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Abstract

We give estimation for the weighted L2-norm of the k-th deriva-

tive of polynomial provided |pn−1(x)| is bounded at a set of n points,

which are related in a certain way with the weight.
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1 Introduction

The following problem was raised by P.Turán (Varna,1970 ).

Let ϕ (x) ≥ 0 for −1 ≤ x ≤ 1 and consider the class Pn,ϕ of all polyno-

mials of degree n such that
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|pn(x)| ≤ ϕ (x) for −1 ≤ x ≤ 1. How large can max[−1,1]

∣

∣

∣
p

(k)
n (x)

∣

∣

∣
be if

pn is arbitrary in Pn,ϕ ?

The aim of this paper is to consider the solution in the weighted L2 norm

for the majorant

ϕ (x) = α−βx
(1−x)

√
1+x

, 0 ≤ β ≤ α.

Let as denote by

xi = cos
2iπ

2n + 1
, the zeros of Wn (x) =

sin [(2n + 1) θ/2]

sin (θ/2)
,(1)

x = cos θ, the Chebyshev polynomial of the fourth kind,

x
(k)
i the zeros of W

(k)
n (x) and

Gn−1 (x)=

√
2

2n(2n+1)

[

(2nα+β) W ′
n (x)−(2n+1) βW ′

n−1 (x)
]

(2)

Let ZW,ϕ
α,β be the class of polynomials pn−1, of degree ≤ n − 1 such that

|pn−1(xi)| ≤
α − βxi

(1 − xi)
√

1 + xi

, i = 1, 2, ..., n,(3)

where the x′
is are given by (1) and 0 ≤ β ≤ α.

Remark 1.1. From |Gn−1 (xi) | = α−βxi

(1−xi)
√

1+xi
it follows:

• Pn−1,ϕ ⊂ ZW,ϕ
α,β

• Gn−1 ∈ ZW,ϕ
α,β

• If pn−1 ∈ ZW,ϕ
α,β and i = 1, 2, ..., n,

|pn−1(xi)| ≤ |Gn−1 (xi) |(4)
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2 Main results

Theorem 2.1. If pn−1 ∈ ZW,ϕ
α,β then we have

1
∫

−1

√

1 − x

1 + x
[pn−1 (x)]2 dx ≤ 2πn [2 (α2 + β2 + αβ) (n + 1) − 3β2]

3 (2n + 1)
(5)

1
∫

−1

(1 − x)
√

1 − x2
[

p′n−1 (x)
]2

dx ≤(6)

≤ 2π (n3 − n)

15 (2n + 1)
[2(2α2 + αβ + 2β2)n + 8α2 + 4αβ − 7β2]

with equality for pn−1 = Gn−1.

Two cases are of special interest:

I. Case α = β = 1, ϕ (x) = 1√
1+x

,

Gn−1 =
√

2
2n

[

W ′
n (x) − W ′

n−1 (x)
]

=
√

2
n

T ′
n (x) =

√
2Un−1 (x),

Un−1 (x) = sin nθ/ sin θ, x = cos θ, the Chebyshev polynomial of the

second kind.

Note that Pn−1,ϕ ⊂ ZW,ϕ
1,1 ,

√
2Un−1 /∈ Pn−1,ϕ,

√
2Un−1 ∈ ZW,ϕ

1,1 .

Corollary 2.1. If pn−1 ∈ ZW,ϕ
1,1 then we have

1
∫

−1

√

1 − x

1 + x
[pn−1 (x)]2 dx ≤ 2πn(7)

1
∫

−1

(1 − x)
√

1 − x2
[

p′n−1 (x)
]2

dx ≤ 2π (n3 − n)

3

with equality for pn−1 =
√

2Un−1.
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II. Case α = 1, β = 0, ϕ (x) = 1
(1−x)

√
1+x

,

Gn−1 =
√

2
2n+1

W ′
n (x)

Note that Pn−1,ϕ ⊂ ZW,ϕ
1,0 ,

√
2

2n+1
W ′

n (x) ∈ Pn−1,ϕ,
√

2
2n+1

W ′
n (x) ∈ ZW,ϕ

1,0 .

Corollary 2.2. If pn−1 ∈ ZW,ϕ
1,0 then we have

1
∫

−1

√

1 − x

1 + x
[pn−1 (x)]2 dx ≤ 4πn (n + 1)

3 (2n + 1)
(8)

1
∫

−1

(1 − x)
√

1 − x2
[

p′n−1 (x)
]2

dx ≤ 8π (n3 − n) (n + 2)

15 (2n + 1)

with equality for pn−1 =
√

2
2n+1

W ′
n (x) .

In this second case we have a more general result:

Theorem 2.2. If pn−1 ∈ ZW,ϕ
1,0 and 0 ≤ |b| ≤ a then we have

1
∫

−1

(a+bx) (1−x)k+1/2 (1+x)k−1/2
[

p
(k)
n−1 (x)

]2

dx ≤

≤ 2π (n + k + 1)! (2ak + 2a − b)

(n − k − 1)! (2n + 1) (2k + 1) (2k + 3)

k = 1, ..., n − 2 with equality for pn−1 =
√

2
2n+1

W ′
n (x) .

Setting a = 1, b ∈ {−1, 0, 1} one obtains the following

Corollary 2.3. If pn−1 ∈ ZW,ϕ
1,0 then we have
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1
∫

−1

(1 − x)k+3/2 (1 + x)k−1/2
[

p
(k)
n−1 (x)

]2

dx(9)

≤ 2π (n + k + 1)!

(n − k − 1)! (2n + 1) (2k + 1)

1
∫

−1

(1 − x)k+1/2 (1 + x)k−1/2
[

p
(k)
n−1 (x)

]2

dx(10)

≤ 4π (n + k + 1)! (k + 1)

(n − k − 1)! (2n + 1) (2k + 1) (2k + 3)

1
∫

−1

(

1 − x2
)k+1/2

[

p
(k)
n−1 (x)

]2

dx(11)

≤ 2π (n + k + 1)!

(n − k − 1)! (2n + 1) (2k + 3)

k = 1, ..., n − 2 with equality for pn−1 =
√

2
2n+1

W ′
n (x) .

3 Auxiliary results

Here we state some lemmas which help us in proving the above theorems.

Lemma 3.1. (Duffin-Schaeffer) If q (x) = c
n
∏

i=1

(x − xi) is a polynomial of

degree n with n distinct real zeros and if p ∈ Pn such that

|p′(xi)| ≤ |q′(xi)| (i = 1, 2, ..., n) ,

then for k = 1, 2, ..., n
∣

∣p(k+1)(x)
∣

∣ ≤
∣

∣q(k+1)(x)
∣

∣ whenever q(k)(x) = 0.
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Lemma 3.2. Let pn−1 be such that |pn−1(xi)| ≤ α−βxi

(1−xi)
√

1+xi
,

i = 1, 2, ..., n, where the x′
is are given by (1).Then we have

∣

∣

∣
p′n−1(x

(1)
j )

∣

∣

∣
≤

∣

∣

∣
G′

n−1(x
(1)
j )

∣

∣

∣
, j = 1, ..., n − 1,(12)

Proof. By the Lagrange interpolation formula based on the zeros of Wn

and using W ′
n (xi) = (−1)i+1(2n+1)

(1−xi)
√

2(1+xi)
,

we can represent any algebraic polynomial pn−1 by

pn−1 (x) =
√

2
2n+1

n
∑

i=1

Wn(x)
x−xi

(−1)i+1 (1 − xi)
√

1 + xipn−1 (xi) .

From Gn−1 (xi) = (−1)i+1 α−βxi

(1−xi)
√

1+xi
we have

Gn−1 (x) =
√

2
2n+1

n
∑

i=1

Wn(x)
x−xi

[α − βxi] .

Differentiating with respect to x we obtain

p′n−1 (x) =
√

2
2n+1

n
∑

i=1

W ′

n(x)(x−xi)−Wn(x)

(x−xi)
2

× (−1)i+1 (1 − xi)
√

1 + xipn−1 (xi) .

On the roots of W ′
n (x) and using (3) we find

∣

∣

∣
p′n−1

(

x
(1)
j

)∣

∣

∣
≤

√
2

2n+1

n
∑

i=1

∣

∣

∣
Wn

(

x
(1)
j

)
∣

∣

∣

(

x
(1)
j −xi

)2 [α − βxi]

=

√
2
∣

∣

∣
Wn

(

x
(1)
j

)
∣

∣

∣

2n+1

n
∑

i=1

α−βxi
(

x
(1)
j −xi

)2 =
∣

∣

∣
G′

n−1

(

x
(1)
j

)
∣

∣

∣
.

Lemma 3.3. Let pn−1 be such that |pn−1(xi)| ≤ 1
(1−xi)

√
1+xi

,

i = 1, 2, ..., n,where the x′
is are given by (1).Then we have

∣

∣

∣
p

(k)
n−1(x

(k)
j )

∣

∣

∣
≤

√
2

2n + 1

∣

∣

∣
W (k+1)

n (x
(k)
j )

∣

∣

∣
,(13)

whenever W
(k)
n (x

(k)
j ) = 0, k = 0, 1, ..., n − 1.

Proof. For α = 1, β = 0, Gn−1 =
√

2
2n+1

W ′
n

and (12) give
∣

∣

∣
p′n−1(x

(1)
j )

∣

∣

∣
≤

√
2

2n+1

∣

∣

∣
W ′′

n (x
(1)
j )

∣

∣

∣
.
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Now the proof is concluded by applying Duffin-Schaeffer Lemma.

We need the following quadrature formulae:

Lemma 3.4. For any given n and k, 0 ≤ k ≤ n − 1, let x
(k+1)
i ,

i = 1, ..., n − k − 1, be the zeros of W
(k+1)
n . Then the quadrature formula

1
∫

−1

(

1−x2
)k

√

1 − x

1 + x
f (x) dx = Af (−1) + Bf (1) +(14)

+
n−k−1
∑

i=1

sif
(

x
(k+1)
i

)

,

A =
22k (2n + 1) Γ (k + 1/2) Γ (k + 3/2) (n − k − 1)!

(n + k + 1)
,

B =
22k+2Γ (k + 3/2) Γ (k + 5/2) (n − k − 1)!

(2n + 1) (n + k + 1)!
,

si > 0 have algebric degree of precision 2n − 2k − 1.

Proof. The quadrature formula (14) is the Bouzitat formula of the second

kind [3, formula (4.8.1)], for the zeros of W
(k+1)
n = cP

(k+ 3
2
,k+ 1

2)
n−k−1 . Setting

α = k + 1/2, β = k − 1/2, m = n − k − 1 in [3, formula (4.8.5)] we find A,

B and si > 0 (cf. [3, formula (4.8.4)]).

4 Proof of the Theorems

Because Wn (x) = (2n)!!
(2n−1)!!

P
( 1

2
,−1

2 )
n (x) we recall the formulae:

d

dx
P (α,β)

m (x) =
α + β + m + 1

2
P

(α+1,β+1)
m−1 (x) ,(15)

P (α,β)
m (1) =

Γ (m + α + 1)

Γ (α + 1) Γ (m + 1)
,
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P (α,β)
m (−1) =

(−1)m Γ (m + β + 1)

Γ (β + 1) Γ (m + 1)

Setting α = k + 1/2, β = k − 1/2, m = n − k in [3, formula (4.8.5)] on

obtains the Gauss formula for the zeros of W
(k)
n = cP

(k+ 1
2
,k− 1

2)
n−k

1
∫

−1

(

1−x2
)k

√

1−x

1+x
f (x) dx =

n−k
∑

i=1

H
(k)
i f

(

x
(k)
i

)

,(16)

with algebric degree of precision 2n − 2k − 1 and

H
(k)
i > 0 (cf.[3, formula(4.8.4)]).(17)

Proof of Theorem 2.1

For k = 0 in (16) we obtain
1
∫

−1

√

1−x
1+x

f (x) dx =
n
∑

i=1

H
(0)
i f (xi) of degree 2n−1.

According to this quadrature formula and using (4) and (17) we have
1
∫

−1

√

1−x
1+x

[pn−1 (x)]2 dx =
n
∑

i=1

H
(0)
i (pn−1 (xi))

2

≤
n
∑

i=1

H
(0)
i (Gn−1 (xi))

2 =
1
∫

−1

√

1−x
1+x

[Gn−1 (x)]2 dx.

Using the following formula ( k = 0 in (14))
1
∫

−1

√

1−x
1+x

f (x) dx = π(2n+1)
2n(n+1)

f (−1) + 3π
2n(n+1)(2n+1)

f (1)

+
n−1
∑

i=1

sif
(

x
(1)
i

)

we find
1
∫

−1

√

1−x
1+x

[Gn−1 (x)]2 =
2πn[2(α2+β2+αβ)(n+1)−3β2]

3(2n+1)
.

Setting k = 1 in (16) we get
1
∫

−1

(1−x)
√

1−x2f (x) dx =
n−1
∑

i=1

H
(1)
i f

(

x
(1)
i

)

of degree 2n−3.

According to this formula and using (12) and (17) we have
1
∫

−1

(1−x)
√

1−x2
[

p′n−1 (x)
]2

dx =
n−1
∑

i=1

H
(1)
i

(

pn−1

(

x
(1)
i

))2
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≤
n−1
∑

i=1

H
(1)
i

(

Gn−1

(

x
(1)
i

))2

=
1
∫

−1

(1−x)
√

1−x2
[

G′
n−1 (x)

]2
dx.

From (14) with k = 1 we find
1
∫

−1

(1−x)
√

1−x2
[

G′
n−1 (x)

]2
dx

=
2π(n3−n)
15(2n+1)

[2(2α2 + αβ + 2β2)n + 8α2 + 4αβ − 7β2].

Proof of Theorem 2.2

If we replace f (x) with (a + bx) f (x), 0 ≤ |b| ≤ a in (16) we get
1
∫

−1

(a + bx) (1−x2)
k
√

1−x
1+x

f (x) dx

=
n−k
∑

i=1

(

a + bx
(k)
i

)

H
(k)
i f

(

x
(k)
i

)

of degree 2n − 2k − 2

According to this formula and using (13) and (17) we have
1
∫

−1

(a + bx) (1−x2)
k
√

1−x
1+x

[

p
(k)
n−1 (x)

]2

dx

=
n−k
∑

i=1

(

a + bx
(k)
i

)

H
(k)
i

[

p
(k)
n−1

(

x
(k)
i

)]2

≤ 2
(2n+1)2

n−k
∑

i=1

(

a + bx
(k)
i

)

H
(k)
i

[

W
(k+1)
n

(

x
(k)
i

)]2

= 2
(2n+1)2

1
∫

−1

(a + bx) (1−x2)
k
√

1−x
1+x

[

W
(k+1)
n (x)

]2

dx

If we replace f (x) with (a + bx) f (x), 0 ≤ |b| ≤ a in (14) we get
1
∫

−1

(a + bx) (1−x2)
k
√

1−x
1+x

f (x) dx = A (a−b) f (−1) + B (a + b) f (1)

+
n−k−1
∑

i=1

(

a + bx
(k)
i

)

sif
(

x
(k+1)
i

)

of degree 2n − 2k − 2.

In order to complete the proof we apply this formula to

f = 2
(2n+1)2

[

W
(k+1)
n (x)

]2

.

Having in mind W
(k+1)
n

(

x
(k+1)
i

)

= 0 and the following relations deduced

from (15)

W
(k+1)
n (−1) = (−1)n−k−1(n+k+1)!

(n−k−1)!(2k+1)!!
,
(

W
(k+1)
n (1)

)2

= (2n+1)2

(2k+3)2

(

W
(k+1)
n (1)

)2

,



50 Ioan Popa

we find
1
∫

−1

(a + bx) (1−x)k+1/2 (1+x)k−1/2 2
(2n+1)2

[

W
(k+1)
n (x)

]2

dx

= 2
(2n+1)2

A (a−b)
[

W
(k+1)
n (−1)

]2

+ 2
(2n+1)2

B (a + b)
[

W
(k+1)
n (1)

]2

= 2π(n+k+1)!(2ak+2a−b)
(n−k−1)!(2n+1)(2k+1)(2k+3)

.
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