Duffin-Schaeffer type inequalities ${ }^{1}$

Ioan Popa
Dedicated to Professor Alexandru Lupaş
on the occasion of his 65 th birthday

Abstract

We give estimation for the weighted L^{2}-norm of the k-th derivative of polynomial provided $\left|p_{n-1}(x)\right|$ is bounded at a set of n points, which are related in a certain way with the weight.

2000 Mathematics Subject Classification: 41A17, 41A05, 41A55, 65D30

Key words and phrases: Bouzitat quadrature, Chebyshev polynomials, inequalities

1 Introduction

The following problem was raised by P.Turán (Varna,1970).
Let $\varphi(x) \geq 0$ for $-1 \leq x \leq 1$ and consider the class $P_{n, \varphi}$ of all polynomials of degree n such that
${ }^{1}$ Received 30 January, 2007
Accepted for publication (in revised form) 14 February, 2007
$\left|p_{n}(x)\right| \leq \varphi(x)$ for $-1 \leq x \leq 1$. How large can $\max _{[-1,1]}\left|p_{n}^{(k)}(x)\right|$ be if p_{n} is arbitrary in $P_{n, \varphi}$?

The aim of this paper is to consider the solution in the weighted L^{2} norm for the majorant
$\varphi(x)=\frac{\alpha-\beta x}{(1-x) \sqrt{1+x}}, 0 \leq \beta \leq \alpha$.
Let as denote by

$$
\begin{equation*}
x_{i}=\cos \frac{2 i \pi}{2 n+1} \text {, the zeros of } W_{n}(x)=\frac{\sin [(2 n+1) \theta / 2]}{\sin (\theta / 2)}, \tag{1}
\end{equation*}
$$

$x=\cos \theta$, the Chebyshev polynomial of the fourth kind, $x_{i}^{(k)}$ the zeros of $W_{n}^{(k)}(x)$ and

$$
\begin{equation*}
G_{n-1}(x)=\frac{\sqrt{2}}{2 n(2 n+1)}\left[(2 n \alpha+\beta) W_{n}^{\prime}(x)-(2 n+1) \beta W_{n-1}^{\prime}(x)\right] \tag{2}
\end{equation*}
$$

Let $Z_{\alpha, \beta}^{W, \varphi}$ be the class of polynomials p_{n-1}, of degree $\leq n-1$ such that

$$
\begin{equation*}
\left|p_{n-1}\left(x_{i}\right)\right| \leq \frac{\alpha-\beta x_{i}}{\left(1-x_{i}\right) \sqrt{1+x_{i}}}, i=1,2, \ldots, n \tag{3}
\end{equation*}
$$

where the x_{i}^{\prime} s are given by (1) and $0 \leq \beta \leq \alpha$.

Remark 1.1. From $\left|G_{n-1}\left(x_{i}\right)\right|=\frac{\alpha-\beta x_{i}}{\left(1-x_{i}\right) \sqrt{1+x_{i}}}$ it follows:

- $P_{n-1, \varphi} \subset Z_{\alpha, \beta}^{W, \varphi}$
- $G_{n-1} \in Z_{\alpha, \beta}^{W, \varphi}$
- If $p_{n-1} \in Z_{\alpha, \beta}^{W, \varphi}$ and $i=1,2, \ldots, n$,

$$
\begin{equation*}
\left|p_{n-1}\left(x_{i}\right)\right| \leq\left|G_{n-1}\left(x_{i}\right)\right| \tag{4}
\end{equation*}
$$

2 Main results

Theorem 2.1. If $p_{n-1} \in Z_{\alpha, \beta}^{W, \varphi}$ then we have

$$
\begin{equation*}
\int_{-1}^{1} \sqrt{\frac{1-x}{1+x}}\left[p_{n-1}(x)\right]^{2} d x \leq \frac{2 \pi n\left[2\left(\alpha^{2}+\beta^{2}+\alpha \beta\right)(n+1)-3 \beta^{2}\right]}{3(2 n+1)} \tag{5}
\end{equation*}
$$

$$
\begin{gather*}
\int_{-1}^{1}(1-x) \sqrt{1-x^{2}}\left[p_{n-1}^{\prime}(x)\right]^{2} d x \leq \tag{6}\\
\leq \frac{2 \pi\left(n^{3}-n\right)}{15(2 n+1)}\left[2\left(2 \alpha^{2}+\alpha \beta+2 \beta^{2}\right) n+8 \alpha^{2}+4 \alpha \beta-7 \beta^{2}\right]
\end{gather*}
$$

with equality for $p_{n-1}=G_{n-1}$.

Two cases are of special interest:
I. Case $\alpha=\beta=1, \varphi(x)=\frac{1}{\sqrt{1+x}}$,
$G_{n-1}=\frac{\sqrt{2}}{2 n}\left[W_{n}^{\prime}(x)-W_{n-1}^{\prime}(x)\right]=\frac{\sqrt{2}}{n} T_{n}^{\prime}(x)=\sqrt{2} U_{n-1}(x)$,
$U_{n-1}(x)=\sin n \theta / \sin \theta, x=\cos \theta$, the Chebyshev polynomial of the second kind.

Note that $P_{n-1, \varphi} \subset Z_{1,1}^{W, \varphi}, \sqrt{2} U_{n-1} \notin P_{n-1, \varphi}$, $\sqrt{2} U_{n-1} \in Z_{1,1}^{W, \varphi}$.

Corollary 2.1. If $p_{n-1} \in Z_{1,1}^{W, \varphi}$ then we have

$$
\begin{gather*}
\int_{-1}^{1} \sqrt{\frac{1-x}{1+x}}\left[p_{n-1}(x)\right]^{2} d x \leq 2 \pi n \tag{7}\\
\int_{-1}^{1}(1-x) \sqrt{1-x^{2}}\left[p_{n-1}^{\prime}(x)\right]^{2} d x \leq \frac{2 \pi\left(n^{3}-n\right)}{3}
\end{gather*}
$$

with equality for $p_{n-1}=\sqrt{2} U_{n-1}$.
II. Case $\alpha=1, \beta=0, \varphi(x)=\frac{1}{(1-x) \sqrt{1+x}}$, $G_{n-1}=\frac{\sqrt{2}}{2 n+1} W_{n}^{\prime}(x)$

Note that $P_{n-1, \varphi} \subset Z_{1,0}^{W, \varphi}, \frac{\sqrt{2}}{2 n+1} W_{n}^{\prime}(x) \in P_{n-1, \varphi}, \frac{\sqrt{2}}{2 n+1} W_{n}^{\prime}(x) \in Z_{1,0}^{W, \varphi}$.

Corollary 2.2. If $p_{n-1} \in Z_{1,0}^{W, \varphi}$ then we have

$$
\begin{gather*}
\int_{-1}^{1} \sqrt{\frac{1-x}{1+x}}\left[p_{n-1}(x)\right]^{2} d x \leq \frac{4 \pi n(n+1)}{3(2 n+1)} \tag{8}\\
\int_{-1}^{1}(1-x) \sqrt{1-x^{2}}\left[p_{n-1}^{\prime}(x)\right]^{2} d x \leq \frac{8 \pi\left(n^{3}-n\right)(n+2)}{15(2 n+1)}
\end{gather*}
$$

with equality for $p_{n-1}=\frac{\sqrt{2}}{2 n+1} W_{n}^{\prime}(x)$.

In this second case we have a more general result:

Theorem 2.2. If $p_{n-1} \in Z_{1,0}^{W, \varphi}$ and $0 \leq|b| \leq a$ then we have

$$
\begin{gathered}
\int_{-1}^{1}(a+b x)(1-x)^{k+1 / 2}(1+x)^{k-1 / 2}\left[p_{n-1}^{(k)}(x)\right]^{2} d x \leq \\
\leq \frac{2 \pi(n+k+1)!(2 a k+2 a-b)}{(n-k-1)!(2 n+1)(2 k+1)(2 k+3)} \\
k=1, \ldots, n-2 \text { with equality for } p_{n-1}=\frac{\sqrt{2}}{2 n+1} W_{n}^{\prime}(x) .
\end{gathered}
$$

Setting $a=1, b \in\{-1,0,1\}$ one obtains the following

Corollary 2.3. If $p_{n-1} \in Z_{1,0}^{W, \varphi}$ then we have

$$
\begin{gather*}
\int_{-1}^{1}(1-x)^{k+3 / 2}(1+x)^{k-1 / 2}\left[p_{n-1}^{(k)}(x)\right]^{2} d x \tag{9}\\
\quad \leq \frac{2 \pi(n+k+1)!}{(n-k-1)!(2 n+1)(2 k+1)}
\end{gather*}
$$

$$
\begin{align*}
& \int_{-1}^{1}(1-x)^{k+1 / 2}(1+x)^{k-1 / 2}\left[p_{n-1}^{(k)}(x)\right]^{2} d x \tag{10}\\
& \quad \leq \frac{4 \pi(n+k+1)!(k+1)}{(n-k-1)!(2 n+1)(2 k+1)(2 k+3)}
\end{align*}
$$

$$
\begin{align*}
& \int_{-1}^{1}\left(1-x^{2}\right)^{k+1 / 2}\left[p_{n-1}^{(k)}(x)\right]^{2} d x \tag{11}\\
& \quad \leq \frac{2 \pi(n+k+1)!}{(n-k-1)!(2 n+1)(2 k+3)}
\end{align*}
$$

$k=1, \ldots, n-2$ with equality for $p_{n-1}=\frac{\sqrt{2}}{2 n+1} W_{n}^{\prime}(x)$.

3 Auxiliary results

Here we state some lemmas which help us in proving the above theorems.
Lemma 3.1. (Duffin-Schaeffer) If $q(x)=c \prod_{i=1}^{n}\left(x-x_{i}\right)$ is a polynomial of degree n with n distinct real zeros and if $p \in \stackrel{i=1}{P_{n}}$ such that

$$
\left|p^{\prime}\left(x_{i}\right)\right| \leq\left|q^{\prime}\left(x_{i}\right)\right| \quad(i=1,2, \ldots, n),
$$

then for $k=1,2, \ldots, n$
$\left|p^{(k+1)}(x)\right| \leq\left|q^{(k+1)}(x)\right|$ whenever $q^{(k)}(x)=0$.

Lemma 3.2. Let p_{n-1} be such that $\left|p_{n-1}\left(x_{i}\right)\right| \leq \frac{\alpha-\beta x_{i}}{\left(1-x_{i}\right) \sqrt{1+x_{i}}}$,
$i=1,2, \ldots, n$, where the $x_{i}^{\prime} s$ are given by (1). Then we have

$$
\begin{equation*}
\left|p_{n-1}^{\prime}\left(x_{j}^{(1)}\right)\right| \leq\left|G_{n-1}^{\prime}\left(x_{j}^{(1)}\right)\right|, j=1, \ldots, n-1, \tag{12}
\end{equation*}
$$

Proof. By the Lagrange interpolation formula based on the zeros of W_{n} and using $W_{n}^{\prime}\left(x_{i}\right)=\frac{(-1)^{i+1}(2 n+1)}{\left(1-x_{i}\right) \sqrt{2\left(1+x_{i}\right)}}$,
we can represent any algebraic polynomial p_{n-1} by

$$
p_{n-1}(x)=\frac{\sqrt{2}}{2 n+1} \sum_{i=1}^{n} \frac{W_{n}(x)}{x-x_{i}}(-1)^{i+1}\left(1-x_{i}\right) \sqrt{1+x_{i}} p_{n-1}\left(x_{i}\right) .
$$

From $G_{n-1}\left(x_{i}\right)=(-1)^{i+1} \frac{\alpha-\beta x_{i}}{\left(1-x_{i}\right) \sqrt{1+x_{i}}}$ we have
$G_{n-1}(x)=\frac{\sqrt{2}}{2 n+1} \sum_{i=1}^{n} \frac{W_{n}(x)}{x-x_{i}}\left[\alpha-\beta x_{i}\right]$.
Differentiating with respect to x we obtain

$$
\begin{aligned}
& p_{n-1}^{\prime}(x)=\frac{\sqrt{2}}{2 n+1} \sum_{i=1}^{n} \frac{W_{n}^{\prime}(x)\left(x-x_{i}\right)-W_{n}(x)}{\left(x-x_{i}\right)^{2}} \\
& \quad \times(-1)^{i+1}\left(1-x_{i}\right) \sqrt{1+x_{i}} p_{n-1}\left(x_{i}\right) .
\end{aligned}
$$

On the roots of $W_{n}^{\prime}(x)$ and using (3) we find

$$
\begin{aligned}
& \left|p_{n-1}^{\prime}\left(x_{j}^{(1)}\right)\right| \leq \frac{\sqrt{2}}{2 n+1} \sum_{i=1}^{n} \frac{\left|W_{n}\left(x_{j}^{(1)}\right)\right|}{\left(x_{j}^{(1)}-x_{i}\right)^{2}}\left[\alpha-\beta x_{i}\right] \\
& =\frac{\sqrt{2}\left|W_{n}\left(x_{j}^{(1)}\right)\right|}{2 n+1} \sum_{i=1}^{n} \frac{\alpha-\beta x_{i}}{\left(x_{j}^{(1)}-x_{i}\right)^{2}}=\left|G_{n-1}^{\prime}\left(x_{j}^{(1)}\right)\right| .
\end{aligned}
$$

Lemma 3.3. Let p_{n-1} be such that $\left|p_{n-1}\left(x_{i}\right)\right| \leq \frac{1}{\left(1-x_{i}\right) \sqrt{1+x_{i}}}$,
$i=1,2, \ldots, n$, where the $x_{i}^{\prime} s$ are given by (1). Then we have

$$
\begin{equation*}
\left|p_{n-1}^{(k)}\left(x_{j}^{(k)}\right)\right| \leq \frac{\sqrt{2}}{2 n+1}\left|W_{n}^{(k+1)}\left(x_{j}^{(k)}\right)\right|, \tag{13}
\end{equation*}
$$

whenever $W_{n}^{(k)}\left(x_{j}^{(k)}\right)=0, k=0,1, \ldots, n-1$.
Proof. For $\alpha=1, \beta=0, G_{n-1}=\frac{\sqrt{2}}{2 n+1} W_{n}^{\prime}$
and (12) give $\left|p_{n-1}^{\prime}\left(x_{j}^{(1)}\right)\right| \leq \frac{\sqrt{2}}{2 n+1}\left|W_{n}^{\prime \prime}\left(x_{j}^{(1)}\right)\right|$.

Now the proof is concluded by applying Duffin-Schaeffer Lemma.
We need the following quadrature formulae:

Lemma 3.4. For any given n and $k, 0 \leq k \leq n-1$, let $x_{i}^{(k+1)}$, $i=1, \ldots, n-k-1$, be the zeros of $W_{n}^{(k+1)}$. Then the quadrature formula

$$
\begin{gather*}
\int_{-1}^{1}\left(1-x^{2}\right)^{k} \sqrt{\frac{1-x}{1+x}} f(x) d x=A f(-1)+B f(1)+ \tag{14}\\
\quad+\sum_{i=1}^{n-k-1} s_{i} f\left(x_{i}^{(k+1)}\right), \\
A=\frac{2^{2 k}(2 n+1) \Gamma(k+1 / 2) \Gamma(k+3 / 2)(n-k-1)!}{(n+k+1)}, \\
B=\frac{2^{2 k+2} \Gamma(k+3 / 2) \Gamma(k+5 / 2)(n-k-1)!}{(2 n+1)(n+k+1)!}
\end{gather*}
$$

$s_{i}>0$ have algebric degree of precision $2 n-2 k-1$.

Proof. The quadrature formula (14) is the Bouzitat formula of the second kind [3, formula (4.8.1)], for the zeros of $W_{n}^{(k+1)}=c P_{n-k-1}^{\left(k+\frac{3}{2}, k+\frac{1}{2}\right)}$. Setting $\alpha=k+1 / 2, \beta=k-1 / 2, m=n-k-1$ in [3, formula (4.8.5)] we find A, B and $s_{i}>0$ (cf. [3, formula (4.8.4)]).

4 Proof of the Theorems

Because $W_{n}(x)=\frac{(2 n)!!}{(2 n-1)!!} P_{n}^{\left(\frac{1}{2}, \frac{-1}{2}\right)}(x)$ we recall the formulae:

$$
\begin{gather*}
\frac{d}{d x} P_{m}^{(\alpha, \beta)}(x)=\frac{\alpha+\beta+m+1}{2} P_{m-1}^{(\alpha+1, \beta+1)}(x) \tag{15}\\
P_{m}^{(\alpha, \beta)}(1)=\frac{\Gamma(m+\alpha+1)}{\Gamma(\alpha+1) \Gamma(m+1)}
\end{gather*}
$$

$$
P_{m}^{(\alpha, \beta)}(-1)=\frac{(-1)^{m} \Gamma(m+\beta+1)}{\Gamma(\beta+1) \Gamma(m+1)}
$$

Setting $\alpha=k+1 / 2, \beta=k-1 / 2, m=n-k$ in [3, formula (4.8.5)] on obtains the Gauss formula for the zeros of $W_{n}^{(k)}=c P_{n-k}^{\left(k+\frac{1}{2}, k-\frac{1}{2}\right)}$

$$
\begin{equation*}
\int_{-1}^{1}\left(1-x^{2}\right)^{k} \sqrt{\frac{1-x}{1+x}} f(x) d x=\sum_{i=1}^{n-k} H_{i}^{(k)} f\left(x_{i}^{(k)}\right) \tag{16}
\end{equation*}
$$

with algebric degree of precision $2 n-2 k-1$ and

$$
\begin{equation*}
H_{i}^{(k)}>0 \quad(\text { cf. }[3, \text { formula(4.8.4) }]) . \tag{17}
\end{equation*}
$$

Proof of Theorem 2.1

For $k=0$ in (16) we obtain
$\int_{-1}^{1} \sqrt{\frac{1-x}{1+x}} f(x) d x=\sum_{i=1}^{n} H_{i}^{(0)} f\left(x_{i}\right)$ of degree $2 n-1$.
According to this quadrature formula and using (4) and (17) we have
$\int_{-1}^{1} \sqrt{\frac{1-x}{1+x}}\left[p_{n-1}(x)\right]^{2} d x=\sum_{i=1}^{n} H_{i}^{(0)}\left(p_{n-1}\left(x_{i}\right)\right)^{2}$
$\leq \sum_{i=1}^{n} H_{i}^{(0)}\left(G_{n-1}\left(x_{i}\right)\right)^{2}=\int_{-1}^{1} \sqrt{\frac{1-x}{1+x}}\left[G_{n-1}(x)\right]^{2} d x$.
Using the following formula ($k=0$ in (14))

$$
\begin{aligned}
& \int_{-1}^{1} \sqrt{\frac{1-x}{1+x}} f(x) d x=\frac{\pi(2 n+1)}{2 n(n+1)} f(-1)+\frac{3 \pi}{2 n(n+1)(2 n+1)} f(1) \\
&+\sum_{i=1}^{n-1} s_{i} f\left(x_{i}^{(1)}\right)
\end{aligned}
$$

we find $\int_{-1}^{1} \sqrt{\frac{1-x}{1+x}}\left[G_{n-1}(x)\right]^{2}=\frac{2 \pi n\left[2\left(\alpha^{2}+\beta^{2}+\alpha \beta\right)(n+1)-3 \beta^{2}\right]}{3(2 n+1)}$.
Setting $k=1$ in (16) we get
$\int_{-1}^{1}(1-x) \sqrt{1-x^{2}} f(x) d x=\sum_{i=1}^{n-1} H_{i}^{(1)} f\left(x_{i}^{(1)}\right)$ of degree $2 n-3$.
According to this formula and using (12) and (17) we have
$\int_{-1}^{1}(1-x) \sqrt{1-x^{2}}\left[p_{n-1}^{\prime}(x)\right]^{2} d x=\sum_{i=1}^{n-1} H_{i}^{(1)}\left(p_{n-1}\left(x_{i}^{(1)}\right)\right)^{2}$
$\leq \sum_{i=1}^{n-1} H_{i}^{(1)}\left(G_{n-1}\left(x_{i}^{(1)}\right)\right)^{2}=\int_{-1}^{1}(1-x) \sqrt{1-x^{2}}\left[G_{n-1}^{\prime}(x)\right]^{2} d x$.
From (14) with $k=1$ we find
$\int_{-1}^{1}(1-x) \sqrt{1-x^{2}}\left[G_{n-1}^{\prime}(x)\right]^{2} d x$
$=\frac{2 \pi\left(n^{3}-n\right)}{15(2 n+1)}\left[2\left(2 \alpha^{2}+\alpha \beta+2 \beta^{2}\right) n+8 \alpha^{2}+4 \alpha \beta-7 \beta^{2}\right]$.

Proof of Theorem 2.2

If we replace $f(x)$ with $(a+b x) f(x), 0 \leq|b| \leq a$ in (16) we get
$\int_{-1}^{1}(a+b x)\left(1-x^{2}\right)^{k} \sqrt{\frac{1-x}{1+x}} f(x) d x$
$=\sum_{i=1}^{n-k}\left(a+b x_{i}^{(k)}\right) H_{i}^{(k)} f\left(x_{i}^{(k)}\right)$ of degree $2 n-2 k-2$
According to this formula and using (13) and (17) we have
$\int_{-1}^{1}(a+b x)\left(1-x^{2}\right)^{k} \sqrt{\frac{1-x}{1+x}}\left[p_{n-1}^{(k)}(x)\right]^{2} d x$
$=\sum_{i=1}^{n-k}\left(a+b x_{i}^{(k)}\right) H_{i}^{(k)}\left[p_{n-1}^{(k)}\left(x_{i}^{(k)}\right)\right]^{2}$
$\leq \frac{2}{(2 n+1)^{2}} \sum_{i=1}^{n-k}\left(a+b x_{i}^{(k)}\right) H_{i}^{(k)}\left[W_{n}^{(k+1)}\left(x_{i}^{(k)}\right)\right]^{2}$
$=\frac{2}{(2 n+1)^{2}} \int_{-1}^{1}(a+b x)\left(1-x^{2}\right)^{k} \sqrt{\frac{1-x}{1+x}}\left[W_{n}^{(k+1)}(x)\right]^{2} d x$
If we replace $f(x)$ with $(a+b x) f(x), 0 \leq|b| \leq a$ in (14) we get
$\int_{-1}^{1}(a+b x)\left(1-x^{2}\right)^{k} \sqrt{\frac{1-x}{1+x}} f(x) d x=A(a-b) f(-1)+B(a+b) f(1)$
$+\sum_{i=1}^{n-k-1}\left(a+b x_{i}^{(k)}\right) s_{i} f\left(x_{i}^{(k+1)}\right)$ of degree $2 n-2 k-2$.
In order to complete the proof we apply this formula to $f=\frac{2}{(2 n+1)^{2}}\left[W_{n}^{(k+1)}(x)\right]^{2}$.

Having in mind $W_{n}^{(k+1)}\left(x_{i}^{(k+1)}\right)=0$ and the following relations deduced from (15)

$$
W_{n}^{(k+1)}(-1)=\frac{(-1)^{n-k-1}(n+k+1)!}{(n-k-1)!(2 k+1)!!},\left(W_{n}^{(k+1)}(1)\right)^{2}=\frac{(2 n+1)^{2}}{(2 k+3)^{2}}\left(W_{n}^{(k+1)}(1)\right)^{2}
$$

we find

$$
\begin{aligned}
\int_{-1}^{1} & (a+b x)(1-x)^{k+1 / 2}(1+x)^{k-1 / 2} \frac{2}{(2 n+1)^{2}}\left[W_{n}^{(k+1)}(x)\right]^{2} d x \\
& =\frac{2}{(2 n+1)^{2}} A(a-b)\left[W_{n}^{(k+1)}(-1)\right]^{2}+\frac{2}{(2 n+1)^{2}} B(a+b)\left[W_{n}^{(k+1)}(1)\right]^{2} \\
& =\frac{2 \pi(n+k+1)!(2 a k+2 a-b)}{(n-k-1)!(2 n+1)(2 k+1)(2 k+3)} .
\end{aligned}
$$

References

[1] D.K. Dimitrov, Markov inequalities for weight functions of Chebyshev type, J.Approx.Theory 83 (1995), 175-181.
[2] R.J. Duffin And A.C. Schaeffer, A refinement of an inequality of the brothers Markoff, Trans.Amer.Math.Soc. 50 (1941), 517-528.
[3] A. Ghizzetti And A. Ossicini, Quadrature formulae, Akademie-Verlag, Berlin, 1970.
[4] A. Lupaş, Numerical Methods, Constant Verlag, Sibiu, 2001.

Department of Mathematics,
Edmond Nicolau College, Ciortea 9,
Cluj-Napoca, Romania
E-mail:ioanpopa.cluj@personal.ro

