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from Groups
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Abstract

A hypergroup (H, ◦) is said to be divisible if for every x ∈ H and

every positive integer n, there exists an element y ∈ H such that

x ∈ (y, ◦)n where (y, ◦)n denotes the set y ◦ y ◦ . . . ◦ y (n copies).

The following hypergroups defined from groups are known. If G is

an abelian group and ρ is the equivalence relation on G defined by

xρy ⇔ x = y or x = y−1, then (G/ρ, ◦) is a hypergroup where

xρ ◦ yρ = {(xy)ρ, (xy−1)ρ}. Also, if G′ is any group and N B G′,
then (G′, �) is a hypergroup where x � y = Nxy. In this paper, we

show that for a finite abelian group G, (G/ρ, ◦) is divisible if and only

if G is of odd order. In addition, if the orders of elements of G′ are

bounded, then the hypergroup (G′, �) is divisible only the case that

N = G′.
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1 Introduction

For any set X, let |X| denote the cardinality of X. The set of positive inte-

gers (natural numbers), the set of integers and the set of rational numbers

will be denoted respectively by N,Z and Q.

We call a semigroup S a divisible semigroup if for every x ∈ S and every

n ∈ N, x = yn for some y ∈ S. It is clearly seen that the group (Q,+) is a

divisible group while the group (Z,+) and the multiplicative group of posi-

tive rational numbers are not divisible. Divisible semigroups have long been

studied. See [5], [1], [3], [7] and [6] for examples. Divisible abelian groups

have been characterized in terms of Z-injectively. This can be seen in [4],

page 195. A. Wasanawichit and the first author have studied the divisibility

of some periodic semigroups (that is, semigroups whose elements have finite

order) in [7]. Moreover, N. Triphop and A. Wasanawichit introduced some

interesting divisible matrix groups in [6].

In this paper, the notion of divisibility is defined extensively. Divisi-

ble semihypergroups are defined and the divisibility of some hypergroups

defined from groups will be investigated.

Let us recall some hyperstructures which will be used. A hyperoperation

on a nonempty set H is a mapping ◦ : H × H → P ∗(H) where P (H)

is the power set of H and P ∗(H) = P (H) r {∅}, and (H, ◦) is called a

hypergroupoid. If A and B are nonempty subsets of H, let

A ◦B =
⋃
a∈A
b∈B

(a ◦ b).

A semihypergroup is a hypergroupoid (H, ◦) such that x◦ (y ◦z) = (x◦y)◦z
for all x, y, z ∈ H and a semihypergroup (H, ◦) with H ◦ x = x ◦ H = H

for all x ∈ H is called a hypergroup. The concept of commutativity of
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these hyperstructures is given naturally. A semihypergroup (H, ◦) is called

divisible if for any x ∈ H and n ∈ N, there is an element y ∈ H such that

x ∈ (y, ◦)n where (y, ◦)n denotes the subset y ◦ y ◦ . . . ◦ y (n copies) of H. It

is clear that a total hypergroup, that is, a hypergroup (H, ◦) with x◦y = H

for all x, y ∈ H, is divisible. A semigroup [semihypergroup] is said to be

indivisible if it is not divisible. The following hypergroups are defined from

groups and they can be seen in [2], page 11.

Let G be an abelian group and ρ the equivalence relation on G defined

by

(1) xρy ⇔ x = y or x = y−1.

Then (G/ρ, ◦) is a commutative hypergroup where

(2) xρ ◦ yρ = {(xy)ρ, (xy−1)ρ} for all x, y ∈ G.

Next, let G be any group and N a normal subgroup of G. Then (G, �)
is a hypergroup where

(3) x � y = Nxy for all x, y ∈ G.

We note that if N = G, then (G, �) is a total hypergroup. Also, if N = {e}
where e is the identity of G, then x�y = {xy} for all x, y ∈ G, so (G, �) = G.

For more details on hyperstructures, the reader is referred to [2].

Let us recall the following well-known fact which will be referred. If G is

a finite abelian group, then G ∼= Zk1×Zk2×. . .×Zkl for some k1, k2, . . . , kl ∈
N ([4], page 76). Here Zn denotes the group under addition of integers

modulo n. Note that Zn = {0, 1, . . . , n− 1} = {x | x ∈ Z}.
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2 The Hypergroup (G/ρ, ◦)
Throughout this section, ρ denotes the equivalence relation on a considering

abelian group G defined as in (1) and ◦ denotes the hyperoperation on G/ρ

defined as in (2). Notice that eρ = {e} where e is the identity of G and

x−1ρ = xρ = {x, x−1} for all x ∈ G. Our main interest in this section is to

show that for a finite abelian group G, the hypergroup (G/ρ, ◦) is divisible

if and only if G is of odd order.

The following two lemmas are needed.

Lema 2.1.If x ∈ G and n ∈ N, then in the hypergroup (G/ρ, ◦),

(xρ, ◦)n =




{eρ, x2ρ, . . . , xnρ} if n is even,

{xρ, x3ρ, . . . , xnρ} if n is odd.

Proof. This is clear for n = 1. We have from (2) that (xρ, ◦)2 = xρ ◦xρ =

{x2ρ, eρ} = {eρ, x2ρ}, (xρ, ◦)3 = {eρ, x2ρ} ◦ xρ = {xρ, x−1ρ, x3ρ, xρ} =

{xρ, x3ρ} and (xρ, ◦)4 = {xρ, x3ρ}◦xρ = {x2ρ, eρ, x4ρ, x2ρ} = {eρ, x2ρ, x4ρ}.
If k > 2 is even and (xρ, ◦)k = {eρ, x2ρ, x4ρ, . . . , xk−2ρ, xkρ}, then

(xρ, ◦)k+1 = {eρ, x2ρ, x4ρ, . . . , xk−2ρ, xkρ} ◦ xρ
= {xρ, x−1ρ, x3ρ, xρ, x5ρ, x3ρ, . . . , xk−1ρ, xk−3ρ, xk+1ρ, xk−1ρ}
= {xρ, x3ρ, x5ρ, . . . , xk−1ρ, xk+1ρ}.

Also, if k > 1 is odd and (xρ, ◦)k = {xρ, x3ρ, x5ρ, . . . , xk−2ρ, xkρ}, then

(xρ, ◦)k+1 = {xρ, x3ρ, x5ρ, . . . , xk−2ρ, xkρ} ◦ xρ
= {x2ρ, eρ, x4ρ, x2ρ, x6ρ, x4ρ, . . . , xk−1ρ, xk−3ρ, xk+1ρ, xk−1ρ}
= {eρ, x2ρ, x4ρ, . . . , xk−1ρ, xk+1ρ}.

Therefore the lemma is proved, as required.
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Lema 2.2.Let {ki | i ∈ I} be a nonempty subset of N. Then the hypergroup

(
∏
i∈I
Zki/ρ, ◦) is divisible if and only if ki is odd for all i ∈ I. In particular,

the hypergroup (Zn/ρ, ◦) is divisible if and only if n is odd.

Proof. Frist assume that the hypergroup (
∏
i∈I
Zki/ρ, ◦) is divisible. Then

there is an element (xi)i∈Iρ of (
∏
i∈I
Zki/ρ, ◦) such that (1)i∈Iρ ∈ 2((xi)i∈Iρ, ◦).

Note that we use the notation n((xi)i∈Iρ, ◦) in the hypergroup (
∏
i∈I
Zki/ρ, ◦)

instead of ((xi)i∈Iρ, ◦)n. By Lemma 2.1, 2((xi)i∈Iρ, ◦) = {(0)i∈Iρ, (2xi)i∈Iρ}.

Case 1. (1)i∈Iρ = (0)i∈Iρ. Then 1 = 0 in Zki for every i ∈ I, so ki = 1 for

all i ∈ I.

Case 2. (1)i∈Iρ = (2xi)i∈Iρ. Then (1)i∈I = (2xi)i∈I or (1)i∈I = (−2xi)i∈I .

This implies that

ki|2xi − 1 for all i ∈ I or ki|2xi + 1 for all i ∈ I,

and hence ki is odd for every i ∈ I.

For the converse, assume that each ki is odd. Then
ki + 1

2
∈ N for all

i ∈ I. To show that the hypergroup (
∏
i∈I
Zki/ρ, ◦) is divisible, let (xi)i∈I ∈

∏
i∈I
Zki and n ∈ N be given. Note that kixi = 0 for every i ∈ I. If n is odd,

then (xi)i∈Iρ ∈ n((xi)i∈Iρ, ◦) by Lemma 2.1. If n is even, then by Lemma

2.1,

n
(
((
ki + 1

2
)xi)i∈Iρ, ◦

)
= {(0)i∈Iρ,

(
2((

ki + 1

2
)xi)i∈I

)
ρ, . . . ,

(
n((

ki + 1

2
)xi)i∈I

)
ρ},

and
(
2((

ki + 1

2
)xi)i∈I

)
ρ =

(
(ki + 1)xi

)
i∈Iρ = (xi)i∈Iρ.
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Therefore the lemma is completely proved.

If x, y ∈ G and n ∈ N are such that x = yn, then by Lemma 2.1,

xρ = ynρ ∈ (yρ, ◦)n. Hence we have

Proposition 2.1.If G is a divisible group, then (G/ρ, ◦) is a divisible hy-

pergroup.

It is natural to ask whether the converse of Proposition 2.3 holds. The

following example shows that it is not generally true. From Lemma 2.2, if

n ∈ N is odd, then the hypergroup (Zn/ρ, ◦) is divisible. It is known that

a divisible finite abelian group must be trivial ([4], page 198). Moreover,

this is true that for any finite group. This fact is given in [7]. Therefore we

have that for any odd n > 1, the additive group Zn is not divisible but the

hypergroup (Zn/ρ, ◦) is divisible.

Theorem 2.1.Assume that G is a finite abelian group. Then the hypergroup

(G/ρ, ◦) is divisible if and only if G is of odd order.

Proof. Since G is a finite abelian group, G ∼= Zk1 × Zk2 × . . . × Zkl for

some k1, k2, . . . , kl ∈ N. It then follows that |G| = k1k2 . . . kl.

First, assume that (G/ρ, ◦) is a divisible hypergroup. Since G ∼= Zk1 ×
Zk2 × . . . × Zkl , the hypergroup

(
Zk1 × Zk2 × . . . × Zkl/ρ, ◦

)
is divisible.

It then follows from Lemma 2.2, ki is odd for all i ∈ {1, 2, . . . , l}. Hence

|G| = k1k2 . . . kl is odd.

Conversely, assume that |G| is odd. Then ki is odd for every i ∈
{1, 2, . . . , l} which implies by Lemma 2.2 that the hypergroup

(
Zk1 ×Zk2 ×

. . . × Zkl/ρ, ◦
)

is divisible. But G ∼= Zk1 × Zk2 × . . . × Zkl , so (G/ρ, ◦) is a

divisible hypergroup.
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3 The Hypergroup (G, �)

In this section, let G be any group, N a normal subgroup of G and �
the hyperoperation depending on N defined on G as in (3). Recall that if

N = G, then (G, �) is a total hypergroup which is divisible. The purpose of

this section is to show that if the orders of elements of G are bounded, then

the necessary and sufficient condition for (G, �) to be divisible is N = G.

First, we prove the following easy fact.

Lema 3.1.For every x ∈ G and every n ∈ N, (x, �)n = Nxn.

Proof. If x ∈ G, by (3), (x, �)2 = x�x = Nxx = Nx2. Assume that k ∈ N
and (x, �)k = Nxk. Then

(x, �)k+1 = (Nxk) � x =
⋃

t∈Nxk
t � x =

⋃

t∈Nxk
Ntx = N(Nxk)x = Nxk+1.

For x, y ∈ G and n ∈ N, if x = yn, then x ∈ Nyn = (y, �)n by Lemma

3.1. Hence we have

Proposition 3.1.If G is a divisible group, then (G, �) is a divisible hyper-

group.

If N = G, then (G, �) is a divisible hypergroup. This indicates that the

converse of Proposition 3.2 is not generally true. However, it is true under

the assumption that N is divisible and N ⊆ C(G) where C(G) is the center

of G.

Proposition 3.2.If (G, �) is a divisible hypergroup, N is a divisible group

and N ⊆ C(G), then G is a divisible group. In particular, for an abelian

group G, if both (G, �) and N are divisible, then so is G.
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Proof. Let x ∈ G and n ∈ N. Since (G, �) is a divisible hypergroup,

x ∈ (y, �)n for some y ∈ G. By Lemma 3.1, x ∈ Nyn. Thus x = syn for

some s ∈ N . But N is a divisible group, so s = tn for some t ∈ N . Thus

x = tnyn = (ty)n since N ⊆ C(G). This shows that G is a divisible group,

as desired.

Theorem 3.1.If the orders of elements of G are bounded, then (G, �) is a

divisible hypergroup only the case that N = G. In particular, if G is finite

and N ( G, then (G, �) is indivisible.

Proof. Assume that the orders of elements of G are bounded by m ∈ N.

This implies that for every x ∈ G, xm! = e where e is the identity of G.

Suppose that (G, �) is a divisible hypergroup. If x ∈ G, then x ∈ (y, �)m!

for some y ∈ G. But (y, �)m! = Nym! by Lemma 3.1, so x ∈ Nym! = Ne =

N . Therefore we have that N = G.

If G is an infinite cyclic group, then G ∼= (Z,+), so G is indivisible

and every nonidentity element of G has infinite order. For this case, the

subgroup N of G which makes the hypergroup (G, �) divisible cannot be

proper.

Proposition 3.3.If G is an infinite cyclic group such that (G, �) is a divis-

ible hypergroup, then N = G.

Proof. It suffices to assume that G = (Z,+). Assume that (Z, �) is

divisible. If N = {0}, then (Z, �) = (Z,+) which is indivisible. This

implies that N 6= {0}. Then N = mZ for some m ∈ N. Therefore for

x ∈ Z, x ∈ m(y, �) for some y ∈ Z. But m(y, �) = N + my by Lemma 3.1,

so x ∈ N +my = mZ+my = mZ = N . Hence Z = N .



Divisibility of Some Hypergroups Defined from Groups 85

Remark 3.6. From Proposition 3.2, Theorem 3.4 and Proposition 3.5, a

natural question arises. Are there an indivisible group G and a proper nor-

mal subgroup N of G such that (G, �) is a divisible hypergroup? There

are such G and N as shown by the following example. Let G be the

group Q × Z with usual addition and N = {0} × Z. Then N is a proper

subgroup of G. Claim that G is an indivisible group but (G, �) is a di-

visible hypergroup. Recall that x � y = N + x + y for all x, y ∈ G.

Since (0, 1) ∈ Q × Z and (0, 1) 6= 2(a, b) for all (a, b) ∈ Q × Z, we have

that G is indivisible. If (a, b) ∈ Q × Z and n ∈ N, then by Lemma 3.1,

n((
a

n
, b), �) = N + n(

a

n
, b) = {0} × Z+ (a, nb) = {a} × Z which implies that

(a, b) ∈ n((
a

n
, b), �). This shows that (G, �) is a divisible hypergroup, as de-

sired.
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