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Abstract

In this note we consider some interesting limits and series aris-

ing from the theory of semigroups of linear operators on non-locally

convex spaces (p-Fréchet spaces, 0 < p < 1).
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1 Introduction

In the proof of the well-known Cernoff,s product formula in semigroup

theory on Banach spaces, a key result is the following inequality (see [1])
∑∞

k=0
nk

k!
|k − n|

nen
≤ 1√

n
,
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which obviously implies

lim
n→∞

∑∞
k=0

nk

k!
|k − n|

nen
= 0.

In order to obtain a Cernoff-type formula in the theory of semigroups on

p-Fréchet spaces, 0 < p < 1, in the very recent paper [2], we had to prove

that

lim
n→∞

∑∞
k=0[n

k/k!]p|k − n|
npenp

= 0,

for every 0 < p < 1.

In Section 2 we reproduce the elegant proof in [2] of this limit and we

consider an open question concerning more general type of limits suggested

by this one.

Suggested by the same paper [2], Section 3 contains simple considera-

tions on some p-series with 0 < p ≤ 1, which for p = 1 define well-known

elementary real functions of real variable.

2 Limits

We present

Theorem 2.1. ([2]) For every 0 < p < 1 it follows

lim
n→∞

∑∞
k=0[n

k/k!]p|k − n|
npenp

= 0.

Proof. Since the proof is elegant and might be useful in the proofs of more

general limits, we reproduce it below.

Let r ≥ 2 be an arbitrary even number. We will prove that the above

limit is equal to 0, for any 1
r

< p < 1, which obviously implies that the
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above limit is equal to 0 for any 0 < p < 1. Denote by s the conjugate of r,

i.e. 1
r

+ 1
s

= 1,(s = r
r−1

),

γ(n) =
+∞
∑

k=0

(

nk

k!

)

pr−1
r−1

,

and

F (n) =
∞

∑

k=0

[nk/k!]p|k − n| =

∞
∑

k=0

[nk/k!]p−
1
r (nk/k!)1/r[(n − k)r]1/r.

Applying now the Hölder,s inequality to F (n), we obtain

F (n) ≤
(

∞
∑

k=0

[nk/k!](p−
1
r
)s

)1/s (

∞
∑

k=0

nk

k!
(n − k)r

)1/r

=

(γ(n))
r−1

r

(

∞
∑

k=0

nk

k!
(n − k)r

)1/r

.

It is obvious that γ(0) = 1. Then, considering n as a real variable and

differentiating with respect to n, by simple calculations we get

γ′(n) =
pr − 1

r − 1

+∞
∑

k=1

(

nk

k!

)

pr−1
r−1

−1
knk−1

k!
≤

pr − 1

r − 1
n

pr−r
r−1 γ(n).

Integrating this differential inequality with respect to n (from 0 to n), we

easily arrive at the inequality

γ(n) ≤ en(pr−1)/(r−1)

,

for all n ∈ N.
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Therefore,

0 <
F (n)

(nen)p
≤

[γ(n)](r−1)/r
(

∑+∞
k=0

nk

k!
(n − k)r

)1/r

(nen)p
.

But it is easy to show that

+∞
∑

k=0

nk

k!
(n − k)r = enPr(n),

where Pr(n) is a polynomial in n of degree at most r, which implies

0 <
F (n)

(nen)p
≤ [γ(n)](r−1)/r[Pr(n)]1/ren/r

(nen)p
≤

e
r−1

r
n(pr−1)/(r−1) [Pr(n)]1/ren/r

(nen)p
.

But for sufficiently large n we have

r − 1

r
n

pr−1
r−1 +

n

r
− np < 0,

(actually the left-hand side tends to −∞ with n → +∞), which immediately

implies

lim
n→+∞

F (n)

(nen)p
= 0,

and the theorem is proved.

Remark 2.1. Would be interesting to find for every 0 < p < 1, a concrete

sequence (the best if it is possible) (An(p))n∈N, with limn→∞An(p) = 0, such

that to have

∑∞
k=0[n

k/k!]p|k − n|
npenp

≤ An(p), for all n ∈ N.

Note that for p = 1, by [1] we have An(1) = 1√
n
, n ∈ N.
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Remark 2.2. Theorem 2.1 suggests to define the more general expressions

En(p, q, β, γ) =

∑∞
k=0[n

k/k!]p|k − n|q
nβenγ

,

with 0 < p, q, β, γ. It is an open question to consider and calculate (if exist)

the limits limn→∞En(p, q, β, γ), for all the possible situations between p, q, β

and γ. Note that Theorem 2.1 (together with [1] for p = 1) states that

limn→∞En(p, 1, p, p) = 0, for all 0 < p ≤ 1.

3 p-Series, 0 < p < 1

Suggested by the considerations in [2], we can introduce the following

functions.

Definition 3.1. For any fixed 0 < p ≤ 1, the p-functions

expp(x) =
∞

∑

k=0

(

xk

k!

)p

,

cosp(x) =
∞

∑

k=0

(−1)k

(

x2k

(2k)!

)p

,

sinp(x) =
∞

∑

k=0

(−1)k

(

x2k+1

(2k + 1)!

)p

,

will be called p-exponential, p-cosine and p-sine function, respectively. For

p = 1, the above series define the classical exponential, cosine and sine,

respectively.

Remark 3.1. Of course that in a similar way, we can define p-logarithm,

p-hyperbolic cosine, p-hyperbolic sine, p-tangent, so on.

Remark 3.2. Applying the ratio test, it is very easy to see that expp(x),

cosp(x) and sinp(x) are well defined for any x ∈ R, 0 < p ≤ 1.
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In our opinion, would be of interest to solve the following

Open Questions. 1) Find elementary properties of the above mentioned

p-functions for 0 < p < 1. Also, would be of interest to find some known

(classical) lower and upper functions (the best if it is possible) for each p-

function. For example, in the case of expp(x), the inequality (
∑∞

k=0 ak)
p ≤

∑∞
k=1 ap

k valid for ak ≥ 0, k = 0, 1, ...,, implies that expp(x) ≥ [exp(x)]p, for

all x ≥ 0, where exp(x) denotes the classical exponential. The finding of

the (best) upper function for expp(x) seems to be more complicated.

2) It is known that the classical exp(x) can be expressed as the limit

(when n → ∞) of the sequence (1 + x
n
)n, n ∈ N.

The question is what sequence would have as limit the value expp(x),

for a fixed 0 < p < 1 ?
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