General Mathematics Vol. 16, No. 1 (2008), 73-81

Best simultaneous approximation in linear 2-normed spaces^1

S. Elumalai and R. Vijayaragavan

Abstract

In this paper we established some of the results of the best simultaneous approximation in the context of linear 2-normed space.

2000 Mathematics Subject Classification: 41A50, 41A52, 41A99, 41A28.

Key words: Linear 2-normed space, strictly covex, uniformly convex, 2-functional and best simultaneous approximation.

1 Introduction

The problem of simultaneous approximation has been studied by several authors. Diaz and McLaughlin [1,2] and Dunham [4] have considered the simultaneous approximation of two real-valued functions defined on [a, b]. Several results of best simultaneous approximation in the context of normed linear space were obtained by Goel, et al. [8,9]. Subsequently, Elumalai S. and coworkers have developed best approximation theory with respect to 2-norm to a considerable extent [5,6,7]. The main aim of this paper is to

¹Received 1 July 2007

Accepted for publication (in revised form) 10 December 2007

drive existence and uniqueness of the best simultaneous approximation in the context of linear 2-normed space. Section 2 provides some definitions that are used in the sequel. Some main results of the set of best simultaneous approximation are established in Section 3.

2 Preliminaries

Definition 2.1. Let X be a linear space over \mathbb{R} with dimension X > 1 and let $||\cdot, \cdot|| : X \times X \to \mathbb{R}$ be a mapping with the following properties: (i) ||x, y|| > 0 and ||x, y|| = 0 if and only if x and y are linearly dependent, (ii) ||x, y|| = ||y, x||, (iii) $||\lambda x, y|| = |\lambda|||x, y||$, (iv) ||x + y, z|| = ||x, z|| + ||y, z||, for all $x, y, z \in X$ and $\lambda - a$ scalar.

Then the mapping $||\cdot, \cdot||$ is called a 2-norm and the pair $(X, ||\cdot, \cdot||)$ is called a linear 2-normed space.

Definition 2.2. A sequence $\{x_n\}$ is a linear 2-normed space X is called a convergent sequence if there is an $x \in X$ such that $\lim_{n \to \infty} ||x_n - x, z|| = 0$ for all $z \in X$.

Definition 2.3. A linear 2-normed space $(X, ||\cdot, \cdot||)$ is said to be strictly convex if ||a+b, c|| = ||a, c||+||b, c||, ||a, c|| = ||b, c|| = 1 and $c \in X \setminus V(a, b)$, where V(a, b) is the subspace of X generated by a and b, which implies that a = b.

A linear 2-normed space $(X, ||\cdot, \cdot||)$ is said to be strictly convex if and only if $||x, z|| = ||y, z|| = 1, x \neq y$ and $z \in X \setminus V(x, y)$ implies that $||\frac{x+y}{2}, z|| < 1$.

Definition 2.4. A linear 2-normed space $(X, ||\cdot, \cdot||)$ is said to be uniformly convex if for any sequences $\{x_n\}_{n=1}^{\infty}$ and $\{x_n\}_{n=1}^{\infty}$ in $X, ||x_n, z|| \le 1, ||y_n, z|| \le 1, n = 1, 2, 3, ..., \lim_{n \to \infty} ||\frac{x_n + y_n}{2}, z|| = 1 \text{ and } V(c) \cap \{\bigcap_{n=1}^{\infty} V(x_n, y_n)\} = \{0\}$ implies that $\lim_{n \to \infty} ||x_n - y_n, z|| = 0.$ **Example 2.1.** Let $X = \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ with 2-norm defined as $x = (a_1, b_1, c_1), y = (a_2, b_2, c_2)$

$$||x,y|| = \sqrt{(b_1c_2 - b_2c_1)^2 + (a_1c_2 - a_2c_1)^2 + (a_1b_2 - a_2b_1)^2}.$$

Then $(X, ||\cdot, \cdot||)$ is both strictly convex and uniformly convex.

Definition 2.5. Let $(X, ||\cdot, \cdot||)$ be a linear 2-normed space. Let F be any bounded subset of X and K be a subset of X. An element $k^* \in K$ is said to be a best simultaneous approximation to the set F, if

$$d(F,K)_z = \sup_{f \in F} ||f - k^*, z||, z \in X \setminus V(f,k^*).$$

Where

$$d(F,K)_z = \inf_{k \in K} \sup_{f \in F} ||f - k, z||, z \in X \setminus V(f,k).$$

Definition 2.6. A 2-functional is a real-valued mapping defined on $A \times M$, where A and M are linear subspaces of a linear 2-normed space $(X, ||\cdot, \cdot||)$.

Definition 2.7. A 2-functional f is said to be continuous at (x, y) if for a given $\varepsilon > 0$ there exists a $\delta > 0$ such that

 $|f(x,y) - f(z,s)| < \varepsilon$ whenever $||x - z, y|| < \delta$ and $||z, y - s|| < \delta$ or $||x - z, s|| < \delta$ and ||x, y - s||. Then f is said to be continuous at each point of this domain.

3 Main Results

Lemma 3.1. Let $(X, ||\cdot, \cdot||)$ be a linear 2-normed space, let $K \subset X$ and F be a bounded subset of X. Then $\Phi(k, z) = \sup_{f \in F} ||f - k, z||, z \in X \setminus V(f, k)$ is a continuous functional on X.

Proof. For any $f \in F$ and $k, k' \in X$, we have

$$||f - k, z|| \le ||f - k', z|| + ||k - k', z||, z \in X \setminus V(f, k, k').$$

Then

$$\sup_{f \in F} ||f - k, z|| \le \sup_{f \in F} (||f - k', z|| + ||k - k', z||).$$

Now, if

$$||k - k', z|| < \epsilon$$
, then $\Phi(k, z) \le \Phi(k', z) + \epsilon$.

By interchanging k and k', we obtain

$$\Phi(k', z) \le \Phi(k, z) + \epsilon.$$

Thus

$$|\Phi(k,z) - \Phi(k',z)| < \epsilon,$$

which completes the proof.

Lemma 3.2. Let $(X, ||\cdot, \cdot||)$ be a linear 2-normed space. Let K be a finite dimensional subspace of X. Then there exists a best simultaneous approximation $k^* \in K$ to any given compact subset $F \subset X$.

Proof. Since F is compact, there exists a finite constant M such that $||f, b|| \leq M$, for all $f \in F$ and $b \in X$

Now we define the subset S of K as $S \equiv S(0, 2M)$. Then

$$\inf_{k \in S} \sup_{f \in F} ||f - k, b|| = \inf_{k \in K} \sup_{f \in F} ||f - k, b||, \ b \in X \setminus V(f, k) \le M.$$

Since S is compact, the continuous functional $\Phi(k, b)$ attains its minimum over S for some $k^* \in K$. Which is the best simultaneous approximation to F.

Lemma 3.3. Let $(X, ||\cdot, \cdot||)$ be a linear 2-normed space and let K be a convex subset of X and $F \subset X$. If $k_1, k_2 \in K$ are two best simultaneous approximations to F by elements of K. Then $\overline{k} = \lambda k_1 + (1 - \lambda)k_2, (0 \le \lambda \le 1)$ is also a best simultaneous approximation to F.

Proof. For $z \in X \setminus V(f, \overline{k})$,

(1)

$$\begin{aligned} \sup_{f \in F} ||f - \overline{k}, z|| &= \sup_{f \in F} ||f - (\lambda k_1 + (1 - \lambda) k_2), z|| \\ &= \sup_{f \in F} ||\lambda (f - k_1) + (1 - \lambda) (f - k_2), z|| \\ &\leq \sup_{f \in F} (\lambda ||(f - k_1, z)| + (1 - \lambda) ||f - k_2, z||) \\ &\leq \lambda \sup_{f \in F} ||f - k_1, z|| + (1 - \lambda) \sup_{f \in F} ||f - k_2, z|| \\ &= \lambda d(F, K)_z + (1 - \lambda) d(F, K)_z \\ &= d(F, K)_z.
\end{aligned}$$

(2)
$$d(F,K)_{z} = \inf_{k \in K} \sup_{f \in F} ||f - \overline{k}, z| \\ \leq \sup_{f \in F} ||f - \overline{k}, z||$$

(3)
$$d(F,K)_z = \sup_{f \in F} ||f - \overline{k}, z||$$

Which proves the result.

Theorem 3.1. Let $(X, ||\cdot, \cdot||)$ be a strictly convex linear 2-normed space. Let K be a finite dimensional subspace of X. Then there exists one and only one best simultaneous approximation from the elements of K to any given compact subset $F \subset X$.

Proof. The existence of a best simultaneous approximation follows from the Lemma 3.2.

Suppose k_1 and $k_2(k_1 \neq k_2)$ are best simultaneous approximations to F. Then for $z \in X \setminus U(f, k_1, k_2)$,

(4)
$$\inf_{k \in K} \sup_{f \in F} ||f - k, z|| = \sup_{f \in F} ||f - k_1, z|| \\
= \sup_{f \in F} ||f - k_2, z|| \\
= d.$$

Then by Lemma 3.3, $\frac{k_1+k_2}{2}$ is also the best simultaneous approximation, i.e,

(5)
$$\sup_{f \in F} ||f - \frac{k_1 + k_2}{2}, z|| = d.$$

Since F is compact there exists an f_0 such that

(6)
$$\sup_{f \in F} ||f - \frac{k_1 + k_2}{2}, z|| = ||f_0 - \frac{k_1 + k_2}{2}, z|| = d.$$

From (4), $||f_0 - k_1, z|| \le d$ and $||f_0 - k_2, z|| \le d$

Then by strict convexity, we have

$$||f_0 - k_1 + f_0 - k_2, z|| < 2d.$$

That is

$$||f_0 - \frac{k_1 + k_2}{2}, z|| < d.$$

which is a contradiction to (6).

Theorem 3.2. Let K be a closed and convex subset of a uniformly convex 2-Banach space X. Then for any compact subset $F \subset X$, there exists a unique best approximation to F form the elements of K.

Proof. Let

(7)
$$d = \inf_{k \in F} \sup_{f \in F} ||f - k, z||, z \in X \setminus V(f, k)$$

and $\{k_n\}$ be any sequence of elements in K such that

$$\lim_{n \to \infty} \sup_{f \in F} ||f - k_n, z|| = d.$$

Also, let

$$d_m = \sup_{f \in F} ||f - k_m, z||, m \ge 1$$
, and $z \in X \setminus V(f, k_m)$.

Then $d_m \geq d$, which implies that

(8)
$$\frac{||f - k_m, z||}{d_m} \le 1, \text{ for } f \in F$$

Now, we consider

(9)
$$\frac{1}{2} \left[\frac{k_m}{d_m} + \frac{k_n}{d_n} \right] = \frac{(d_n k_m + k_n d_m)(d_m + d_n)}{(d_m + d_n)2d_m d_n}$$

and let $y_{m,n} = \frac{d_n k_m + d_m k_n}{d_m + d_n}$. Then since K is a convex, $y_{m,n} \in K$. Hence

$$\sup_{f \in F} ||f - y_{m,n}, z|| \ge d$$

and

$$\sup_{f \in F} = \left| \left| \frac{d_m + d_n}{2d_m d_n} \cdot f - \frac{1}{2} \left\{ \frac{k_m}{d_m} + \frac{k_n}{d_n} \right\}, z \right| \right|$$
$$= \sup_{f \in F} \left| \left| f - y_{m,n}, z \right| \right| \cdot \left(\frac{d_m + d_n}{2d_m d_n} \right) \ge d \cdot \left(\frac{d_m + d_n}{2d_m d_n} \right)$$

Since F is a compact subset of X, there exists an $f \in F$ such that

$$\left|\left|\frac{f-k_m}{d_m} + \frac{f-k_n}{d_n}, z\right|\right| \ge d \cdot \frac{(d_m+d_n)}{d_m d_n}.$$

By (8) and the uniform convexity of the 2-norm it follows that for a given $\epsilon > 0$, there exists an N such that

$$\left|\left|\frac{f-k_m}{d_m} - \frac{f-k_n}{d_n}, z\right|\right| < \epsilon$$

for m, n > N and $z \in X \setminus V(f, k_n)$.

Since $d_m \to d$ as $m \to \infty$ we can easily see that the sequence $\{k_n\}$ is a Cauchy sequence, hence if converges to some $k \in K \subset X$ as K is closed. This provides that K is a best simultaneous approximation.

Assume that there exists two best simultaneous approximations k_1 and k_2 . Then there exists sequences $\{k_n\}$ and $\{k_m\}$ such that $k_n \to k_1$ as $n \to \infty$ and $k_m \to k_2$ as $m \to \infty$.

Again,

$$\lim_{n \to \infty} \sup_{f \in F} ||f - k_n, z|| = d = \lim_{n \to \infty} \sup_{f \in F} ||f - k_m, z||.$$

This implies that

$$\sup_{f \in F} ||f - k_1, z|| = \sup_{f \in F} ||f - k_2, z||$$
$$k_1 = k_2.$$

References

- Diaz, J. B. and H. W. McLaughlin, Simultaneous approximation of a set of bounded function, Math. Comp. 23, 1969, 583-594.
- [2] Diaz, J. B. and H. W. McLaughlin, On simultaneous chebyshev approximation and chebyshev approximation with additive weight function, J. App. Theory, 6, 1972, 68-71.
- [3] Dunford, N. and J. Schwartz, *Linear operators. Interscience publishers*, New York, 1960.
- [4] Dunham, C. B., Simultaneous chebyshev approximations of functions on an interval, Proc. Amer. Math. Soc., 18, 1967, 472-477.
- [5] Elumalai, S., Best approximation sets in linear 2-normed spaces, Commu. Korean. Math. Soc., 12, 1997, 619-629.

- [6] Elumalai, S. and Mercy Souruparani, On best approximation in linear 2-normed spaces in the sense of Lumer, Proceedings of the national Conference on optimization techniques in industrial mathematics, 2000, 73-82.
- [7] Elumalai, S. and Mercy Souruparani, A characterization of best approximation and operators in linear 2-normed spaces, Cal. Math. Soc. 92(4)(2000), 235-248.
- [8] Goel, D. S., A. S. B. Holland, C. Nasim and B. N. Sahney, On best simultaneous approximation in normed linear spaces, Canadian mathematical Bulletin, 17, 4, 1974, 523-527.
- [9] Goel, D. S., A. S. B. Holland, C. Nasim and B. N. Sahney, Characterization of an element of best l^p simultaneous approximation, S. Ramanujan Memorial Volume Madras, 1974, 10-14.

S.ELUMALAI

Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai - 600 005, Tamilnadu, India.

R. VIJAYARAGAVAN
School of Science and Humanities,
Vellore Institute of Technology University,
Vellore - 632 014,
Tamilnadu,
India.