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Abstract

Upper and lower bounds for the Cebysev functional of a convex
and a bounded function are given. Some applications for quadrature

rules and probability density functionsare also provided.
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1 Introduction

For two Lebesgue functions f, g : [a,b] — R, consider the Cebysev functional
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In 1971, F.V. Atkinson [1] showed that if f,g are twice differentiable

and convex on [a, b] and

@) /j(t-a;b)gamt:o,

then C (f, g) is nonnegative.

This result is, in fact, implied by that of A. Lupas [3] who proved that for
any two convex functions f, g : [a,b] — R the lower bound for the Cebysev

functional is:

@ etz s [ (=) rwa [ (-2 a0

with true equality holding when at least one of f or g is a linear function

on [a,b].

As pointed out in [4, p. 262], if the functions f, g are convex and one is
symmetric, then C (f,g) > 0.

For other results for convex integrands, see [4, p. 256] and [4, p. 262]
where further references are given.

In this note we provide some bounds for the Cebysev functional in the
case of a convex function g and a bounded function f. Some applications

are given as well.

2 The Results

For an integrable function f : [a,b] — R, define the (y — 2) —moment by

My, (f) = / (t— ) f (¢) dr.

For a convex function ¢ : [a,b] — R for which the derivatives ¢’ (b) and

¢, (a) are finite, define

Y
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where f is integrable on [a, b].

The following result holds:

Theorem 2.1. If f : [a,b] — R is a Lebesgue measurable function such
that there exist constants m, M € R with

(4) m< f(t)<M forae tE€lab],

and g : [a,b] — R is a convex function on [a,b] with the lateral derivatives
¢, (a) and g’ (b) finite, then,

) fm(b—a) [o () ~ g (a)] =T (f.0) <

< C(f9) < M (b—a) [o () — g, (@)] ~T(f.9).

Proof. We use Sonin’s identity [4, p. 246]:

1 I
© o= [ t0-n(s0- ;2 [aas)
for any v € R, and the following inequality for convex functions obtained
by S.S. Dragomir in [2]:

b
(7) ﬁ/ g(s)ds — g (t) < 2(b1_a) (b=t g (b) = (t —a)* g, (a)]

for any t € [a,b]. The constant % is sharp.
By Sonin’s identity for v = M, we have,

1 b

® =i [0r-10) (2 [aas-a0)

From (7) we get,

) (725 [ swas—s@) r- s <
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=3 (bl_ 2) [g- (b) (b—t)° (M — £ () — ¢\ (a) (t — a)* (M — f (1))]

for a.e. t € [a,b].

Integrating (9) over ¢ on [a, b] and using the representation (8), we get

(10) € 1.0) € 5oty [M [ [0 0) 0= = 0) (1= 0] -

b b
_q (b)/ (b—t)? f(t)dt+g, (a)/ (t—a)’ f(t) dt} .
b Y
Since / [ (5) (b—1)° — g, (a) (t — )% dt = 3“)
then (10) provides the second part of (5).
Again, by Sonin’s identity,

ctr =y [(n-so) (7 [o6ras—gw)

Utilising (7) and the fact that m — f (¢t) < 0 for a.e. t € [a,b], we obtain,

C(f.g9)>

v

1 b 9 )
m/ [(b— )% (b) (m — £ (1)) — (¢ — @) g (a) (m — £ (1))] dt =

1 b
=— [m/ [(b—t)2g/, (b) — (t—a)Qgﬁr(a)] dt —20b—a)T (f,9)],
2(b—a) a
giving the first part of (5).
The following particular result holds.

Corollary 2.1. Let f : [a,b] — R be an essentially bounded function on
[a,b], i.e., f € Loola,b] and | f|l, = esssuppy |f (t)], its norm. If
g : [a,b] — R is a conver function on [a,b] with the lateral derivatives

¢, (a) and g’ (b) finite, then we have the inequality:

(1) 100 +T () < g Il b= a) [o ()~ o (@)].
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3 Applications for the Trapezoid Rule
The following result is a perturbed version of the trapezoid rule.
Proposition 3.1. Let h : [a,b] — R be a differentiable function with the

property that the derivative b’ : (a,b) — R is convex on (a,b). If b} (a),
h" (b) are finite, then,

h(a)+h() 1 [ (b—a)® N(a)+n" (b)
12 — h — .
(12) 2 b—a / (t)dt 12 2 =
1 2 " "
< o5 (b—a) - [ (0) ~ . (a)].
Proof. Consider the functions f,g : [a,b] — R defined by
b
f@) =t-— ot ,g(t) = Rh'(t) .For these functions, a simple calculation

(b—a)® P (a)+h"(b)
12 2

, since,

shows that, I'(f,g) = —

and /ab(t—a)2 (t— a;b) dt = (b12a>4.

Clearly, also, || ]|, = = (b — a). Utilising the elementary identity,

and the fact that, for f, g as defined previously,

C(f,g)zL b(t— ; >h’(t)dt,

b—a /,

that a direct application of Corollary 2.1 reveals the desired inequality (12) .
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Remark 3.1. Similar results may be stated if one considers quadrature
rules for which the remamder R (f) can be expressed in Peano kernel form,
i.e., = f K (t (t)dt, where K (t) is a kernel for which the
supremum norm can be easily computed and the n — th derivative of the
function, f, is assumed to be convex on (a,b). The exploration of these

bounds s left to the interested reader.

4 Applications for Probability Density

Functions

Let f: [a,b] — [0 o0) be a density function, this means that f is integrable

xT

on [a,b] and/f )dt =1 and let F' (z) := /f()dt z € [a,b] be its
distribution functzon We also denote the expectation of f by F (f), where

E(f) = / tf (t)dt, provided the integral exists and is finite, and the mean

b
deviation Mp (f), by, Mp (f) ::/ It — E(f)| f()dt.

Theorem 4.1. Let [ : |a,b] — [0,00) be a density function with the prop-
erty that there exists m, M > 0 such that m< f(t) < M for a.e. t € [a,b]
then,

(13) %m(b_ a)® < Mp (f) + b i aMQvaT% (f) = (];)— aa2 )
< %M (b—a)®.

Proof. We apply Theorem 2.1 for g : [a,b] = R, g(t) = |t — E(f)|. Since
g (b) =1, g, (a) = —1, then,

! b1t —a)+ (t—b)° B
r(f,g)—(b_a)z/a [ 5 ]f(t)dt_
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g A [(t_a;byﬁ(b%f] o=

1 1
= WMQ’%H’ (f) + 1

On the other hand,

b
/|t— 0 dt——/ = B (f)]dt- La (1) di =

_ L -EW)+EU -]

1 1 a+b\> 1 o

Ib_aMD(f)—m[(E(f)— 5 ) +;l(b—a)]—
1 C(BEH-h 1

Making use of the inequality (5) we deduce the desired result (13).

If one is interested in providing bounds for the absolute moment around

b ’ b
the midpoint %,M%b (f) = / t— ot

‘ f(t)dt, then on applying
a-+b

Theorem 2.1 for g (t) = ‘t — ‘ , we have the following.

Theorem 4.2. Let f: [a,b] — [0,00) be as in Theorem 4.1, then

(14)  m(b—a) < Mug () +

1
2 My oo (f) < M (b a)?.

b—a

Remark 4.1. Similar results may be stated if one considers higher mo-

b
>=/ oAl f@)d,  p>1,

for which g (t) = |t —~|" in Theorem 2.1 will procure the corresponding
bounds in terms of m and M with the property that 0 < m < f (t) < M for
a.e. t € [a,b]. The details are omitted.

ments
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