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Abstract

A hypergroup (H, o) is said to be divisible if for every x € H and
every positive integer n, there exists an element y € H such that
x € (y,0)" where (y,0)"™ denotes the set yoyo...oy (n copies).
The following hypergroups defined from groups are known. If G is
an abelian group and p is the equivalence relation on G defined by
xpy & x = y or x = y !, then (G/p,0) is a hypergroup where
zpoyp = {(zy)p, (xy~')p}. Also, if G’ is any group and N > G,
then (G',¢) is a hypergroup where z ¢y = Nzy. In this paper, we
show that for a finite abelian group G, (G/p, o) is divisible if and only
if G is of odd order. In addition, if the orders of elements of G’ are
bounded, then the hypergroup (G’,¢) is divisible only the case that
N =G
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1 Introduction

For any set X, let | X| denote the cardinality of X. The set of positive inte-
gers (natural numbers), the set of integers and the set of rational numbers
will be denoted respectively by N, Z and Q.

We call a semigroup S a divisible semigroup if for every z € S and every
n € Nyx = y" for some y € S. It is clearly seen that the group (Q,+) is a
divisible group while the group (Z, +) and the multiplicative group of posi-
tive rational numbers are not divisible. Divisible semigroups have long been
studied. See [5], [1], [3], [7] and [6] for examples. Divisible abelian groups
have been characterized in terms of Z-injectively. This can be seen in [4],
page 195. A. Wasanawichit and the first author have studied the divisibility
of some periodic semigroups (that is, semigroups whose elements have finite
order) in [7]. Moreover, N. Triphop and A. Wasanawichit introduced some
interesting divisible matrix groups in [6].

In this paper, the notion of divisibility is defined extensively. Divisi-
ble semihypergroups are defined and the divisibility of some hypergroups
defined from groups will be investigated.

Let us recall some hyperstructures which will be used. A hyperoperation
on a nonempty set H is a mapping o : H x H — P*(H) where P(H)
is the power set of H and P*(H) = P(H) ~ {0}, and (H,o0) is called a
hypergroupoid. If A and B are nonempty subsets of H, let

AoB= U (aob).
b
A semihypergroup is a hypergroupoid (H, o) such that zo(yoz) = (zoy)oz
for all x,y,2 € H and a semihypergroup (H,o) with Hox =xo H = H

for all x € H is called a hypergroup. The concept of commutativity of
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these hyperstructures is given naturally. A semihypergroup (H,o) is called
divisible if for any x € H and n € N; there is an element y € H such that
x € (y,0)™ where (y, o)™ denotes the subset yoyo...oy (n copies) of H. It
is clear that a total hypergroup, that is, a hypergroup (H, o) with xoy = H
for all z,y € H, is divisible. A semigroup [semihypergroup]| is said to be
indivisible if it is not divisible. The following hypergroups are defined from
groups and they can be seen in [2], page 11.

Let G be an abelian group and p the equivalence relation on G defined

by
(1) Tpy & r=yorxr =1y .
Then (G/p, o) is a commutative hypergroup where

(2) zp o yp={(zy)p, (xy~")p} for all 2,y € G.

Next, let G be any group and N a normal subgroup of G. Then (G, )

is a hypergroup where
(3) xoy= Nxy for all z,y € G.

We note that if N = G, then (G, ©) is a total hypergroup. Also, if N = {e}
where e is the identity of G, then zoy = {zy} forall x,y € G, so0 (G, ¢) = G.
For more details on hyperstructures, the reader is referred to [2].
Let us recall the following well-known fact which will be referred. If G is
a finite abelian group, then G = Zy, X Zy, X . . . X Zy, for some ky, ko, ..., Kk €

N ([4], page 76). Here Z, denotes the group under addition of integers
modulo n. Note that Z, = {0,1,...,n—1} ={Z |z € Z}.
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2 The Hypergroup (G/p, o)

Throughout this section, p denotes the equivalence relation on a considering
abelian group G defined as in (1) and o denotes the hyperoperation on G/p
defined as in (2). Notice that ep = {e} where e is the identity of G and
7 p=xp={z,x7'} for all x € G. Our main interest in this section is to
show that for a finite abelian group G, the hypergroup (G/p, o) is divisible
if and only if G is of odd order.

The following two lemmas are needed.

Lema 2.1.If x € G and n € N, then in the hypergroup (G/p, o),

{ep,z%p,...,x"p} if n is even,

(Ipv O>n =
{zp,2%p, ..., a"p} if n is odd.

Proof. This is clear for n = 1. We have from (2) that (zp,0)* = zpoxp =
{2%p,ep} = {ep,2%p}, (zp,0)* = {ep,a®p} o wp = {xp,a~"'p,a’p, xp} =
{zp, 2%p} and (zp, 0)* = {ap, 2®plowp = {2°p, ep, x*p, 2%p} = {ep, 2%p, 2% p}.
If k> 2is even and (zp,0)* = {ep, 2%p, x*p, ..., 25 2p, 2*p}, then
(zp, 0)* " = {ep,a’p,ap,... . " Pp,abp} o wp

xk—l k-3 k+1

= {xp, a7 p,2%p,xp,x°p, %p, ... 2" p, 2" P, p 2 p)

= {zp,2%p,2%p, ... 2" p, " p}.
Also, if k > 1 is odd and (zp,o)* = {zp, 2%p, 2%p, ..., 2" 2p, 2¥p}, then
p p.a’p,a%p p.akp

M= {xp,a%p, 2’p, ... 2" Pp atp}oap

k—1 k—3 k+1 k—1
" p,a"p, 2" p, 2" p}

(zp,0)
= {z®p,ep,a’p,x?p, ap, %, ...,

xk—l

= {ep,z*p,z*p, ..., " p,a" p}.

Therefore the lemma is proved, as required.
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Lema 2.2.Let {k; | i € I} be a nonempty subset of N. Then the hypergroup
(H Zy,; ] p, o) is divisible if and only if k; is odd for all i € I. In particular,

icl
the hypergroup (Zn/p,o) is divisible if and only if n is odd.

Proof. Frist assume that the hypergroup <sz/ p, o) is divisible. Then
iel
there is an element (Z;);crp of (H Zy,/p, o) suclfl that (1)ierp € 2((Ti)ierp, 0)-
icl
Note that we use the notation ne((ii)ielp, o) in the hypergroup (H Zy,/p,0)
instead of ((Z;)ierp, ©)". By Lemma 2.1, 2((Z;)ierp, 0) = {(ﬁ)ielpieéfi)ie]p}
Case 1. (1);e;p = (0)ijerp. Then 1 =10 in Z, for every i € I, so k; = 1 for

all 7 € I.

Case 2. (1)ierp = (27;)icsp- Then (1)ic; = (275)ier or (1)ier = (—2Ti)ier-
This implies that

ki|2x; — 1 foralli € [ or k;|2x;+ 1foralliel,
and hence k; is odd for every i € I.

Fit 1 € N for all

For the converse, assume that each k; is odd. Then
i € I. To show that the hypergroup (H Zy,;/p, o) is divisible, let (7;);cr €
el
H Zy, and n € N be given. Note that k;z; = 0 for every i € I. If n is odd,
el
then (T;)icrp € n((T7)icrp, 0) by Lemma 2.1. If n is even, then by Lemma

2.1,

Ao )icrp,©) = {Oreap, (U Rcr) o (0o FTrer) o}

(25 mien)p = (ki + 1T i pp = (@icap.
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Therefore the lemma is completely proved.

If z,y € G and n € N are such that + = y", then by Lemma 2.1,
xp=1y"p € (yp,o)". Hence we have

Proposition 2.1.If G is a divisible group, then (G/p,o) is a divisible hy-

PETGTOUD.

It is natural to ask whether the converse of Proposition 2.3 holds. The
following example shows that it is not generally true. From Lemma 2.2, if
n € N is odd, then the hypergroup (Z,/p, o) is divisible. It is known that
a divisible finite abelian group must be trivial ([4], page 198). Moreover,
this is true that for any finite group. This fact is given in [7]. Therefore we
have that for any odd n > 1, the additive group Z, is not divisible but the
hypergroup (Z,/p, o) is divisible.

Theorem 2.1.Assume that G is a finite abelian group. Then the hypergroup
(G/p, o) is divisible if and only if G is of odd order.

Proof. Since G is a finite abelian group, G = Zy, X Zy, X ... X Zy, for
some ki, ks, ...,k € N. It then follows that |G| = kiks ... k.

First, assume that (G/p, o) is a divisible hypergroup. Since G = Zj, X
Zyy X ... X Ly, the hypergroup (Zy, X Zy, X ... x Zy,/p,0) is divisible.
It then follows from Lemma 2.2, k; is odd for all 7 € {1,2,...,1}. Hence
|G| = kiks ... Ky is odd.

Conversely, assume that |G| is odd. Then k; is odd for every i €
{1,2,...,1} which implies by Lemma 2.2 that the hypergroup (Zk1 X Ly X
coo X L,/ p, o) is divisible. But G = Zy, X Zg, X ... X Zy,, so (G/p,o) is a
divisible hypergroup.
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3 The Hypergroup (G, )

In this section, let G be any group, N a normal subgroup of G and ¢
the hyperoperation depending on N defined on G as in (3). Recall that if
N = G, then (G, ) is a total hypergroup which is divisible. The purpose of
this section is to show that if the orders of elements of G' are bounded, then

the necessary and sufficient condition for (G, ¢) to be divisible is N = G.

First, we prove the following easy fact.
Lema 3.1.For every x € G and every n € N, (z,0)" = Na".

Proof. Ifz € G, by (3), (z,0)? = xox = Naxz = Na?. Assume that k € N
and (z,0)* = Na*. Then
(z,0)f! = (N2 ox = U toxr = U Ntz = N(N2*)z = Na*.
teENgk teENgk
For x,y € G and n € N, if x = ¢", then = € Ny" = (y,9)" by Lemma

3.1. Hence we have

Proposition 3.1.If G is a divisible group, then (G,©) is a divisible hyper-
group.

If N =@, then (G, ¢) is a divisible hypergroup. This indicates that the
converse of Proposition 3.2 is not generally true. However, it is true under
the assumption that N is divisible and N C C'(G) where C(G) is the center
of G.

Proposition 3.2.1f (G, ¢) is a diwvisible hypergroup, N is a divisible group
and N C C(G), then G is a divisible group. In particular, for an abelian
group G, if both (G,o) and N are divisible, then so is G.



84 S. Pianskool, S. Chaopraknoi and Y. Kemprasit

Proof. Let z € G and n € N. Since (G,¢) is a divisible hypergroup,
x € (y,o)" for some y € G. By Lemma 3.1, x € Ny". Thus z = sy” for
some s € N. But N is a divisible group, so s = t" for some ¢t € N. Thus
x = t"y" = (ty)" since N C C(G). This shows that G is a divisible group,

as desired.

Theorem 3.1.1f the orders of elements of G are bounded, then (G,o) is a
divisible hypergroup only the case that N = G. In particular, if G is finite
and N C G, then (G, o) is indivisible.

Proof. Assume that the orders of elements of G are bounded by m € N.
This implies that for every z € G, 2™ = e where e is the identity of G.

Suppose that (G, ¢) is a divisible hypergroup. If 2 € G, then x € (y, o)™
for some y € G. But (y,0)™ = Ny™ by Lemma 3.1, so x € Ny™ = Ne =
N. Therefore we have that N = G.

If G is an infinite cyclic group, then G = (Z,+), so G is indivisible
and every nonidentity element of G has infinite order. For this case, the
subgroup N of G which makes the hypergroup (G, <) divisible cannot be

proper.

Proposition 3.3.1f G is an infinite cyclic group such that (G, o) is a divis-
ible hypergroup, then N = G.

Proof. It suffices to assume that G = (Z,+). Assume that (Z,o) is
divisible. If N = {0}, then (Z,¢) = (Z,+) which is indivisible. This
implies that N # {0}. Then N = mZ for some m € N. Therefore for
x € Z,x € m(y,o) for some y € Z. But m(y,o) = N + my by Lemma 3.1,
sor € N+my=m&L+my=m#=N. Hence Z = N.
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Remark 3.6. From Proposition 3.2, Theorem 3.4 and Proposition 3.5, a
natural question arises. Are there an indivisible group G and a proper nor-
mal subgroup N of G such that (G, ) is a divisible hypergroup? There
are such G and N as shown by the following example. Let G be the
group Q x Z with usual addition and N = {0} x Z. Then N is a proper
subgroup of G. Claim that G is an indivisible group but (G,¢) is a di-
visible hypergroup. Recall that x oy = N + z + y for all z,y € G.
Since (0,1) € Q x Z and (0,1) # 2(a,b) for all (a,b) € Q x Z, we have
that G is indivisible. If (a,b) € Q x Z and n € N, then by Lemma 3.1,
n((%, b),0) = N + n(%, b) = {0} x Z + (a,nb) = {a} x Z which implies that
(a,b) € n((%, b),¢). This shows that (G, o) is a divisible hypergroup, as de-

sired.
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