# A Note on Heredity for Terraced Matrices ${ }^{1}$ 

H. Crawford Rhaly, Jr.

In Memory of Myrt Naylor Rhaly (1917-2006)


#### Abstract

A terraced matrix $M$ is a lower triangular infinite matrix with constant row segments. In this paper it is seen that when $M$ is a bounded linear operator on $\ell^{2}$, hyponormality, compactness, and noncompactness are inherited by the "immediate offspring" of $M$. It is also shown that the Cesàro matrix cannot be the immediate offspring of another hyponormal terraced matrix.


2000 Mathematical Subject Classification: 47B99
Key words: Cesàro matrix, terraced matrix, hyponormal operator, compact operator

## 1 Introduction

Assume that $\left\{a_{n}\right\}$ is a sequence of complex numbers such that the associated
terraced matrix $M=\left(\begin{array}{cccc}a_{0} & 0 & 0 & \ldots \\ a_{1} & a_{1} & 0 & \ldots \\ a_{2} & a_{2} & a_{2} & \ldots \\ \vdots & \vdots & \vdots & \ddots\end{array}\right)$ is a bounded linear operator on

[^0]$\ell^{2}$; these matrices have been studied in [2] and [3]. We recall that $M$ is said to be hyponormal on $\ell^{2}$ if $\left\langle\left[M^{*}, M\right] f, f\right\rangle=\left\langle\left(M^{*} M-M M^{*}\right) f, f\right\rangle \geq 0$ for all $f$ in $\ell^{2}$. It seems natural to ask whether hyponormality is inherited by the terraced matrix arising from any subsequence $\left\{a_{n_{k}}\right\}$. To see that the answer is no, we consider the case where $M=C=\left(\begin{array}{cccc}1 & 0 & 0 & \ldots \\ \frac{1}{2} & \frac{1}{2} & 0 & \ldots \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \ldots \\ \vdots & \vdots & \vdots & \ddots\end{array}\right)$, the Cesàro matrix. In [4, Corollary 5.1] it is seen that the terraced matrix associated with the subsequence $\left\{\frac{1}{2 n+1}: n=0,1,2, \ldots.\right\}$ is not hyponormal, although the Cesàro matrix itself is known to be a hyponormal operator on $\ell^{2}$ (see [1]).

Consequently, we turn our attention to a more modest result and consider hereditary properties of the terraced matrix arising from one special subsequence; we will regard $M^{\prime}=\left(\begin{array}{cccc}a_{1} & 0 & 0 & \ldots \\ a_{2} & a_{2} & 0 & \ldots \\ a_{3} & a_{3} & a_{3} & \ldots \\ \vdots & \vdots & \vdots & \ddots\end{array}\right)$ as the immediate offspring of $M$, for $M^{\prime}$ is itself the terraced matrix that results from removing the first row and the first column from $M$. Note that $M^{\prime}=U^{*} M U$ where $U$ is the unilateral shift.

## 2 Main Result

Theorem 2.1. (a) $M^{\prime}$ inherits from $M$ the property of hyponormality.
(b) $M$ is compact if and only if $M^{\prime}$ is compact.

Proof. (a) We must show that $\left[\left(M^{\prime}\right)^{*}, M^{\prime}\right] \equiv\left(M^{\prime}\right)^{*} M^{\prime}-M^{\prime}\left(M^{\prime}\right)^{*} \geq 0$. Critical to the proof is the fact that $\left(M^{\prime}\right)^{*} M^{\prime}=U^{*}\left\{\left(M^{*} M\right) U\right\}$, which can be verified by computing that both sides of the equation are equal to the
reverse-L-shaped matrix $\left(\begin{array}{ccccc}b_{1} & b_{2} & b_{3} & \ldots \\ b_{2} & b_{2} & b_{3} & \ldots \\ b_{3} & b_{3} & b_{3} & \ldots \\ \vdots & \vdots & \vdots & \ddots\end{array}\right)$ where $b_{n}=\sum_{k=n}^{\infty}\left|a_{k}\right|^{2} ;$ also, it can be verified that

$$
M^{\prime}\left(M^{\prime}\right)^{*}=\left(\begin{array}{cccc}
\left|a_{1}\right|^{2} & a_{1} \overline{a_{2}} & a_{1} \overline{a_{3}} & \ldots \\
\overline{a_{1}} a_{2} & 2\left|a_{2}\right|^{2} & 2 a_{2} \overline{a_{3}} & \cdots \\
\overline{a_{1}} a_{3} & 2 \overline{a_{2}} a_{3} & 3\left|a_{3}\right|^{2} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)=\left(U^{*} M\right)\left\{\left(U U^{*}\right)\left(M^{*} U\right)\right\}
$$

and that

$$
U^{*}\left\{\left(M M^{*}\right) U\right\}=\left(\begin{array}{cccc}
2\left|a_{1}\right|^{2} & 2 a_{1} \overline{a_{2}} & 3 a_{1} \overline{a_{3}} & \cdots \\
2 \overline{a_{1}} a_{2} & 3\left|a_{2}\right|^{2} & 3 a_{2} \overline{a_{3}} & \cdots \\
2 \overline{a_{1}} a_{3} & 3 \overline{a_{2}} a_{3} & 4\left|a_{3}\right|^{2} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)=\left(U^{*} M\right)\left\{I\left(M^{*} U\right)\right\}
$$

Consequently, we have

$$
\begin{aligned}
{\left[\left(M^{\prime}\right)^{*}, M^{\prime}\right]=} & \left(M^{\prime}\right)^{*} M^{\prime}-M^{\prime}\left(M^{\prime}\right)^{*} \\
= & U^{*}\left\{\left(M^{*} M\right) U\right\}-\left(U^{*} M\right)\left\{\left(U U^{*}\right)\left(M^{*} U\right)\right\} \\
= & U^{*}\left\{\left(M^{*} M\right) U\right\}-U^{*}\left\{\left(M M^{*}\right) U\right\}+U^{*}\left\{\left(M M^{*}\right) U\right\} \\
& \quad-\left(U^{*} M\right)\left\{\left(U U^{*}\right)\left(M^{*} U\right)\right\} \\
= & U^{*}\left\{\left(M^{*} M\right) U\right\}-U^{*}\left\{\left(M M^{*}\right) U\right\}+\left(U^{*} M\right)\left\{I\left(M^{*} U\right)\right\} \\
& \quad-\left(U^{*} M\right)\left\{\left(U U^{*}\right)\left(M^{*} U\right)\right\} \\
= & U^{*}\left\{\left[M^{*}, M\right] U\right\}+\left(M^{*} U\right)^{*}\left\{\left(I-U U^{*}\right)\left(M^{*} U\right)\right\} .
\end{aligned}
$$

Since $M$ is hyponormal (by hypothesis) and $I-U U^{*} \geq 0$, we find that

$$
\begin{gathered}
\left\langle\left[\left(M^{\prime}\right)^{*}, M^{\prime}\right] f, f\right\rangle= \\
=\left\langle\left[M^{*}, M\right] U f, U f\right\rangle+\left\langle\left(\left(I-U U^{*}\right)\left(M^{*} U\right) f,\left(M^{*} U\right) f\right\rangle\right. \\
\geq 0+0=0 \quad \text { for all } f \text { in } \ell^{2} .
\end{gathered}
$$

This completes the proof of part (a).
(b) We prove only one direction. Suppose $M^{\prime}$ is compact. It follows that $U M^{\prime} U^{*}$ is also compact. Note that $M-U M^{\prime} U^{*}$ has nonzero entries only in the first column; these entries are precisely the terms of the sequence $\left\{a_{n}\right\}$. Since $M$ is bounded, we must have $\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}=\left\|M e_{0}\right\|^{2}<\infty$, where $e_{0}$ belongs to the standard orthonormal basis for $\ell^{2}$; consequently, $M-U M^{\prime} U^{*}$ is a Hilbert-Schmidt operator on $\ell^{2}$ and is therefore compact. Thus $M=$ $U M^{\prime} U^{*}+\left(M-U M^{\prime} U^{*}\right)$ is compact, since it is the sum of two compact operators.

Corollary 2.1. Assume $M^{\prime \prime}$ is the terraced matrix obtained by removing the first $k$ rows and the first $k$ columns from $M$, for some fixed positive integer $k>1$. (a) $M^{\prime \prime}$ inherits from $M$ the property of hyponormality. (b) $M$ is compact if and only if $M^{\prime \prime}$ is compact.

## 3 Other Results

We note that normality (occurring when $M$ commutes with $M^{*}$ ) and quasinormality (occurring when $M$ commutes with $M^{*} M$ ) are also inherited properties for terraced matrices, but those turn out to be trivialities. The proofs are left to the reader.

Theorem 3.1. (a) If $M$ is normal, then $a_{n}=0$ for all $n \geq 1$ and $M^{\prime}=0$. (b) If $M$ is quasinormal, then $a_{n}=0$ for all $n \geq 1$ and $M^{\prime}=0$.

In closing, we consider a question about the most famous terraced matrix, the Cesàro matrix $C$. Is $C$ the immediate offspring of some other hyponormal terraced matrix; that is, does there exist a hyponormal terraced matrix $A$ such that $C=A^{\prime}=U^{*} A U$ ? The matrix $A$ would have to be generated by $\left\{a_{n}\right\}$ with $a_{0}$ yet to be determined and $a_{n}=\frac{1}{n}$ for $n \geq 1$. Then $L=\lim _{n \rightarrow+\infty}(n+1) a_{n}=\lim _{n \rightarrow+\infty} \frac{n+1}{n}=1$. From [3, Theorems 2.5 and 2.6] we
conclude that the spectrum is $\sigma(A)=\{\lambda:|\lambda-1| \leq 1\} \cup\left\{a_{0}\right\}$ and that $A$ cannot be hyponormal since $\sum_{n=1}^{\infty}\left|a_{n}\right|^{2}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}>1=L^{2}$. Thus we see that nonhyponormality is not inherited by the immediate offspring of a terraced matrix.

## References

[1] A. Brown, P. R. Halmos, and A. L. Shields, Cesàro Operators, Acta Sci. Math. Szeged 26 (1965), 125-137.
[2] G. Leibowitz, Rhaly Matrices, J. Math. Anal. Appl. 128 (1987), 272-286.
[3] H. C. Rhaly, Jr., Terraced Matrices, Bull. Lond. Math. Soc. 21 (1989), 399-406.
[4] H. C. Rhaly, Jr., Posinormal Operators, J. Math. Soc. Japan 46 (4) (1994), 587-605.

1081 Buckley Drive
Jackson, Mississippi 39206
E-mail: rhaly@alumni.virginia.edu, rhaly@member.ams.org


[^0]:    ${ }^{1}$ Received 19 February, 2007
    Accepted for publication (in revised form) 4 December, 2007

