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On a generalization of an approximation
operator defined by A. Lupaş 1
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Dedicated to Professor Alexandru Lupaş on the ocassion of his 65th

birthday

Abstract

In this paper we study local approximation properties of a family

of positive linear operators introduced by Pethe and Jain. We ob-

tain estimates for the rate of convergence and derive the complete

asymptotic expansion for these operators. They generalize the Szász–

Mirakjan operators and approximate functions satisfying a certain

growth condition on the infinite interval [0,∞). On the other hand

they contain as a special case an operator defined by A. Lupaş [17,

Problem 4, p. 227] in 1995.

2000 Mathematics Subject Classification: 41A60, 41A36, 11B73.

1 Introduction

Let E be the class of all functions of exponential type on [0,∞) with the

property |f (t)| ≤ KeAt (t ≥ 0) for some finite constants K, A > 0. In 1977,
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Pethe and Jain [15] introduced a generalization Mn,α (n = 1, 2, . . .) of the

Szász–Mirakjan operators associating to each function f ∈ E the series

(Mn,αf) (x) = (1 + nα)−x/α
∞

∑

ν=0

(

α +
1

n

)−ν
x(ν,−α)

ν!
f

(ν

n

)

(x ≥ 0) ,

where x(ν,−α) = x (x + α) . . . (x + (ν − 1) α), x(0,−α) = 1 and 0 ≤ nα ≤ 1 (cf.

[13, Example 4, p. 48]). More precisely, the parameter α = αn is coupled

with n in such a way that 0 ≤ αn ≤ 1/n. We will refer to this family of

operators as Favard, Pethe and Jain operators, briefly FPJ operators.

The purpose of this paper is to study the local rate of convergence and

to the asymptotic behaviour of this family of positive linear operators.

To this end, we write the FPJ operators in a slightly different form

which is more convenient for our investigation. Putting c = (αn)−1 we

get a sequence of reals satisfying c = cn ≥ β (n = 0, 1, . . .), for a certain

constant β > 0. Then, the operators Mn,α are equivalent to the operators

Sn,c (n = 1, 2, . . .) given by

(Sn,cf) (x) =
∞

∑

ν=0

p[c]
n,ν (x) f

(ν

n

)

(x ≥ 0) ,(1)

where

p[c]
n,ν (x) =

(

c

1 + c

)ncx (

ncx + ν − 1

ν

)

(1 + c)−ν (ν = 0, 1, . . .) .(2)

Note that the operators Sn,c are well-defined, for all sufficiently large n,

since the infinite sum in (1) is convergent if n > A/ log (1 + c), provided that

|f (t)| ≤ KeAt (t ≥ 0), that is f ∈ E. In particular there holds Sn,ce0 = e0,

where er denote the monomials given by er (x) = xr (r = 0, 1, . . .). Simple

computations yield Sn,ce1 = e1 and Sn,ce2 = e2 + ((1 + c) / (nc)) e1. Thus,

the Bohman–Korovkin theorem implies

lim
n→∞

(Sn,cf) (x) = f (x) ,
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for all bounded continuous functions f ∈ E. Later on we shall show that

the approximation property is valid for all f ∈ E.

Since, for fixed n, ν and x,

lim
c→+∞

p[c]
n,ν (x) = e−nx (nx)ν

ν!
,

we obtain in the limiting case c → +∞ the classical Szász–Mirakjan oper-

ators

(Snf) (x) ≡ (Sn,∞f) (x) = e−nx

∞
∑

ν=0

(nx)ν

ν
f

(ν

n

)

(x ≥ 0)

In the special case c = 1 we obtain the operator Ln ≡ Sn,1, given by

(Lnf) (x) = 2−nx

∞
∑

ν=0

(

nx + ν − 1

ν

)

2−νf
(ν

n

)

(x ≥ 0) ,(3)

introduced independently by A. Lupaş [17, Problem 4, p. 227] in 1995.

Lupaş established the Korovkin condition guaranteeing the approximation

property. He remarked that the operators Ln have a form very similar to the

Szász–Mirakjan operators and invited to find further properties. In 1999,

O. Agratini [11] investigated the operators of Lupaş (for an announcement

of his results see [10]). He derived an asymptotic formula and some quan-

titative estimates for the rate of convergence. Moreover, he defined the

Kantorovich type version and a Durrmeyer variant of the operators Ln.

In this paper we give estimates for the rate of convergence. Furthermore,

we derive the complete asymptotic expansion for the sequence of operators

Sn,c in the form

(Sn,cf) (x) ∼ f(x) +
∞

∑

k=1

ak(f, c; x) n−k (n → ∞),(4)

provided that f admits derivatives of sufficiently high order at x > 0. For-

mula (4) means that, for all q = 1, 2, . . ., there holds

(Sn,cf) (x) = f(x) +

q
∑

k=1

ak(f, c; x) n−k + o(n−q) (n → ∞).



24 Ulrich Abel and Mircea Ivan

The coefficients ak(f, c; x), which are dependent on the sequence c, will be

given in an explicit form. It turns out that Stirling numbers of first and

second kind play an important role. As a special case we obtain the complete

asymptotic expansion for the sequence of Szász–Mirakjan operators Sn.

We remark that in [1, 3, 5, 6] the first author gave analogous results for

the Meyer–König and Zeller operators, the Bernstein–Kantorovich opera-

tors, the Bernstein–Durrmeyer operators, and the operators of K. Balázs

and Szabados, respectively. See also [9]. Asymptotic expansions of multi-

variate operators can be found in [4, 8].

2 Rate of convergence

We obtain the following estimate of the rate of convergence when the Lupaş

operators are applied to bounded function f ∈ E. All results are conse-

quences of general results (see, e.g., [12, p. 268, Theorem 5.1.2]).

Theorem 2.1 Let f ∈ E be bounded. Then, for all x ∈ [0,∞), n ∈ N, and

δ > 0, there holds

|(Sn,cf) (x) − f (x)| ≤

(

1 + δ−1

√

1 + c

cn
x

)

ω (f ; δ) .

Moreover, if f is differentiable on [0,∞) with f ′ bounded on [0,∞), we also

have

|Sn,c(f ; x) − f (x)| ≤

√

1 + c

cn
x

(

1 + δ−1

√

1 + c

cn
x

)

ω (f ′; δ) .

Theorem 2.1 applied to δ =
√

(1 + c)x/ (cn) implies

Corollary 2.1 Let f ∈ E be bounded. Then, for all x ∈ [0,∞), and n ∈ N,

there holds

|(Sn,cf) (x) − f (x)| ≤ 2ω

(

f ;

√

1 + c

cn
x

)

.



On a generalization of an approximation operator defined by A. Lupaş 25

Moreover, if f is differentiable on [0,∞) with f ′ bounded on [0,∞), we also

have

|(Sn,cf) (x) − f (x)| ≤ 2

√

1 + c

cn
xω

(

f ′;

√

1 + c

cn
x

)

.

3 Asymptotic expansion

For q ∈ N and x ∈ (0,∞), let K[q; x] be the class of all functions f ∈ E

of polynomial growth which are q times differentiable at x. The following

theorem presents as our main result the complete asymptotic expansion for

the FPJ operators Sn,c.

Theorem 3.1 Let q ∈ N and x ∈ (0,∞). For each function f ∈ K[2q; x],

the FPJ operators possess the asymptotic expansion

(Sn,cf) (x) = f (x) +

q
∑

k=1

ak(f, c; x)n−k + o
(

n−q
)

(n → ∞)

with the coefficients

ak(f, c; x) =
2k

∑

s=k

f (s) (x)

s!
xs−k

k
∑

j=0

(−c)j−k T (s, k, j) (k = 1, 2, . . .) ,(5)

where the numbers T (s, k, j) are defined by

T (s, k, j) =
s

∑

r=k

(−1)s−r

(

s

r

)

Sr−k
r−j σr−j

r (0 ≤ j ≤ k ≤ s) .(6)

The quantities Si
j and σi

j in Eq. (6) denote the Stirling numbers of the

first resp. second kind. The Stirling numbers are defined by

xj =

j
∑

i=0

Si
jx

i, xj =

j
∑

i=0

σi
jx

i (j = 0, 1, . . .) ,(7)

where xi ≡ x(i,1) = x (x − 1) . . . (x − i + 1), x0 = 1 is the falling factorial.
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Remark 3.1 If f ∈
⋂∞

q=1 K[q; x], the FPJ operators possess the complete

asymptotic expansion

(Sn,cf) (x) = f (x) +
∞

∑

k=1

ak(f, c; x)n−k (n → ∞) ,

where the coefficients ak(f, c; x) are as defined in (5).

Remark 3.2 For the convenience of the reader, we list the explicit expres-

sions for the initial coefficients ak(f, c; x):

a1(f, c; x) =
(1 + c) xf ′′ (x)

2c

a2(f, c; x) = (1 + c) x
4 (c + 2) f (3) (x) + 3 (c + 1) xf (4) (x)

24c2

a3(f, c; x) =
1

48c3

[

2 (1 + c) x
(

c2 + 6c + 6
)

f (4) (x)

+4 (c + 2) (x (1 + c))2 f (5) (x) + ((1 + c) x)3 f (6) (x)
]

.

An immediate consequence of Theorem 3.1 is the following Voronovskaja-

type formula.

Corollary 3.1 Let x ∈ (0,∞). For each function f ∈ K[2; x], the opera-

tors Sn,c satisfy

lim
n→∞

n ((Sn,cf) (x) − f (x)) =
1 + c

2c
xf ′′ (x) .

Remark 3.3 The second central moment of the operators Sn,c is given by

(

Sn,cψ
2
x

)

(x) =
(1 + c) x

cn
,

where, for each real x, we put ψx (t) = t − x.
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In the limiting case c → +∞ we obtain the following result for the

Szász–Mirakjan operators Sn.

Corollary 3.2 [7, Corollary 3] Let q ∈ N and x ∈ (0,∞). For each

function f ∈ K[2q; x], the Szász–Mirakjan operators possess the asymptotic

expansion

(Snf) (x) = f (x) +

q
∑

k=1

bk(f ; x)n−k + o
(

n−q
)

(n → ∞)

with the coefficients

bk(f ; x) =
2k

∑

s=k

f (s) (x)

s!
xs−k

s
∑

r=k

(−1)s−r

(

s

r

)

σr−k
r (k = 1, 2, . . .) .

In the case q = 2, i.e., for f ∈ K[2; x], we have the well-known Voronovskaja-

type formula

lim
n→∞

n ((Snf) (x) − f (x)) =
1

2
xf ′′ (x) .

We give the series explicitly, for q = 3:

(Snf) (x) = f (x) +
xf ′′ (x)

2n
+

4xf (3) (x) + 3x2f (4) (x)

24n2
+

+
1

48n3

(

2xf (4) (x) + 4x2f (5) (x) + x3f (6) (x)
)

+ o
(

n−3
)

as n → ∞.

In the special case c = 1 we obtain the following result on the operators

Ln of Lupaş.

Corollary 3.3 Let q ∈ N and x ∈ (0,∞). For each function f ∈ K[2q; x],

the operators Ln of Lupaş possess the asymptotic expansion

(Lnf) (x) = f (x) +

q
∑

k=1

ck(f ; x)n−k + o
(

n−q
)

(n → ∞)
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with the coefficients

ck(f ; x) =
2k

∑

s=k

f (s) (x)

s!
xs−k

k
∑

j=0

(−1)j−k T (s, k, j) (k = 1, 2, . . .) ,

where the numbers T (s, k, j) are defined by (6). In the case q = 2, i.e., for

f ∈ K[2; x], we have the Voronovskaja-type formula

lim
n→∞

n ((Lnf) (x) − f (x)) = xf ′′ (x) .

We give the series explicitly, for q = 3:

(Snf) (x) = f (x) +
xf ′′ (x)

2n
+

2xf (3) (x) + x2f (4) (x)

2n2
+

+
1

12n3

(

13xf (4) (x) + 12x2f (5) (x) + 2x3f (6) (x)
)

+ o
(

n−3
)

as n → ∞.

4 Auxiliary results and proofs

In order to prove our main result we shall need some auxiliary results.

Throughout the paper let er denote the monomials er (t) = tr (r = 0, 1, . . .)

and, for each real x, put (as above) ψx (t) = t−x. The proof of Theorem 3.1

is based on the following lemmas.

Lemma 4.1 The moments of the Baskakov–Kantorovich operators possess

the representation

(Sn,cer) (x) =
r

∑

k=0

n−kxr−k

k
∑

j=0

Sr−k
r−j σr−j

r (−c)j−k (r = 0, 1, . . .) .

Proof. Taking advantage of the second identity of (7), we obtain

(Sn,cer) (x) = n−r

(

c

1 + c

)ncx ∞
∑

ν=0

(

ncx + ν − 1

ν

)

(1 + c)−ν
r

∑

j=0

σj
rν

j =
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= n−r

(

c

1 + c

)ncx r
∑

j=0

σj
r (ncx + j − 1)j

∞
∑

ν=0

(

ncx + j − 1

ν

)

(1 + c)−ν−j =

= n−r

r
∑

j=0

σj
r (−ncx)j (−c)−j .

Using the first identity of (7) we have

(Sn,cer) (x) =

= n−r

r
∑

j=0

σj
r (−c)−j

j
∑

k=0

Sk
j (−ncx)k =

r
∑

k=0

nk−rxk

r
∑

j=k

Sk
j σj

r (−c)k−j =

=
r

∑

k=0

n−kxr−k

k
∑

j=0

Sr−k
r−j σr−j

r (−c)j−k .

This completes the proof of Lemma 4.1.

Lemma 4.2 For s = 0, 1, . . ., the central moments of the FPJ operators

possess the representation

(Sn,cψ
s
x) (x) =

s
∑

k=⌊(s+1)/2⌋

n−kxs−k

k
∑

j=0

(−c)j−k T (s, k, j) ,

where the numbers T (s, k, j) are as defined in Eq. (6).

Proof. Application of the binomial formula yields for the central moments

(Sn,cψ
s
x) (x) =

s
∑

r=0

(

s

r

)

(−x)s−r (Sn,cer) (x) =

=
s

∑

k=0

n−kxs−k

k
∑

j=0

(−c)j−k
s

∑

r=k

(−1)s−r

(

s

r

)

Sr−k
r−j σr−j

r =

=
s

∑

k=0

n−kxs−k

k
∑

j=0

(−c)j−k T (s, k, j) .
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It remains to prove that (Sn,cψ
s
x) (x) = O

(

n−⌊(s+1)/2⌋
)

. Since this is clear in

the case s = 0, let now s > 0. It is sufficient to show that, for 0 ≤ j ≤ k,

there holds Z (s, k, j) = 0 if 2k < s. Obviously Z (s, 0, 0) = 0 (s = 1, 2, . . .).

Therefore, we have to consider only the case k ≥ 1.

We first recall some known facts about Stirling numbers which will be

useful in the sequel. The Stirling numbers of first resp. second kind possess

the representation

Sr−k
r−j =

k−j
∑

µ=0

Ck−j,k−j−µ

(

r − j

k − j + µ

)

, σr−j
r =

j
∑

ν=0

Cj,j−ν

(

r

j + ν

)

(8)

(0 ≤ j ≤ k ≤ r) .

(see [16, p.151, Eq. (5), resp. p. 171, Eq. (7)]). The coefficients Ck,i resp.

Ck,i are independent on r and satisfy certain partial difference equations

([16, p. 150]). Some closed expressions for Ck,i and Ck,i can be found in [1,

p. 113]. Taking advantage of representation (8) we obtain, for 0 ≤ j ≤ k,

Sr−k
r−j σr−j

r =

k−j
∑

µ=0

j
∑

ν=0

Ck−j,k−j−µ

(k − j + µ)!

Cj,j−ν

(j + ν)!
rj+ν (r − j)k−j+µ =

=

k−j
∑

µ=0

j
∑

ν=0

rkP (k, j, µ, ν; r) ,

where

P (k, j, µ, ν; r) =
Ck−j,k−j−µ

(k − j + µ)!

Cj,j−ν

(j + ν)!
(r − j)ν (r − k)µ

is a polynomial in the variable r of degree ≤ µ + ν. Noting that the term

with r = k − 1 in Eq. (6) vanishes, we conclude that

Z (s, k, j) =

k−j
∑

µ=0

j
∑

ν=0

s
∑

r=k

(−1)s−r

(

s

r

)

rkP (k, j, µ, ν; r) ·

·sk

k−j
∑

µ=0

j
∑

ν=0

s−k
∑

r=0

(−1)s−k−r

(

s − k

r

)

P (k, j, µ, ν; r + k) .
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Since P (k, j, µ, ν; r + k) is a polynomial in the variable r of degree ≤ µ+ν ≤

k, the inner sum vanishes if k < s − k, that is, if 2k < s. This completes

the proof of Lemma 4.2.

In order to extend our main result from bounded functions to functions

of polynomial growth, we need the following localization result.

Lemma 4.3 Suppose that g ∈ E is of polynomial growth, and let x ∈ (0,∞)

be fixed. Moreover, assume that g(t) = 0 in a certain neighborhood Uδ(x) of

the point x. Then

(Sn,cg) (x) = O
(

n−m
)

for each m ∈ N.

Proof. Assume that |g (t)| ≤ Mtk for t ∈ (0,∞). Thus we obtain:

|(Sn,cg) (x)| ≤
∑

ν≥0| ν

n
−x|≥δ

p[c]
n,ν (x)

∣

∣

∣
g

(ν

n

)∣

∣

∣
≤

≤ Mδ−2m

∞
∑

ν=0

p[c]
n,ν (x)

(ν

n

)k (ν

n
− x

)2m

=

= Mδ−2m

∞
∑

ν=0

p[c]
n,ν (x)

k
∑

j=0

(

k

j

)

(−x)k−j
(ν

n
− x

)2m+j

=

= Mδ−2m

k
∑

j=0

(

k

j

)

(−x)k−j (

Sn,cψ
2m+j
x

)

(x) =

= O
(

n−m
)

(n → ∞)

since (Sn,cψ
m
x ) (x) = O(n−⌊(m+1)/2⌋) as n → ∞, by Lemma 4.2.

In order to derive our main result, the complete asymptotic expansion

of the operators Sn,c, we use a general approximation theorem for posi-

tive linear operators due to Sikkema [18, Theorem 3] (cf. [19, Theorems 1

and 2]).
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Lemma 4.4 Let I be an interval. For q ∈ N and fixed x ∈ I, let

An : L∞(I) → C(I) be a sequence of positive linear operators with the

property

An(ψs
x; x) = O(n−⌊(s+1)/2⌋) (n → ∞) (s = 0, 1, . . . , 2q + 2).(9)

Then, we have for each f ∈ L∞(I) which is 2q times differentiable at x the

asymptotic relation

An(f ; x) =

2q
∑

s=0

f (s)(x)

s!
An(ψs

x; x) + o(n−q) (n → ∞).(10)

If, in addition, f (2q+2)(x) exists, the term o(n−q) in (10) can be replaced by

O(n−(q+1)).

Proof. By Remark 3.3, assumption (9) in Lemma 4.4 is valid for the

operators Sn,c. Therefore, we can apply Lemma 4.4 and the assertion of

Theorem 3.1 follows for bounded functions f ∈ E after some calculations

by Lemma 4.2. By the localization theorem (Lemma 4.3), the asymptotic

expansion holds even for functions of polynomial growth.
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