Bounds for the Čebyšev Functional of a Convex and a Bounded Function ${ }^{1}$

N. S. Barnett and S. S. Dragomir

Dedicated to Professor Ph.D. Alexandru Lupaş on the occasion of his 65 th birthday

Abstract

Upper and lower bounds for the Čebyšev functional of a convex and a bounded function are given. Some applications for quadrature rules and probability density functionsare also provided.

2000 Mathematics Subject Classification: Primary 26D15 Secondary 26D10
Key words and phrases: Čebyšev Functional, Convex Functions, Integral Inequalities

1 Introduction

For two Lebesgue functions $f, g:[a, b] \rightarrow \mathbb{R}$, consider the Čebyšev functional

$$
\begin{equation*}
C(f, g):=\frac{1}{b-a} \int_{a}^{b} f(t) g(t) d t-\frac{1}{b-a} \int_{a}^{b} f(t) d t \cdot \frac{1}{b-a} \int_{a}^{b} g(t) d t \tag{1}
\end{equation*}
$$

[^0]In 1971, F.V. Atkinson [1] showed that if f, g are twice differentiable and convex on $[a, b]$ and

$$
\begin{equation*}
\int_{a}^{b}\left(t-\frac{a+b}{2}\right) g(t) d t=0 \tag{2}
\end{equation*}
$$

then $C(f, g)$ is nonnegative.
This result is, in fact, implied by that of A. Lupaş [3] who proved that for any two convex functions $f, g:[a, b] \rightarrow \mathbb{R}$ the lower bound for the Čebyšev functional is:

$$
\begin{equation*}
C(f, g) \geq \frac{12}{(b-a)^{3}} \int_{a}^{b}\left(t-\frac{a+b}{2}\right) f(t) d t \cdot \int_{a}^{b}\left(t-\frac{a+b}{2}\right) g(t) d t \tag{3}
\end{equation*}
$$

with true equality holding when at least one of f or g is a linear function on $[a, b]$.

As pointed out in [4, p. 262], if the functions f, g are convex and one is symmetric, then $C(f, g) \geq 0$.

For other results for convex integrands, see [4, p. 256] and [4, p. 262] where further references are given.

In this note we provide some bounds for the Čebyšev functional in the case of a convex function g and a bounded function f. Some applications are given as well.

2 The Results

For an integrable function $f:[a, b] \rightarrow \mathbb{R}$, define the $(\gamma-2)$-moment by

$$
M_{2, \gamma}(f):=\int_{a}^{b}(t-\gamma)^{2} f(t) d t
$$

For a convex function $g:[a, b] \rightarrow \mathbb{R}$ for which the derivatives $g_{-}^{\prime}(b)$ and $g_{+}^{\prime}(a)$ are finite, define

$$
\Gamma(f, g):=\frac{g_{-}^{\prime}(b) M_{2, b}(f)-g_{+}^{\prime}(a) M_{2, a}(f)}{2(b-a)^{2}}
$$

where f is integrable on $[a, b]$.
The following result holds:

Theorem 2.1. If $f:[a, b] \rightarrow \mathbb{R}$ is a Lebesgue measurable function such that there exist constants $m, M \in \mathbb{R}$ with

$$
\begin{equation*}
m \leq f(t) \leq M \quad \text { for a.e. } \quad t \in[a, b] \tag{4}
\end{equation*}
$$

and $g:[a, b] \rightarrow \mathbb{R}$ is a convex function on $[a, b]$ with the lateral derivatives $g_{+}^{\prime}(a)$ and $g_{-}^{\prime}(b)$ finite, then,

$$
\begin{gather*}
\frac{1}{6} m(b-a)\left[g_{-}^{\prime}(b)-g_{+}^{\prime}(a)\right]-\Gamma(f, g) \leq \tag{5}\\
\leq C(f, g) \leq \frac{1}{6} M(b-a)\left[g_{-}^{\prime}(b)-g_{+}^{\prime}(a)\right]-\Gamma(f, g) .
\end{gather*}
$$

Proof. We use Sonin's identity [4, p. 246]:

$$
\begin{equation*}
C(f, g)=\frac{1}{b-a} \int_{a}^{b}(f(t)-\gamma)\left(g(t)-\frac{1}{b-a} \int_{a}^{b} g(s) d s\right) d t \tag{6}
\end{equation*}
$$

for any $\gamma \in \mathbb{R}$, and the following inequality for convex functions obtained by S.S. Dragomir in [2]:
(7) $\frac{1}{b-a} \int_{a}^{b} g(s) d s-g(t) \leq \frac{1}{2(b-a)}\left[(b-t)^{2} g_{-}^{\prime}(b)-(t-a)^{2} g_{+}^{\prime}(a)\right]$
for any $t \in[a, b]$. The constant $\frac{1}{2}$ is sharp.
By Sonin's identity for $\gamma=M$, we have,

$$
\begin{equation*}
C(f, g)=\frac{1}{b-a} \int_{a}^{b}(M-f(t))\left(\frac{1}{b-a} \int_{a}^{b} g(s) d s-g(t)\right) d t \tag{8}
\end{equation*}
$$

From (7) we get,

$$
\begin{equation*}
\left(\frac{1}{b-a} \int_{a}^{b} g(s) d s-g(t)\right)(M-f(t)) \leq \tag{9}
\end{equation*}
$$

$$
\leq \frac{1}{2(b-a)}\left[g_{-}^{\prime}(b)(b-t)^{2}(M-f(t))-g_{+}^{\prime}(a)(t-a)^{2}(M-f(t))\right]
$$

for a.e. $t \in[a, b]$.
Integrating (9) over t on $[a, b]$ and using the representation (8), we get

$$
\begin{gather*}
C(f, g) \leq \frac{1}{2(b-a)^{2}}\left[M \int_{a}^{b}\left[g_{-}^{\prime}(b)(b-t)^{2}-g_{+}^{\prime}(a)(t-a)^{2}\right] d t-\right. \tag{10}\\
\left.-g_{-}^{\prime}(b) \int_{a}^{b}(b-t)^{2} f(t) d t+g_{+}^{\prime}(a) \int_{a}^{b}(t-a)^{2} f(t) d t\right]
\end{gather*}
$$

Since $\int_{a}^{b}\left[g_{-}^{\prime}(b)(b-t)^{2}-g_{+}^{\prime}(a)(t-a)^{2}\right] d t=\frac{(b-a)^{3}}{3}\left[g_{-}^{\prime}(b)-g_{+}^{\prime}(a)\right]$
then (10) provides the second part of (5).
Again, by Sonin's identity,

$$
C(f, g)=\frac{1}{b-a} \int_{a}^{b}(m-f(t))\left(\frac{1}{b-a} \int_{a}^{b} g(s) d s-g(t)\right) d t
$$

Utilising (7) and the fact that $m-f(t) \leq 0$ for a.e. $t \in[a, b]$, we obtain,

$$
\begin{gathered}
C(f, g) \geq \\
\geq \frac{1}{2(b-a)^{2}} \int_{a}^{b}\left[(b-t)^{2} g_{-}^{\prime}(b)(m-f(t))-(t-a)^{2} g_{+}^{\prime}(a)(m-f(t))\right] d t= \\
=\frac{1}{2(b-a)^{2}}\left[m \int_{a}^{b}\left[(b-t)^{2} g_{-}^{\prime}(b)-(t-a)^{2} g_{+}^{\prime}(a)\right] d t-2(b-a) \Gamma(f, g)\right]
\end{gathered}
$$

giving the first part of (5).
The following particular result holds.
Corollary 2.1. Let $f:[a, b] \rightarrow \mathbb{R}$ be an essentially bounded function on $[a, b]$, i.e., $f \in L_{\infty}[a, b]$ and $\|f\|_{\infty}:=\operatorname{ess}_{\sup }^{t \in[a, b]}|f(t)|$, its norm. If $g:[a, b] \rightarrow \mathbb{R}$ is a convex function on $[a, b]$ with the lateral derivatives $g_{+}^{\prime}(a)$ and $g_{-}^{\prime}(b)$ finite, then we have the inequality:

$$
\begin{equation*}
|C(f, g)+\Gamma(f, g)| \leq \frac{1}{6}\|f\|_{\infty}(b-a)\left[g_{-}^{\prime}(b)-g_{+}^{\prime}(a)\right] . \tag{11}
\end{equation*}
$$

3 Applications for the Trapezoid Rule

The following result is a perturbed version of the trapezoid rule.

Proposition 3.1. Let $h:[a, b] \rightarrow \mathbb{R}$ be a differentiable function with the property that the derivative $h^{\prime}:(a, b) \rightarrow \mathbb{R}$ is convex on (a, b). If $h_{+}^{\prime \prime}(a)$, $h_{-}^{\prime \prime}(b)$ are finite, then,

$$
\begin{align*}
\left\lvert\, \frac{h(a)+h(b)}{2}\right. & \left.-\frac{1}{b-a} \int_{a}^{b} h(t) d t-\frac{(b-a)^{2}}{12} \cdot \frac{h_{+}^{\prime \prime}(a)+h_{-}^{\prime \prime}(b)}{2} \right\rvert\, \leq \tag{12}\\
& \leq \frac{1}{12}(b-a)^{2} \cdot\left[h_{-}^{\prime \prime}(b)-h_{+}^{\prime \prime}(a)\right]
\end{align*}
$$

Proof. Consider the functions $f, g:[a, b] \rightarrow \mathbb{R}$ defined by $f(t)=t-\frac{a+b}{2}, g(t)=h^{\prime}(t)$.For these functions, a simple calculation shows that, $\Gamma(f, g)=-\frac{(b-a)^{2}}{12} \cdot \frac{h_{+}^{\prime \prime}(a)+h_{-}^{\prime \prime}(b)}{2}$, since,

$$
\int_{a}^{b}(t-b)^{2}\left(t-\frac{a+b}{2}\right) d t=-\frac{(b-a)^{4}}{12}
$$

and $\int_{a}^{b}(t-a)^{2}\left(t-\frac{a+b}{2}\right) d t=\frac{(b-a)^{4}}{12}$.
Clearly, also, $\|f\|_{\infty}=\frac{1}{2}(b-a)$. Utilising the elementary identity,

$$
\frac{1}{b-a} \int_{a}^{b}\left(t-\frac{a+b}{2}\right) h^{\prime}(t) d t=\frac{h(a)+h(b)}{2}-\frac{1}{b-a} \int_{a}^{b} h(t) d t
$$

and the fact that, for f, g as defined previously,

$$
C(f, g)=\frac{1}{b-a} \int_{a}^{b}\left(t-\frac{a+b}{2}\right) h^{\prime}(t) d t
$$

that a direct application of Corollary 2.1 reveals the desired inequality (12).

Remark 3.1. Similar results may be stated if one considers quadrature rules for which the remainder $R(f)$ can be expressed in Peano kernel form, i.e., $R(f)=\int_{a}^{b} K(t) f^{(n)}(t) d t$, where $K(t)$ is a kernel for which the supremum norm can be easily computed and the $n-t h$ derivative of the function, f, is assumed to be convex on (a, b). The exploration of these bounds is left to the interested reader.

4 Applications for Probability Density Functions

Let $f:[a, b] \rightarrow[0, \infty)$ be a density function, this means that f is integrable on $[a, b]$ and $\int_{a}^{b} f(t) d t=1$ and let $F(x):=\int_{a}^{x} f(t) d t, \quad x \in[a, b]$ be its distribution function. We also denote the expectation of f by $E(f)$, where $E(f):=\int_{a}^{b} t f(t) d t$, provided the integral exists and is finite, and the mean deviation $M_{D}(f)$, by, $M_{D}(f):=\int_{a}^{b}|t-E(f)| f(t) d t$.

Theorem 4.1. Let $f:[a, b] \rightarrow[0, \infty)$ be a density function with the property that there exists $m, M \geq 0$ such that $m \leq f(t) \leq M \quad$ for a.e. $t \in[a, b]$ then,

$$
\begin{align*}
\frac{1}{3} m(b-a)^{2} \leq M_{D}(f) & +\frac{1}{b-a} M_{2, \frac{a+b}{2}}(f)-\frac{\left(E(f)-\frac{a+b}{2}\right)^{2}}{b-a} \leq \tag{13}\\
& \leq \frac{1}{3} M(b-a)^{2}
\end{align*}
$$

Proof. We apply Theorem 2.1 for $g:[a, b] \rightarrow \mathbb{R}, g(t)=|t-E(f)|$. Since $g_{-}^{\prime}(b)=1, \quad g_{+}^{\prime}(a)=-1$, then,

$$
\Gamma(f, g)=\frac{1}{(b-a)^{2}} \int_{a}^{b}\left[\frac{(t-a)^{2}+(t-b)^{2}}{2}\right] f(t) d t=
$$

$$
\begin{gathered}
=\frac{1}{(b-a)^{2}} \int_{a}^{b}\left[\left(t-\frac{a+b}{2}\right)^{2}+\frac{1}{4}(b-a)^{2}\right] f(t) d t= \\
=\frac{1}{(b-a)^{2}} M_{2, \frac{a+b}{2}}(f)+\frac{1}{4}
\end{gathered}
$$

On the other hand,

$$
\begin{gathered}
C(f, g)= \\
=\frac{1}{b-a} \int_{a}^{b}|t-E(f)| f(t) d t-\frac{1}{b-a} \int_{a}^{b}|t-E(f)| d t \cdot \frac{1}{b-a} \int_{a}^{b} f(t) d t= \\
=\frac{1}{b-a} M_{D}(f)-\frac{1}{(b-a)^{2}}\left[\frac{(b-E(f))^{2}+(E(f)-a)^{2}}{2}\right]= \\
=\frac{1}{b-a} M_{D}(f)-\frac{1}{(b-a)^{2}}\left[\left(E(f)-\frac{a+b}{2}\right)^{2}+\frac{1}{4}(b-a)^{2}\right]= \\
=\frac{1}{b-a} M_{D}(f)-\frac{\left(E(f)-\frac{a+b}{2}\right)^{2}}{(b-a)^{2}}-\frac{1}{4} .
\end{gathered}
$$

Making use of the inequality (5) we deduce the desired result (13).
If one is interested in providing bounds for the absolute moment around the midpoint $\frac{a+b}{2}, M_{\frac{a+b}{2}}(f):=\int_{a}^{b}\left|t-\frac{a+b}{2}\right| f(t) d t$, then on applying Theorem 2.1 for $g(t)=\left|t-\frac{a+b}{2}\right|$, we have the following.

Theorem 4.2. Let $f:[a, b] \rightarrow[0, \infty)$ be as in Theorem 4.1, then

$$
\begin{equation*}
\frac{1}{3} m(b-a)^{2} \leq M_{\frac{a+b}{2}}(f)+\frac{1}{b-a} M_{2, \frac{a+b}{2}}(f) \leq \frac{1}{3} M(b-a)^{2} . \tag{14}
\end{equation*}
$$

Remark 4.1. Similar results may be stated if one considers higher moments

$$
M_{p, \gamma}(f):=\int_{a}^{b}|t-\gamma|^{p} f(t) d t, \quad p \geq 1
$$

for which $g(t)=|t-\gamma|^{p}$ in Theorem 2.1 will procure the corresponding bounds in terms of m and M with the property that $0<m \leq f(t) \leq M$ for a.e. $t \in[a, b]$. The details are omitted.

References

[1] F.V. Atkinson, An inequality, Univ. Beograd Publ. Elektr. Fak. Ser. Mat. Fiz., No. 357-380 (1971), 5-6.
[2] S.S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure \& Appl. Math., 3(2) (2002), Art. 31
[3] A. Lupaş, An integral inequality for convex functions, Univ. Beograd Publ. Elektr. Fak. Ser. Mat. Fiz., No. 381-409 (1972), 17-19.
[4] D.S. Mitrinović, J.E. Pečarić and A.M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1992.

School of Computer Science and Mathematics, Victoria University, PO Box 14428, Melbourne 8001, Victoria, Australia. E-mail address: Neil.Barnett@vu.edu.au

School of Computer Science and Mathematics, Victoria University, PO Box 14428, Melbourne 8001, Victoria, Australia.
E-mail: Sever.Dragomir@vu.edu.au
http://rgmia.vu.edu.au/dragomir/

[^0]: ${ }^{1}$ Received 18 December, 2006
 Accepted for publication (in revised form) 9 January, 2007

