On a diophantine equation¹ Dumitru Acu

Abstract

In this note we study the diophantine equation (1).

2000 Mathematical Subject Classification:11D61

In this note we study in positive integer numbers following the diophantine equation:

$$(1) 2^x + 5^y = z^2.$$

Theorem 1. The diophantine equation (1) has exactly two solutions in nonnegative integers $(x, y, z) \in \{(3, 0, 3), (2, 1, 3)\}.$

Proof. If x = 0, then we have the diophantine equation

$$5^y = y^2 - 1$$

or

$$(z-1)(z+1) = 5^y,$$

where $z-1=5^u$ and $z+1=5^{y-u}, y>2u, u\in\mathbb{N}.$

Accepted for publication (in revised form) 25 December, 2007

¹Received 12 December, 2007

146 Dumitru Acu

From here, we obtain:

$$5^{y-u} - 5^y = 2$$

or

$$5^u(5^{y-2u} - 1) = 2,$$

where u = 0 and $5^y = 3$, which is impossible.

If y = 0, then we have the diophantine equation

$$z^2 - 1 = 2^x$$

or

$$(z-1)(z+1) = 2^x,$$

where $z - 1 = 2^v$ and $z + 1 = 2^{x-v}, x > 2v, v \in \mathbb{N}$.

Form here, we obtain

$$2^{x-v} - 2^v = 2$$

or

$$2^{v}(2^{x-2v} - 1) = 2,$$

where v = 1 and $2^{x-2} = 2$, that is v = 1 and x = 3.

Therefore x = 3, y = 0, z = 3.

Now, we consider $x \ge 1$ and $y \ge 1$.

It follows from (1) that the number z is odd and it is not divisible by 5.

If $z \equiv \pm 1 \pmod{5}$ then we have $z^2 \equiv 1 \pmod{5}$ and if $z \equiv \pm 2 \pmod{5}$ it results $z^2 \equiv 4 \pmod{5} \equiv -1 \pmod{5}$.

But, we have

$$2^{2k} = 4^k = (5-1)^k \equiv (-1)^k \pmod{5}$$

and

$$2^{2k+1} = 2 \cdot 4^k \equiv 2 \cdot (-1)^k \pmod{5}, k \in \mathbb{N}.$$

It results that the number x is even.

Now, we consider $x=2k, k\in\mathbb{N}$.From (1) we have

$$z^2 - 2^{2k} = 5^y$$

or

$$(z - 2^k)(z + 2^k) = 5^y,$$

where $z - 2^k = 5^w$ and $z + 2^k = 5^{y-w}, y > 2w$. From here, we obtain

$$5^w(5^{y-2w} - 1) = 2^{k+1}$$

which implies w = 0 and

$$5^y - 2^{k+1} = 1.$$

The diophantine equation (2) is a diophantine equation by Catalan's type

$$a^b - c^d = 1$$

which has in positive integer numbers (> 1) only the solutions a=3,b=2,c=2 and d=3([3],[6],[7]).

It results the diophantine equation (2) has the solution only if y = 1. Then we have $2^{k+1} = 2^2$, where k = 1. Therefore x = 2, y = 1, z = 3.

In concluding, the diophantine equation (1) has the solutions: (x, y, z) \in {(3, 0, 3), (2, 1, 3)}.

References

- [1] Andreescu, T., Cercetări de analiză diofantică și aplicații, Teza de doctorat, 2003, Timisoara (in Romanian).
- [2] Andreescu, T., Andrica, D., O introducere în studiul ecuațiilor diofantiene, Ed. GIL, 2002 (in Romanian).
- [3] Cucurezeanu, I., *Ecuații în numere întregi*, Ed. Aramis, Bucuresti,2006(in Romanian).

148 Dumitru Acu

[4] Cucurezeanu, I., *Pătrate și cuburi perfecte de numere întregi*, Ed. GIL,2007(in Romanian).

- [5] Mordell, L.J., *Diophantine Equations*, Academic Press, London, New York, 1969.
- [6] Sierpinski, W., Elementary theory of numbers, Warszawa, 1964.
- [7] Sierpinski, W., Ce ştim şi ce nu ştim despre numerele prime?, Ed. Ştiinţifică, Bucureşti, 1996(in Romanian).

Department of Mathematics, Faculty of Sciences, University "Lucian Blaga" of Sibiu, Dr. Ion Ratiu 5-7, Sibiu, 550012, Romania

E-mail: acu_dumitru@yahoo.com