The Hlawka-Djoković Inequality and Points in Unitary Spaces ${ }^{1}$

Walther Janous

Dedicated to Professor Ph.D. Alexandru Lupaş on the occasion of his $65^{\text {th }}$ birthday

Abstract

In this note several inequalities are proved. They are all in connection with the Hlawka-Djoković inequality. At the end a problem for further research is posed.

2000 Mathematics Subject Classification: 26D10.

1 Introduction

Starting points of this note was the following problem for planar triangles recently posed by O. Furdui in [5].

Let G be the centroid of $\triangle A B C$, and let A_{1}, B_{1}, C_{1} be the mid-points of $B C, C A, A B$, respectively. If P is an arbitrary point in the plane of $\triangle A B C$, show that

$$
P A+P B+P C+3 P G \geq 2\left(P A_{1}+P B_{1}+P C_{1}\right)
$$

[^0](It should be noted that this result dates back at least to the paper [3] by M. Chiriţă and R. Constantinescu. See also the referential source [6], p. 410.)

The proof of this inequality is as follows.
Let a, b and c denote the three vectors $\overrightarrow{P A}, \overrightarrow{P B}$ and $\overrightarrow{P C}$, respectively. Then the original Hlawka inequality says

$$
|a|+|b|+|c|+|a+b+c| \geq|a+b|+|b+c|+|c+a|
$$

(See for instance [7], p. 521.)
Because of $|a+b+c|=3 P G$ and $|a+b|=2 P A_{1}$ etc, the result is immediate.

In this note we extend this result to a finite number of points in arbitrary unitary spaces \mathbf{X}.

We then go on to exemplify the general inequality for some special spaces.

At the end we pose a problem concerning the asymptotic behavior of a difference playing a role in an inequality obtained in this note.

2 General Inequality

We are now in the position to state and prove the following
Theorem. Let $A_{1}, A_{2}, \ldots, A_{n}$ be n fixed points $(n \geq 3)$ in an arbitrary unitary space \mathbf{X}. Fix the entire number k such that $2 \leq k \leq n-1$.

Let furthermore $G_{i_{1} \ldots i_{k}}$ be the "centroid" of the k points $A_{i_{1}}, \ldots A_{i_{k}}$ where $1 \leq i_{1}<\ldots<i_{k} \leq n$, that is $G_{i_{1} \ldots i_{k}}=\frac{1}{k}\left(A_{i_{1}}+\ldots+A_{i_{k}}\right)$.

Then for any point $P \in \mathbf{X}$ the following inequality is valid:

$$
k \sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} P G_{i_{1} \ldots i_{k}} \leq\binom{ n-2}{k-2}\left(\frac{n-k}{k-1} \sum_{j=1}^{n} P A_{j}+n P G\right)
$$

(Here G denotes the centroid of all n points $A_{1}, A_{2}, \ldots, A_{n}$. Furthermore, $A B$ is the distance between A and B, that is $A B=\|A-B\|$.)

In the spirit of the before-given proof this inequality is an immediate consequence of the Djoković-generalization of the original Hlawka-inequality, that is

$$
\sum_{1 \leq i_{1}<\ldots<i_{k} \leq n}\left\|x_{i_{1}}+\ldots+x_{i_{k}}\right\| \leq\binom{ n-2}{k-2}\left(\frac{n-k}{k-1} \sum_{j=1}^{n}\left\|x_{j}\right\|+\left\|\sum_{j=1}^{n} x_{j}\right\|\right)
$$

where $x_{1}, \ldots, x_{n} \in \mathbf{X}$. (See [4] and also the referential source [7], p. 522523.)

Remark. The special case $k=2$ of this inequality was originally proved by D. Adamović in [1]. It was reconsidered by M. Bencze in [2] where he also gave several applications of it.

3 Some Applications

(1). For $\mathbf{X}=\mathbb{C}$ and $P=r e^{i \varphi}, r \geq 0$, and $A_{j}=r_{j} e^{i \varphi_{j}}, r_{j} \geq 0, j=1, \ldots, n$, there holds

$$
\begin{aligned}
& \sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} \sqrt{k^{2} r^{2}+\sum_{j=1}^{n} r_{i_{j}} r_{i_{m}} \cos \left(\varphi_{i_{j}}-\varphi_{i_{m}}\right)-2 k r \sum_{j=1}^{n} r_{i_{j}} \cos \left(\varphi-\varphi_{i_{j}}\right)} \leq \\
& \leq\binom{ n-2}{k-2}\left(\frac{n-k}{k-1} \sum_{j=1}^{n} \sqrt{r^{2}+r_{j}^{2}-2 r r_{j} \cos \left(\varphi-\varphi_{j}\right)}+\right. \\
& \left.+\sqrt{n^{2} r^{2}+\sum_{j=1}^{n} r_{j}^{2}+2+2 \sum_{i \leq j<m \leq n} r_{j} r_{m} \cos \left(\varphi_{j}-\varphi_{m}\right)-2 n r \sum_{j=1}^{n} r_{j} \cos \left(\varphi-\varphi_{j}\right)}\right)
\end{aligned}
$$

- If all involved points are on the unit-circle this inequality reduces to

$$
\sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} \sqrt{k(k+1)+2 \sum_{1 \leq j<m \leq n} \cos \left(\varphi_{i_{j}}-\varphi_{i_{m}}\right)-2 k \sum_{j=1}^{k} \cos \left(\varphi-\varphi_{i_{j}}\right)} \leq
$$

$$
\begin{gathered}
\leq\binom{ n-2}{k-2}\left(2 \frac{n-k}{k-1} \sum_{j=1}^{k}\left|\sin \left(\frac{\varphi-\varphi_{j}}{2}\right)\right|+\right. \\
\left.+\sqrt{n(n+1)+2 \sum_{i \leq j<m \leq n} \cos \left(\varphi_{j}-\varphi_{m}\right)-2 n \sum_{j=1}^{n} \cos \left(\varphi-\varphi_{j}\right)}\right)
\end{gathered}
$$

- For $P=0$ and all the A_{j} 's on the unit-circle we get the inequality

$$
\begin{gathered}
\sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} \sqrt{k+2 \sum_{i \leq j<m \leq n} \cos \left(\varphi_{i_{j}}-\varphi_{i_{m}}\right)} \leq \\
\leq\binom{ n-2}{k-2}\left(\frac{n-k}{k-1} n+\sqrt{n+2 \sum_{1 \leq j<m \leq n} \cos \left(\varphi_{j}-\varphi_{m}\right)}\right)
\end{gathered}
$$

(2). Let $I=[a, b]$ be an interval on the real axis and consider the vector space $\mathbf{X}=\mathbb{C}[a, b]$ of all continuous functions on I with $\|f\|=\sqrt{\int_{a}^{b}(f(x))^{2} d x}$.

For $P=f \in \mathbb{C}[a, b]$ and $A_{j}=f_{j} \in \mathbb{C}[a, b], j=1, \ldots, n$, there holds the "master-inequality"

$$
\begin{gathered}
\sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} \sqrt{\int_{a}^{b}\left(\sum_{j=1}^{k} f_{i_{j}}(x)-k f(x)\right)^{2} d x} \leq \\
\leq\binom{ n-2}{k-2}\left(\frac{n-k}{k-1} \sum_{j=1}^{n} \sqrt{\int_{a}^{b}\left(f_{j}(x)-f(x)\right)^{2} d x}+\right. \\
+\sqrt{\left.\int_{a}^{b}\left(\sum_{j=1}^{n} f_{j}(x)-n f(x)\right)^{2} d x\right)} .
\end{gathered}
$$

This general integral inequality allows specifications in very many directions.
Of specific interest are, of course, orthogonal polynomials.
We investigate now the cases of Legendre, Laguerre and Hermite polynomials.

- $I=[-1,1]$ and Legendre polynomials P_{n}.

We let $f_{j}=P_{j-1}, j=1, \ldots, n$. Due to $\int_{-1}^{1} P_{r}(x) P_{s}(x) d x=\frac{2}{2 s+1} \delta_{r s}$, $r, s \geq 0$, there holds

$$
\begin{aligned}
& \quad \sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} \sqrt{\sum_{j=1}^{k} \frac{2}{2 i_{j}-1}+k^{2} \int_{a}^{b}(f(x))^{2} d x-2 k \int_{a}^{b}\left(\sum_{j=1}^{k} P_{i_{j}}(x)\right) f(x) d x} \leq \\
& \leq\binom{ n-2}{k-2}\left(\frac{n-k}{k-1} \sum_{j=1}^{n} \sqrt{\frac{2}{2 j-1}+\int_{a}^{b}(f(x))^{2} d x-2 \int_{a}^{b} P_{j}(x) f(x) d x}+\right. \\
& +\sqrt{\left.\sum_{j=1}^{n} \frac{2}{2 j-1}+n^{2} \int_{a}^{b}(f(x))^{2} d x-2 n \int_{a}^{b}\left(\sum_{j=1}^{n} P_{j}(x)\right) f(x) d x\right)}
\end{aligned}
$$

If we put in this inequality $f=P_{N}$, where $N \geq n$, then

$$
\begin{gathered}
\sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} \sqrt{\frac{k^{2}}{2 N+1}+\sum_{j=1}^{k} \frac{1}{2 i_{j}-1}} \leq \\
\leq\binom{ n-2}{k-2}\left(\frac{n-k}{k-1} \sum_{j=1}^{n} \sqrt{\frac{1}{2 j-1}+\frac{1}{2 N+1}}+\sqrt{\sum_{j=1}^{n} \frac{1}{2 j-1}+\frac{n^{2}}{2 N+1}}\right) .
\end{gathered}
$$

Letting $N \rightarrow \infty$ yields

$$
\begin{gathered}
\sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} \sqrt{\sum_{j=1}^{k} \frac{1}{2 i_{j}-1}} \leq \\
\leq\binom{ n-2}{k-2}\left(\frac{n-k}{k-1} \sum_{j=1}^{n} \sqrt{\frac{1}{2 j-1}}+\sqrt{\sum_{j=1}^{n} \frac{1}{2 j-1}}\right) .
\end{gathered}
$$

If we set here $k=n-1$ then it follows
(*) $\sum_{j=1}^{n} \sqrt{h_{n}-\frac{1}{2 j-1}} \leq \sum_{j=1}^{n} \sqrt{\frac{1}{2 j-1}}+\sqrt{\sum_{j=1}^{n} \frac{1}{2 j-1}}+(n-2) \sqrt{h_{n}}$
where $h_{n}=\sum_{k=1}^{n} \frac{1}{2 j-1}$.

- $I=[0, \infty)$ and Laguerre functions $\Lambda_{n}(x)=e^{\frac{x}{2}} L_{n}(x)$, where L_{n} are the Laguerre polynomials.
Letting $f_{j}=\Lambda_{j-1}, j=1, \ldots, n$, and noting $\sum_{0}^{\infty} \Lambda_{r}(x) d x=(s!)^{2} \delta_{r s}$, $r, s \geq 0$, we get for $f=\Lambda_{N}$, where $N \geq n$:

$$
\begin{gathered}
\sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} \sqrt{k^{2}(N!)^{2}+\sum_{j=1}^{k}\left(i_{j}!\right)^{2}} \leq \\
\leq\binom{ n-2}{k-2}\left(\frac{n-k}{k-1} \sum_{j=0}^{n-1} \sqrt{(N!)^{2}+(j!)^{2}}+\sqrt{n^{2}(N!)^{2}+\sum_{j=0}^{n-1}(j!)^{2}}\right)
\end{gathered}
$$

This inequality becomes for $k=n-1$
$\sum_{j=0}^{n-1} \sqrt{(n-1)^{2}+s_{n}^{(N)}-\left(\frac{j!}{N!}\right)^{2}} \leq \sum_{j=0}^{n-1} \sqrt{\left(1+\left(\frac{j!}{N!}\right)^{2}\right.}+(n-2) \sqrt{n^{2}+s_{n}^{(N)}}$
where $s_{n}^{(N)}=\sum_{j=0}^{n-1}\left(\frac{j!}{N!}\right)^{2}$.
Dividing both of these inequalities by N ! and letting $N \longrightarrow \infty$ yields the identities $\binom{n}{k}=\binom{n}{k}$ and $(n-1) n=(n-1) n$, respectively. This means that these inequalities are sharp (at least "at infinity").

- $I=(-\infty, \infty)$ and Hermite functions $\psi_{n}(x)=e^{-\frac{x^{2}}{2}} H_{n}(x)$, where H_{n} are the Hermite polynomials.
Proceeding as before we get due to $\int_{-\infty}^{\infty} \psi_{r}(x) \psi_{s}(x) d x=2^{s} s!\delta_{r s}$, $r, s \geq 0$:

$$
\sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} \sqrt{k^{2}+\sum_{j=1}^{k} \frac{2^{i_{j}} i_{j}!}{2^{N} N!}} \leq
$$

$$
\leq\binom{ n-2}{k-2}\left(\frac{n-k}{k-1} \sum_{j=0}^{n-1} \sqrt{\frac{2^{i_{j} i_{j}!}}{2^{N} N!}}+\sqrt{n^{2}+\sum_{j=0}^{n-1} \frac{2_{j}^{j_{j}}!}{2^{N} N!}}\right)
$$

From it similar conclusions as before can be drawn.
As a final example we let $I=[0, \pi]$ and $f_{j}(x)=\sin (j x), j=1, \ldots, n$.
Then $\int_{0}^{\pi} \sin (r x) \sin (s x) d x=\frac{\pi}{2} \delta_{r s}, r, s \geq 1$.
This, the master-inequality and

$$
\int_{0}^{\pi} \sin (r x) \cos (s x) d x=\left\{\begin{array}{cc}
0, & r=s \\
\frac{r\left((-1)^{r+s}-1\right)}{s^{2}-r^{2}}, & r \neq s
\end{array}\right.
$$

would enable us to deduce various inequalities for Fourier coefficients of a functions $f(x)$ having $f(x)=\frac{a_{0}}{1}+\sum_{m=1}^{\infty}\left(a_{m} \cos (m x)+b_{m} \sin (m x)\right)$ as its Fourier series. We leave this an exercise for the reader.

4 An Observation

In the light of the following recently published result many of the before proven results have natural extensions for the case $k=n-2$.

Indeed, the following inequality is valid ([8], p. 64).
Let x_{1}, \ldots, x_{n} be elements from a Hilbert space $(n \geq 3)$ and $\mu_{1} \geq$ $1, \ldots, \mu_{n} \geq 1$. Then

$$
\left(\sum_{i=1}^{n} \mu_{i}-2\right)\left\|\sum_{i=1}^{n} \mu_{i} x_{i}\right\|+\sum_{i=1}^{n} \mu_{i}\left\|x_{i}\right\| \geq \sum_{i=1}^{n} \mu_{i}\left\|x_{i}-\sum_{j=1}^{n} \mu_{j} x_{j}\right\| .
$$

5 An Open Problem

At the end of this note we raise the following question in connection with inequality $(*)$. Unlike the inequalities obtained from the Hermite and Lagrange polynomials is the one stemming from Legendre polynomials, that is inequality $\left({ }^{*}\right)$, apparently far from being asymptotically sharp.

Therefore it is natural to find out the correct asymptotic behavior of the following difference we denote in honor of Alexandru Lupaş by $A L(n)=$ $\sum_{j=1}^{n} \sqrt{1-a_{j}(n)}-\sum_{j=1}^{n} \sqrt{a_{j}(n)}$ where $a_{j}(n)=\frac{1}{h_{n}(2 j-1)}, j=1, \ldots, n$.

This is, we are left to find $f(n)$, such that $A L(n)=n-f(n)+o(f(n))$, as $n \rightarrow \infty$.

References

[1] D.D. Adamović, Généralisation d'une identité de Hlawka et de l'inégalité correspondante, Mat. Vestnik 1 (16) (1964), 39-43.
[2] M. Bencze, Despre inegalitatea lui E. Hlawka, Gaz. Matematică, (seria A) 6 (1985), 48-50.
[3] M. Chiriţă and R. Constantinescu, Asupra unei inegalităţi care caracterizează funç̧iilr convexe, Gaz. Matematică (seria B) 89 (1984), 241-242.
[4] D.Ž. Djoković, Generalizations of Hlawka's inequality, Glas. Mat.-Fiz. Astronom., Ser. II, Društvo Mat. Fiz. Hratske 18 (1963), 169-175.
[5] O. Furdui, Problem 3052, Crux math., 31 (2005), 333.
[6] D.S. Mitrinović et al., Recent Advances in Geometric Inequalities, Kluwer Acd. Publ., Dordrecht, 1989.
[7] D.S. Mitrinović et al., Classical and New Inequalities in Analysis, Kluwer Acd. Publ., Dordrecht, 1993.
[8] S. Takahasi, Y. Takahashi and S. Wada, An Extension of Hlawka's Inequality, Math. Ineq. Appl., 3 (2000), 63-67.

Ursulinengymnasium
Fürstenweg 86
A-6020 Innsbruck
Austria
E-mail address: walter.janous@tirol.com

[^0]: ${ }^{1}$ Received 15 January, 2007
 Accepted for publication (in revised form) 28 February, 2007

