A New Class of Multivalent Harmonic Functions ¹

K. Al Shaqsi and M. Darus

In memoriam of Associate Professor Ph. D. Luciana Lupaş

Abstract

In this paper, we introduce a new class of multivalent harmonic functions. We investigate various properties of functions belonging to this class. Coefficients bounds, distortion bounds and extreme points are given.

2000 Mathematics Subject Classification: 30C45.

Keywords: Multivalent functions, harmonic functions, derivative operator.

1 Introduction

A continuous functions f = u + iv is a complex valued harmonic function in a complex domain \mathbb{C} if both u and v are real harmonic in \mathbb{C} . In any

¹Received 24 September, 2006

Accepted for publication (in revised form) 26 October, 2006

simply connected domain $\mathcal{D} \subset \mathbb{C}$ we can write $f = h + \overline{g}$, where h and g are analytic in \mathcal{D} . We call h the analytic part and g the co-analytic part of f. A necessary and sufficient condition for f to be locally univalent and sense-preserving in \mathcal{D} is that |h'(z)| > |g'(z)| in \mathcal{D} . See Clunie and Sheil-Small (see [2]).

Denote by $\mathcal{H}(p)$ the class of functions $f = h + \overline{g}$ that are harmonic multivalent and sense-preserving in the unit disk $\mathbb{U} = \{z : |z| < 1\}$. For $f = h + \overline{g} \in \mathcal{H}(p)$ we may express the analytic functions h and g as

(1)
$$h(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k, \quad g(z) = \sum_{k=p}^{\infty} b_k z^k, \quad |b_p| < 1.$$

Also denote by $\mathcal{T}(p)$, the subclass of $\mathcal{H}(p)$ consisting of all functions $f = h + \overline{g}$ where h and g are given by

(2)
$$h(z) = z^p - \sum_{k=p+1}^{\infty} |a_k| z^k, \quad g(z) = -\sum_{k=p}^{\infty} |b_k| z^k, \quad |b_p| < 1.$$

We denote by $\mathcal{H}_{\lambda}^{n}(p,\alpha)$ the class of all functions of the form (1.1) that satisfy the condition

(3)
$$\Re\left\{\frac{(D_{\lambda}^{n+p-1}f(z))'}{pz^{p-1}}\right\} > \alpha,$$

where $0 \le \alpha < p, p \in \mathbb{N}, \lambda \ge 0, n \in \mathbb{N}_0$ and $D_{\lambda}^{n+p-1}f(z) = D_{\lambda}^{n+p-1}h(z) + \overline{D_{\lambda}^{n+p-1}g(z)}$.

When p = 1, D_{λ}^{n} denotes the operator introduced by [3]. For h and g given by (1.1) we have

$$D_{\lambda}^{n+p-1}h(z) = z^p + \sum_{k=p+1}^{\infty} [1 + \lambda(k-p)]C(n,k,p)a_k z^k,$$

$$D_{\lambda}^{n+p-1}g(z) = \sum_{k=p}^{\infty} \left[1 + \lambda(k-p)\right] C(n,k,p) b_k z^k$$

where $\lambda \geq 0$, $p \in \mathbb{N}$, n > -p and $C(n, k, p) = \binom{k+n-1}{n+p-1}$.

Note that:

 $\mathcal{H}_0^0(1,0) \equiv S_{\mathcal{H}}^*$ studied by Silverman [1],

 $\mathcal{H}_{\lambda}^{0}(1,0) \equiv H(\lambda)$ studied by Yalçin and Öztürk [7],

 $\mathcal{H}_0^0(1,\alpha) \equiv N_H(\alpha)$ studied by Ahuja and Jahangiri [5],

 $\mathcal{H}_{\lambda}^{n}(1,0) \equiv \mathcal{H}_{\lambda}^{n}$ studied by the authors in [4].

Also we note that for the analytic part the class $\mathcal{H}_0^n(p,\alpha)$ was introduced and studied by Goel and Sohi [6].

We further denote by $\mathcal{T}_{\lambda}^{n}(p,\alpha)$ the subclass of $\mathcal{H}_{\lambda}^{n}(p,\alpha)$, where

$$\mathcal{T}_{\lambda}^{n}(p,\alpha) = \mathcal{T}(p) \cap \mathcal{H}_{\lambda}^{n}(p,\alpha).$$

2 Coefficients Bounds

Theorem 2.1. Let $f = h + \overline{g}$ with h and g are given by (1.1). Let

(4)
$$\sum_{k=p}^{\infty} k [1 + \lambda(k-p)] C(n,k,p) [|a_k| + |b_k|] \le p(2-\alpha)$$

where $a_p = p$, $\lambda \geq 0$ and $0 \leq \alpha < p$. Then f is harmonic multivalent sense preserving in \mathbb{U} and $f \in \mathcal{H}^n_{\lambda}(p,\alpha)$.

Proof. Letting $w(z) = \frac{(D_{\lambda}^{n+p-1}f(z))'}{pz^{p-1}}$. Using the fact $\Re\{w\} \ge \alpha$ if and only

if $|p - \alpha + w(z)| \ge |p + \alpha - w(z)|$, it suffices to show that

(5)
$$\left| p - \alpha + \frac{(D_{\lambda}^{n+p-1}f(z))'}{pz^{p-1}} \right| - \left| p + \alpha - \frac{(D_{\lambda}^{n+p-1}f(z))'}{pz^{p-1}} \right| \ge 0.$$

Substituting for h and g in (2.2) yields

$$\left| p - \alpha + \frac{(D_{\lambda}^{n+p-1}h(z))' + \overline{(D_{\lambda}^{n+p-1}g(z))'}}{pz^{p-1}} \right| - \frac{1}{p} + \alpha - \frac{(D_{\lambda}^{n+p-1}h(z))' + \overline{(D_{\lambda}^{n+p-1}g(z))'}}{pz^{p-1}} \right| =$$

$$= \left| p + 1 - \alpha + \sum_{k=p+1}^{\infty} \frac{k}{p} [1 + \lambda(k-p)] C(n,k,p) a_k z^{k-p} + \sum_{k=p}^{\infty} \frac{k}{p} [1 + \lambda(k-p)] C(n,k,p) b_k z^{k-p} \right| -$$

$$- \left| p - 1 + \alpha - \sum_{k=p+1}^{\infty} \frac{k}{p} [1 + \lambda(k-p)] C(n,k,p) a_k z^{k-p} - \sum_{k=p}^{\infty} \frac{k}{p} [1 + \lambda(k-p)] C(n,k,p) b_k z^{k-p} \right| \ge$$

$$\ge 2 \left\{ (1 - \alpha) - \left[\sum_{k=p+1}^{\infty} \frac{k}{p} [1 + \lambda(k-p)] C(n,k,p) |a_k| |z^{k-p}| + \sum_{k=p}^{\infty} \frac{k}{p} [1 + \lambda(k-p)] C(n,k,p) |b_k| |z^{k-p}| \right] \right\} >$$

$$> 2 \left\{ p(1 - \alpha) - \left[\sum_{k=p+1}^{\infty} k [1 + \lambda(k-p)] C(n,k,p) |b_k| |z^{k-p}| \right] \right\} > 0.$$

The Harmonic mappings

$$f(z) = z^p + \sum_{k=p+1}^{\infty} \frac{x_k}{k[1 + \lambda(k-p)]C(n,k,p)} z^k + \sum_{k=p}^{\infty} \frac{\overline{y}_k}{k[1 + \lambda(k-p)]C(n,k,p)} \overline{z}^k$$

where $\sum_{k=p+1}^{\infty} |x_k| + \sum_{k=p}^{\infty} |y_k| = p(1-\alpha)$, show that the coefficient bound given by (2.1) is sharp.

The functions of the form (2.3) are in $\mathcal{H}_{\lambda}^{n}(p,\alpha)$ because

$$\sum_{k=p+1}^{\infty} k \left[1 + \lambda(k-p) \right] C(n,k,p) \left(|a_k| + |b_k| \right) =$$

$$= p + \sum_{k=2}^{\infty} |x_k| + \sum_{k=1}^{\infty} |y_k| = p(2 - \alpha).$$

The restriction placed in Theorem 2.1 on the moduli of the coefficients of $f = h + \overline{g}$ enables us to conclude for arbitrary rotation of the coefficients of f that the resulting functions would still be harmonic multivalent and $f \in H^n_{\lambda}(p,\alpha)$.

We next show that the condition (2.1) is also necessary for functions in $\mathcal{T}_{\lambda}^{n}(p,\alpha)$.

Theorem 2.2. Let $f = h + \overline{g}$ with h and g are given by (1.2). Then $f \in \mathcal{T}_{\lambda}^{n}(p,\alpha)$ if and only if

(6)
$$\sum_{k=p}^{\infty} k [1 + \lambda(k-p)] C(n,k,p) [|a_k| + |b_k|] \le p(2-\alpha)$$

where $a_p = p$, $\lambda \ge 0$ and $0 \le \alpha < p$.

Proof. The "if" part follows from Theorem 2.1 upon noting $\mathcal{T}_{\lambda}^{n}(p,\alpha) \subset \mathcal{H}_{\lambda}^{n}(p,\alpha)$. For the "only if" part, assume that $f \in \mathcal{T}_{\lambda}^{n}(p,\alpha)$. Then by (1.3) we have

$$\Re\left\{\frac{(D_{\lambda}^{n}h(z))' + \overline{(D_{\lambda}^{n}g(z))'}}{pz^{p-1}}\right\} =$$

$$= \Re\left\{1 - \sum_{k=p+1}^{\infty} \frac{k}{p} \left[1 + \lambda(k-1)\right] C(n,k) |a_{k}| z^{k-p} - \sum_{k=p}^{\infty} \frac{k}{p} \left[1 + \lambda(k-1)\right] C(n,k) |b_{k}| \overline{z}^{k-p}\right\} > \alpha.$$

If we choose z to be real and let $z \to 1^-$, we get

$$1 - \sum_{k=p+1}^{\infty} \frac{k}{p} \left[1 + \lambda(k-1) \right] C(n,k) |a_k| z^{k-p} - \sum_{k=p}^{\infty} \frac{k}{p} \left[1 + \lambda(k-1) \right] C(n,k) |b_k| \overline{z}^{k-p} \ge \alpha,$$

which is precisely the assertion (2.4) of Theorem 2.2.

3 Distortion Bounds and Extreme Points.

In this section, we shall obtain distortion bounds for functions in $\mathcal{T}_{\lambda}^{n}(p,\alpha)$ and also provide extreme points for the class $\mathcal{T}_{\lambda}^{n}(p,\alpha)$.

Theorem 3.1. If $f \in \mathcal{T}_{\lambda}^{n}(p, \alpha)$, for $\lambda \geq 0$, $p \in \mathbb{N}$, $n \in \mathbb{N}_{0}$ and |z| = r > 1, then

$$|f(z)| \le (1+b_p)r^p + \frac{p(1-\alpha)-|b_p|}{(p+1)(1+\lambda)(n+p)}r^{p+1},$$

and

$$|f(z)| \ge (1 - b_p)r^p - \frac{p(1 - \alpha) - |b_p|}{(p+1)(1+\lambda)(n+p)}r^{p+1}.$$

Proof. We only prove the second inequality. The argument for first inequality is similar and will be omitted. Let $f \in \mathcal{T}_{\lambda}^{n}(p, \alpha)$. Taking the absolute value of f, we obtain

$$|f(z)| \ge (1 - b_p)r^p - \sum_{k=p+1}^{\infty} (|a_k| + |b_k|)r^k \ge (1 - b_p)r^p - \sum_{k=p+1}^{\infty} (|a_k| + |b_k|)r^{p+1} =$$

$$- \sum_{k=p+1}^{\infty} (|a_k| + |b_k|)r^{p+1} =$$

$$= (1 - b_p)r^p - \frac{1}{(p+1)(1+\lambda)(n+p)} \cdot \cdot \cdot \cdot \sum_{k=p+1}^{\infty} (p+1)(1+\lambda)(n+p)(|a_k| + |b_k|)r^{p+1} \ge$$

$$\ge (1 - b_p)r^p - \frac{1}{(p+1)(1+\lambda)(n+p)} \cdot \cdot \cdot \cdot \sum_{k=p+1}^{\infty} k \left[1 + \lambda(k-p) \right] C(n,k,p)(|a_k| + |b_k|)r^{p+1} \ge$$

$$\ge (1 - b_p)r^p - \frac{1}{(p+1)(1+\lambda)(n+p)} \left[p(1-\alpha) - |b_p| \right] r^{p+1}.$$

The bounds given in Theorem 3.1 for the functions $f = h + \overline{g}$ of the form (1.2) also hold for functions of the form (1.1) if the coefficient condition (2.1) is satisfied. The functions

$$f(z) = z^p + |b_p|\overline{z}^p - \frac{p(1-\alpha) - |b_p|}{(p+1)(1+\lambda)(n+p)}\overline{z}^{p+1}$$

and

$$f(z) = (1 - |b_p|)z^p - \frac{p(1 - \alpha) - |b_p|}{(p+1)(1+\lambda)(n+p)}z^{p+1}$$

for $|b_p| < 1$ show that the bounds given Theorem 3.1 are sharp.

The following covering result follows from the second inequality in Theorem 3.1.

Corollary 1 If $f \in \mathcal{T}_{\lambda}^{n}(p, \alpha)$, then

$$\left\{ w : |w| < (1 - |b_p|) - \frac{p(1 - \alpha) - |b_p|}{(p+1)(1+\lambda)(n+p)} \right\} \subset f(\mathbb{U}).$$

Theorem 3.2. $f \in \mathcal{T}_{\lambda}^{n}(p, \alpha)$ if and only if f can be expressed as

(7)
$$f(z) = \sum_{k=p}^{\infty} (\gamma_k h_k + \mu_k g_k)$$

where $z \in \mathbb{U}$,

$$h_p(z) = z^p, \ h_k(z) = z^p - \frac{p(1-\alpha)}{k[1+\lambda(k-p)]C(n,k,p)} z^k, \ (k=p+1,p+2,...),$$

$$g_k(z) = z^p - \frac{p(1-\alpha)}{k[1+\lambda(k-p)]C(n,k,p)} \overline{z}^k, \ (k=p,p+1,...),$$

$$\sum_{k=p}^{\infty} (\gamma_k + \mu_k) = 1, \ \gamma_k \ge 0 \ and \ \mu_k \ge 0 \ (k=p+1,p+2,...).$$

In particular, the extreme points of $\mathcal{T}_{\lambda}^{n}(p,\alpha)$ are $\{h_{k}\}$ and $\{g_{k}\}$.

Proof. Note that for f we may write

$$f(z) = \sum_{k=p}^{\infty} (\gamma_k h_k + \mu_k g_k) =$$

$$= \sum_{k=p}^{\infty} (\gamma_k + \mu_k) z^p - \sum_{k=p+1}^{\infty} \frac{p(1-\alpha)}{k [1+\lambda(k-p)] C(n,k,p)} \gamma_k z^k -$$

$$-\sum_{k=p}^{\infty} \frac{p(1-\alpha)}{k[1+\lambda(k-p)]C(n,k,p)} \mu_k \overline{z}^k =$$

$$= z^p - \sum_{k=p+1}^{\infty} \frac{p(1-\alpha)}{k[1+\lambda(k-p)]C(n,k,p)} \gamma_k z^k -$$

$$-\sum_{k=p}^{\infty} \frac{p(1-\alpha)}{k[1+\lambda(k-p)]C(n,k,p)} \mu_k \overline{z}^k$$

Then

$$\sum_{k=p+1}^{\infty} \left[k \left[1 + \lambda(k-p) \right] C(n,k,p) \right] \frac{p(1-\alpha)}{k \left[1 + \lambda(k-p) \right] C(n,k,p)} \gamma_k$$

$$- \sum_{k=p}^{\infty} \left[k \left[1 + \lambda(k-p) \right] C(n,k,p) \right] \frac{p(1-\alpha)}{k \left[1 + \lambda(k-p) \right] C(n,k,p)} \mu_k$$

$$= p(1-\alpha) \left(\sum_{k=p}^{\infty} (\gamma_k + \mu_k) - \gamma_p \right) = p(1-\alpha)(1-\gamma_p) \le p(1-\alpha)$$

and so $f \in \mathcal{T}_{\lambda}^{n}(p, \alpha)$.

Conversely, suppose that $f \in \mathcal{T}_{\lambda}^{n}(p,\alpha)$. Setting

$$\gamma_k = \frac{k[1 + \lambda(k-p)]C(n,k,p)}{p(1-\alpha)} |a_k|(k=p+1,p+2,...),$$

$$\mu_k = \frac{k[1 + \lambda(k-p)]C(n,k,p)}{p(1-\alpha)} |b_k|(k=p,p+1,p+2,...),$$

we obtain

$$f(z) = \sum_{k=p}^{\infty} (\gamma_k h_k + \mu_k g_k)$$
 as required.

Acknowledgement: The work presented here was supported by SAGA(Scientific Advancement Grant Allocation) STGL-012-2006, Academy of Sciences, Malaysia.

References

- [1] H. Silverman, Harmonic univalent functions with negative coefficients, *Proc. Amer. Math. Soc.* **51**, (1998), 283-289.
- [2] J. Clunie and T. Shell-Small, Harmonic univalent functions, Ann. Acad. Aci. Fenn. Ser. A I Math. 9, (1984), 3-25.
- [3] K. Al Shaqsi and M. Darus, On univalent functions with respect to k-symmetric points defined by a generalized Ruscheweyh derivatives operator. (Submitted)
- [4] M. Darus and K.Al Shaqsi, On harmonic univalent functions defined by a generalized Ruscheweyh derivatives operator, *Lobachevskii Journal of Mathematics* 22, (2006), 19-26.
- [5] O. Ahuja and J. Jahangiri, Noshiro-type harmonic univalent functions, *Sci. Math. Japon.* **65**(2), (2002), 293-299.
- [6] R. Goel and N.Sohi, New criteria for p-valence, Indian. J. Pure appl. Math. 7, (2004), 55-61.
- [7] S. Yalçin and M. Öztürk, A new subclass of complex harmonic functions, *Math. Ineq. Appl.* 7, (2004), 55-61.

School of Mathematical Sciences

Faculty of Science and Technology

Universiti Kebangsaan Malaysia

Bangi 43600 Selangor D. Ehsan, Malaysia

E-mail address: ommath@hotmail.com

E-mail address: maslina@pkrisc.cc.ukm.my