 13, No. 4 (2005), 33-38

New Classes of Univalent Functions

Amelia Anca Holhoş

Dedicated to Professor Dumitru Acu on his 60th anniversary

Abstract

In this paper we define and study some properties of the classes $B_n(A)$ of univalent functions.

2000 Mathematics Subject Classification: 30C45.

Keywords: Univalent functions, Sălăgean differential operator.

1 Introduction

Let U denote the open unit disc: $U = \{z \ ; \ z \in \mathbb{C} \ , \ |z| < 1\}$, let \mathcal{A} denote the class of functions

$$f(z) = z + \sum_{j=2}^{\infty} a_j z^j$$

which are analytic in U, and let S denote the class of functions of this form wich are analytic and univalent in U.

A function $f(z) \in \mathcal{A}$ is said to be starlike of order α $(0 \le \alpha < 1)$ in the unit disk U if

$$\operatorname{Re}\frac{zf'(z)}{f(z)} > \alpha$$

for all $z \in U$. The class of starlike functions of order α it is denoted by $S^*(\alpha)$ and $S^*(0) = S^*$.

For $f \in S$ we define the Sălăgean's differential operator D^n (see [2])

$$D^{0}f(z) = f(z)$$
$$D^{1}f(z) = Df(z) = zf'(z)$$

and

$$D^n f(z) = D(D^{n-1}f(z))$$
; $n \in \mathbb{N}^* = \{1, 2, 3, ...\}.$

For $\alpha \in [0,1)$ and $n \in \mathbb{N}$ Sălăgean introduced the class of *n*-starlike functions of order α

$$S_n(\alpha) = \left\{ f \in \mathcal{A} : \operatorname{Re} \frac{D^{n+1}f(z)}{D^n f(z)} > \alpha, \ z \in U \right\}$$

and for this class be obtained the following results:

Theorem 1.(see [2]) For $n \in \mathbb{N}$ and $\alpha \in [0,1)$ we have $S_{n+1}(\alpha) \subset S_n(\delta(\alpha))$, where

$$\delta\left(\alpha\right) = \begin{cases} \frac{2\alpha - 1}{2\left(1 - 2^{1 - 2\alpha}\right)}, & \alpha \in [0, 1) \setminus \left\{\frac{1}{2}\right\}\\\\ \frac{1}{2\ln 2}, & \alpha = \frac{1}{2} \end{cases}$$

and the result is sharp.

Corollary 1.(see [2]) $S_{n+1}(\alpha) \subset S_n(\alpha)$, for all $n \in \mathbb{N}$ and $\alpha \in [0, 1)$.

Remark 1. Since

$$S_n(\alpha) \subset S_{n-1}(\alpha) \subset \dots \subset S_1(\alpha) \subset S_0(\alpha) = S^*(\alpha)$$

and $S^*(\alpha) \subseteq S^*(0) = S^*$, all functions of $S_n(\alpha)$, $n \in \mathbb{N}$ and $\alpha \in [0,1)$ are starlike and univalent, and because $S_1(\alpha) = K(\alpha) \subseteq K(0) = K$, all functions of $S_n(\alpha)$, $n \in \mathbb{N}^* = \mathbb{N} \setminus \{0\}$, $\alpha \in [0,1)$ are convex.

Theorem 2.(see [1]) Let $-1 \leq B \leq 1$, let $A, \beta, \gamma \in \mathbb{C}$ with $\beta \neq 0$ and $A \neq B$ such that $\beta (A - B) \in \mathbb{R}$, Re $(\beta + \gamma) > 0$,

$$\begin{cases} \operatorname{Re}\left[\beta\left(1+A\right)+\gamma\left(1+B\right)\right] \geq 0, & \text{if } B \neq -1\\ \operatorname{Re}\left[\beta\left(1-A\right)+\gamma\left(1-B\right)\right] \geq 0, & \text{if } B \neq 1 \end{cases}$$

and

$$\left|\beta A + \gamma B\right| \le \left|\beta + \gamma\right|.$$

Then the differential equation

$$q(z) + \frac{zq'(z)}{\beta q(z) + \gamma} = \frac{1 + Az}{1 + Bz}$$

has a univalent solution q, with q(0) = 1, given by

$$q\left(z\right) = \begin{cases} \frac{z^{\beta+\gamma} \left(1+Bz\right)^{\beta\frac{A-B}{B}}}{\beta \int_{0}^{z} t^{\beta+\gamma-1} \left(1+Bt\right)^{\beta\frac{A-B}{B}} dt} - \frac{\gamma}{\beta}, & \text{if } B \neq 0\\ \frac{z^{\beta+\gamma} e^{\beta Az}}{\beta \int_{0}^{z} t^{\beta+\gamma-1} e^{\beta At} dt} - \frac{\gamma}{\beta}, & \text{if } B = 0 \end{cases}$$

If the function p is analytic in U and satisfy the differential subordination

$$p(z) + \frac{zp'(z)}{\beta p(z) + \gamma} \prec \frac{1 + Az}{1 + Bz}$$

then

$$p(z) \prec q(z) \prec \frac{1+Az}{1+Bz}$$

and the function q it is the best dominant.

Definition 1. Let $n \in \mathbb{N}^*$ and let $A \in (0, 1)$. We define the class

$$\mathcal{B}_{n}(A) = \left\{ f \in \mathcal{A} : \frac{D^{n+1}f(z)}{D^{n}f(z)} \prec 1 + Az, \quad z \in U \right\}.$$

Remark 2. $\mathcal{B}_n(A) \subset S_n(1-A)$. From this we deduce that all functions of $B_n(A)$ are univalent.

2 Some properties of the classes $\mathcal{B}_n(A)$.

Theorem 3. Let $n \in N^*$ and $A \in (0, 1)$, The $\mathcal{B}_{n+1}(A) \subset \mathcal{B}_n(A)$.

Proof. Let $f \in \mathcal{B}_{n+1}(A)$. Then from definition of the class $\mathcal{B}_n(A)$ we have

$$\frac{D^{n+2}f\left(z\right)}{D^{n+1}f\left(z\right)} \prec 1 + Az$$

Let

(1)
$$p(z) = \frac{D^{n+1}f(z)}{D^n f(z)}, z \in \dot{U} \text{ and } p(0) = 1.$$

We observe that p is analityc in U, and from definition of the Sălăgean's differential operator D^n we have

(2)
$$p(z) + \frac{zp'(z)}{p(z)} = \frac{D^{n+2}f(z)}{D^{n+1}f(z)} \prec 1 + Az.$$

Since the conditions by the hypothessis of Theorem 4 are satisfied for B = 0, $\beta = 1, \gamma = 0$ and $A \in (0, 1)$, then the differential equation

$$q(z) + \frac{zq'(z)}{q(z)+1} = 1 + Az$$

has a univalent solution given by

$$q(z) = \frac{ze^{Az}}{\frac{e^{Az}}{A} - \frac{1}{A}}$$

and because p is analytic in U and satisfies (2) we have

(3)
$$p(z) \prec q(z) \prec 1 + Az$$

and q is the best dominant. From (3) and (1) we have

$$\frac{D^{n+1}f(z)}{D^n f(z)} \prec \frac{ze^{Az}}{\frac{e^{Az}}{A} - \frac{1}{A}} \prec 1 + Az$$

therefore $f \in \mathcal{B}_{n}(A)$ and hence $\mathcal{B}_{n+1}(A) \subset \mathcal{B}_{n}(A)$.

Theorem 4. If $A \in (0,1)$, $c \ge A - 1$ and $f \in \mathcal{B}_n(A)$, then $I(f) \in \mathcal{B}_n(A)$ where

$$I(f)(z) = \frac{c+1}{z^{c}} \int_{0}^{z} f(t) t^{c-1} dt.$$

Proof. Since $f \in \mathcal{B}_n(A)$ we have

(4)
$$\frac{D^{n+1}f(z)}{D^n f(z)} \prec 1 + Az.$$

If we denote

$$g(z) = I(f)(z) = \frac{c+1}{z^c} \int_0^z f(t) t^{c-1} dt$$

then

$$f(z) = \frac{cg(z)}{c+1} + \frac{zg'(z)}{c+1}$$

and

$$\frac{D^{n+1}f(z)}{D^{n}f(z)} = \frac{D^{n+1}g(z)}{D^{n}g(z)} \frac{c + \frac{D^{n+2}g(z)}{D^{n+1}g(z)}}{c + \frac{D^{n+1}g(z)}{D^{n}g(z)}}.$$

If we get

$$p(z) = \frac{D^{n+1}g(z)}{D^{n}g(z)}$$

then

$$p(z) + \frac{zp'(z)}{p(z)} = \frac{D^{n+2}g(z)}{D^{n+1}g(z)}$$

and

(5)
$$\frac{D^{n+1}f(z)}{D^n f(z)} = p(z) + \frac{zp'(z)}{c+p(z)}$$

From (4) and (5) and because the conditions of Theorem 4 are satisfied for $B = 0, \ \beta = 1, \ \gamma = c \ge A - 1 > -1$ then we have that the differential equation

$$q(z) + \frac{zq'(z)}{q(z) + c} = 1 + Az$$

has a univalent solution given by

$$q\left(z\right) = \frac{z^{1+c}e^{Az}}{\int_{0}^{z}t^{c}e^{At}dt} - c.$$

Since p is anality in U, then

$$p\left(z\right) \prec q\left(z\right) \prec 1 + Az$$

and q is the best dominant. Hence

$$p\left(z\right) = \frac{D^{n+1}g\left(z\right)}{D^{n}g\left(z\right)} \prec \frac{z^{1+c}e^{Az}}{\int_{0}^{z}t^{c}e^{At}dt} - c \prec 1 + Az$$

then $g \in \mathcal{B}_n(A)$ and $I(f) \in \mathcal{B}_n(A)$.

References

- S. S. Miller, P. T. Mocanu, Univalent solutions of Briot Bouquet differential equations, J.of Differential Equations, 56, 3(1985), 297 - 309.
- [2] G. Sălăgean, Subclasses of univalent functions, Lecture Notes in Math. (Springer-Verlag) 1013(1983), 362-372.

38