General Mathematics , Vol. 16, Nr. 1 (2008), 59-72

About a class of linear positive operators¹

Ovidiu T. Pop and Mircea D. Fărcaş

Abstract

In this paper we construct a class of linear positive operators $(L_m)_{m\geq 1}$ with the help of some nodes. We study the convergence and we demonstrate the Voronovskaja-type theorem for them. By particularization, we obtain some known operators.

2000 Mathematics Subject Classification: 41A10, 41A25, 41A35, 41A36.

Key words: Linear positive operators, convergence theorem.

1 Introduction

In this section, we recall some notions and operators which we will use in this article.

Let \mathbb{N} be the set of positive integers and $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. For $m \in \mathbb{N}$, let $p_{m,k}(x)$ the fundamental polynomials of Bernstein, defined as follows

(1.1)
$$p_{m,k}(x) = \binom{m}{k} x^k (1-x)^{m-k},$$

¹Received 9 November 2007

Accepted for publication (in revised form) 4 December 2007

for any $x \in [0, 1]$ and any $k \in \{0, 1, ..., m\}$ (see [5] or [21]). For the following construction see [15]. Define the natural number m_0 by

(1.2)
$$m_0 = \begin{cases} \max\{1, -[\beta]\}, & \text{if } \beta \in \mathbb{R} \setminus \mathbb{Z} \\ \max\{1, 1 - \beta\}, & \text{if } \beta \in \mathbb{Z}. \end{cases}$$

For the real number β , we have that

(1.3)
$$m + \beta \ge \gamma_{\beta}$$

for any natural number $m, m \ge m_0$, where

(1.4)
$$\gamma_{\beta} = m_0 + \beta = \begin{cases} \max\{1+\beta,\{\beta\}\}, & \text{if } \beta \in \mathbb{R} \setminus \mathbb{Z} \\ \max\{1+\beta,1\}, & \text{if } \beta \in \mathbb{Z}. \end{cases}$$

For the real numbers $\alpha, \beta, \alpha \ge 0$, we note

(1.5)
$$\mu^{(\alpha,\beta)} = \begin{cases} 1, & \text{if } \alpha \leq \beta \\ 1 + \frac{\alpha - \beta}{\gamma_{\beta}}, & \text{if } \alpha > \beta. \end{cases}$$

For the real numbers α and β , $\alpha \geq 0$, we have that $1 \leq \mu^{(\alpha,\beta)}$ and

(1.6)
$$0 \le \frac{k+\alpha}{m+\beta} \le \mu^{(\alpha,\beta)}$$

for any natural number $m, m \ge m_0$ and for any $k \in \{0, 1, \ldots, m\}$.

For the real numbers α and β , $\alpha \geq 0$, m_0 and $\mu^{(\alpha,\beta)}$ defined by (1.2)-(1.6), let the operators $P_m^{(\alpha,\beta)} : C([0,\mu^{(\alpha,\beta)}]) \to C([0,1])$, defined for any function $f \in C([0,\mu^{(\alpha,\beta)}])$ by

(1.7)
$$\left(P_m^{(\alpha,\beta)}f\right)(x) = \sum_{k=0}^m p_{m,k}(x)f\left(\frac{k+\alpha}{m+\beta}\right),$$

for any natural number $m, m \ge m_0$ and for any $x \in [0, 1]$. These operators are named Stancu operators, introduced and studied in 1969 by D. D. Stancu in the paper [20]. In [20], the domain of definition of the Stancu operators is C([0, 1]) and the numbers α and β verify the condition $0 \le \alpha \le \beta$. **Remark 1.1.** For $\alpha = \beta = 0$ we obtain the Bernstein operators.

Remark 1.2. For $\alpha = 0$, $p \in \mathbb{N}_0$ and choosing m by m + p and p by m - p, we obtain the Schurer operators.

In 1980, G. Bleimann, P. L. Butzer and L. Hahn introduced in [4] a sequence of linear positive operators $(L_m)_{m\geq 1}$, $L_m : C_B([0,\infty)) \to C_B([0,\infty))$, defined for any function $f \in C_B([0,\infty))$ by

(1.8)
$$(L_m f)(x) = \frac{1}{(1+x)^m} \sum_{k=0}^m \binom{m}{k} x^k f\left(\frac{k}{m+1-k}\right),$$

for any $x \in [0, \infty)$ and any $m \in \mathbb{N}$, where $C_B([0, \infty)) = \{f \mid f : [0, \infty) \to \mathbb{R}, f \text{ bounded and continuous on } [0, \infty)\}.$

For $m \in \mathbb{N}$ consider the operators $S_m : C_2([0,\infty)) \to C([0,\infty))$ defined for any function $f \in C_2([0,\infty))$ by

(1.9)
$$(S_m f)(x) = e^{-mx} \sum_{k=0}^{\infty} \frac{(mx)^k}{k!} f\left(\frac{k}{m}\right),$$

for any $x \in [0,\infty)$, where $C_2([0,\infty)) = \left\{ f \in C([0,\infty)) : \lim_{x \to \infty} \frac{f(x)}{1+x^2} \text{ exists} \right\}$ and is finite $\left\}$.

The operators $(S_m)_{m\geq 1}$ are named Mirakjan-Favard-Szász operators and were introduced in 1941 by G. M. Mirakjan in [11].

They were intensively studied by J. Favard in 1944 in [8] and O. Szász in 1950 in [22].

Let for $m \in \mathbb{N}$ the operators $V_m : C_2([0,\infty)) \to C([0,\infty))$ be defined for any function $f \in C_2([0,\infty))$ by

(1.10)
$$(V_m f)(x) = (1+x)^{-m} \sum_{k=0}^{\infty} {\binom{m+k-1}{k}} \left(\frac{x}{1+x}\right)^k f\left(\frac{k}{m}\right),$$

for any $x \in [0, \infty)$.

The operators $(V_m)_{m\geq 1}$ are named Baskakov operators and they were introduced in 1957 by V. A. Baskakov in [2].

W. Meyer-König and K. Zeller have introduced in [10] a sequence of linear and positive operators. After a slight adjustment given by E. W. Cheney and A. Sharma in [6], these operators take the form $Z_m : B([0,1)) \to C([0,1))$, defined for any function $f \in B([0,1))$ by

(1.11)
$$(Z_m f)(x) = \sum_{k=0}^{\infty} {\binom{m+k}{k}} (1-x)^{m+1} x^k f\left(\frac{k}{m+k}\right),$$

for any $m \in \mathbb{N}$ and for any $x \in [0, 1)$.

These operators are named the Meyer-König and Zeller operators.

Observe that $Z_m : C([0,1]) \to C([0,1]), m \in \mathbb{N}$.

In the paper [9], M. Ismail and C. P. May consider the operators $(R_m)_{m\geq 1}$. For $m \in \mathbb{N}$, $R_m : C([0,\infty)) \to C([0,\infty))$ is defined for any function $f \in C([0,\infty))$ by

(1.12)
$$(R_m f)(x) = e^{-\frac{mx}{1+x}} \sum_{k=0}^{\infty} \frac{m(m+k)^{k-1}}{k!} \left(\frac{x}{1+x}\right)^k e^{-\frac{kx}{1+x}} f\left(\frac{k}{m}\right)$$

for any $x \in [0, \infty)$.

We consider $I \subset \mathbb{R}$, I an interval and we shall use the following functions sets: E(I), F(I) which are subsets of the set of real functions defined on I, $B(I) = \{f \mid f : I \to \mathbb{R}, f \text{ bounded on } I\}$, $C(I) = \{f \mid f : I \to \mathbb{R}, f \text{ continuous on } I\}$ and $C_B(I) = B(I) \cap C(I)$. For any $x \in I$, consider the function $\psi_x : I \to \mathbb{R}$ defined by $\psi_x(t) = t - x$, for any $t \in I$.

2 Preliminaries

The following construction is about the idea from [15]. Let I, J be real intervals with $I \cap J \neq \emptyset$ and $p_m = m$ for any $m \in \mathbb{N}$ (the finite case) or $p_m = \infty$ for any $m \in \mathbb{N}$ (the infinite case). For any $m \in \mathbb{N}$ and $k \in \{0, 1, ..., p_m\} \cap \mathbb{N}_0$, consider the nodes $x_{m,k} \in I$ and the functions $\varphi_{m,k} : J \to \mathbb{R}$ with the property that $\varphi_{m,k}(x) \ge 0$, for any $x \in J$. We suppose that for any compact $K \subset I \cap J$ there exists the sequence $(u_m(K))_{m \ge 1}$, depending on K such that

(2.1)
$$\lim_{m \to \infty} u_m(K) = 0$$

uniformly on K and

(2.2)
$$\left|\sum_{k=0}^{p_m}\varphi_{m,k}(x) - 1\right| \le u_m(K)$$

for any $x \in K$, any $m \in \mathbb{N}$ and we note $u(K) = \sup\{u_m(K) : m \in K\}$.

Remark 2.1. From (2.1) it result that $\lim_{m\to\infty}\sum_{k=0}^{p_m}\varphi_{m,k}(x) = 1$, for any $x \in J$.

Let a fixed function $w: I \to (0, \infty)$, called the weight function and the set functions

(2.3) $E_w(I) = \{f | f : I \to \mathbb{R} \text{ such that } wf \text{ is bounded on } I\}.$

For $f \in E_w(I)$ there exists a positive constant M(f), depending on f, such that $w(x)|f(x)| \leq M(f)$ for any $x \in I$. Then, for $m \in \mathbb{N}$ and $x \in J$, and taking in the end (2.2) into account, we have

$$\left| \sum_{k=0}^{p_m} \varphi_{m,k}(x) f(x_{m,k}) \right| \le \sum_{k=0}^{p_m} \varphi_{m,k}(x) |f(x_{m,k})| \le \frac{M(f)}{w(x)} \sum_{k=0}^{p_m} \varphi_{m,k}(x) \le \frac{M(f)}{w(x)} (1 + u_m(K)) \le \frac{M(f)}{w(x)} (1 + u(K)),$$

from where it results that the sum $\sum_{k=0}^{p_m} \varphi_{m,k}(x) f(x_{m,k})$ exists.

We consider the operators $(L_m)_{m\geq 1}$ defined by

(2.4)
$$(L_m f)(x) = \sum_{k=0}^{p_m} \varphi_{m,k}(x) f(x_{m,k})$$

for any $f \in E_w(I)$, $x \in J$ and $m \in \mathbb{N}$.

Proposition 2.1. The operators $(L_m)_{m\geq 1}$ are linear and positive on $E_w(I)$.

Proof. The proof follows immediately.

3 Main results

In the following, let s be fixed natural number, s even. For any $x \in I \cap J$ we suppose that $\psi_x^i \in E_w(I)$, where $i \in \{0, 1, \ldots, s+2\}$. For $m \in \mathbb{N}$ and $i \in \{0, 1, \ldots, s+2\}$ define

(3.1)
$$(T_i L_m)(x) = m^i (L_m \psi_x^i)(x) = m^i \sum_{k=0}^{p_m} (x_{m,k} - x)^i \varphi_{m,k}(x)$$

for any $x \in I \cap J$.

Theorem 3.1. Let $x \in I \cap J$ and we suppose that there exist $\alpha_{s+2} \geq 0$ and $m(s) \in \mathbb{N}$ such that $\frac{(T_{s+2}L_m)(x)}{m^{\alpha_{s+2}}}$ is bounded for any $m \in \mathbb{N}$, $m \geq m(s)$. If $\gamma \in \mathbb{R}$ verify $\gamma < s + 2 - \alpha_{s+2}$ and $\delta > 0$, then

(3.2)
$$\lim_{m \to \infty} m^{\gamma} \sum_{|x_{m,k}-x| \ge \delta} (x_{m,k}-x)^s \varphi_{m,k}(x) = 0.$$

If for the compact interval $K \subset I \cap J$ exist $m(s) \in \mathbb{N}$ and the constant $k_{s+2}(K) \in \mathbb{R}$, depending on K, such that for any $m \in \mathbb{N}$, $m \geq m(s)$ and $x \in K$ we have

(3.3)
$$\frac{(T_{s+2}L_m)(x)}{m^{\alpha_{s+2}}} \le k_{s+2}(K),$$

then the convergence given in (3.2) is uniform on K.

Proof. We have

$$\sum_{\substack{|x_{m,k}-x| \ge \delta}} (x_{m,k}-x)^s \varphi_{m,k}(x) \le \frac{1}{\delta^2} \sum_{\substack{|x_{m,k}-x| \ge \delta}} (x_{m,k}-x)^{s+2} \varphi_{m,k}(x) \le \sum_{k=0}^{p_m} (x_{m,k}-x)^{s+2} \varphi_{m,k}(x) = \frac{1}{\delta^2 m^{s+2}} (T_{s+2}L_m)(x),$$

SO

(3.4)
$$m^{\gamma} \sum_{|x_{m,k}-x| \ge \delta} (x_{m,k}-x)^{s} \varphi_{m,k}(x) \le \frac{1}{\delta^{2} m^{s+2-\gamma}} (T_{s+2}L_{m})(x).$$

But

$$\frac{1}{\delta^2 m^{s+2-\gamma}} (T_{s+2}L_m)(x) = \frac{1}{\delta^2 m^{s+2-\alpha_{s+2}-\gamma}} \cdot \frac{(T_{s+2}L_m)(x)}{m^{\alpha_{s+2}}}$$

and because $\gamma < s+2-\alpha_{s+2}$, we get $s+2-\alpha_{s+2}-\gamma > 0$. Because $\frac{(T_{s+2}L_m)(x)}{m^{\alpha_{s+2}}}$ is bounded for any $m \in \mathbb{N}, m \ge m(s)$, it results that

$$\lim_{m \to \infty} \frac{1}{\delta^2 m^{s+2-\alpha_{s+2}-\gamma}} \cdot \frac{(T_{s+2}L_m)(x)}{m^{\alpha_{s+2}}} = 0.$$

Considering the limit compute above, the fact that s is even and (3.4), we obtain (3.2).

Remark 3.1. In Theorem 3.1 we choose the smallest α_{s+2} and the bigger γ , if they exists.

In the following, we suppose that exists M > 0 such that the inequality

(3.5)
$$\sum_{k=0}^{p_m} \varphi_{m,k}(x) \le M$$

holds for any $x \in J$ and any $m \in \mathbb{N}$.

Theorem 3.2. If $f \in E_w(I)$ is a s times differentiable function at $x \in I \cap J$ (if s = 0 we consider that f is continuous on $I \cap J$) and we suppose that exists $\alpha_{s+2} \ge 0$ and $m(s) \in \mathbb{N}$ such that $\frac{(T_{s+2}L_m)(x)}{m^{\alpha_{s+2}}}$ is bounded for any $m \in \mathbb{N}, m \ge m(s)$, then for any γ which verify

$$(3.6) \qquad \qquad \gamma < s + 2 - \alpha_{s+2}$$

we have

(3.7)
$$\lim_{m \to \infty} m^{\gamma} \left[(L_m f)(x) - \sum_{i=0}^{s} \frac{1}{m^i i!} (T_i L_m)(x) f^{(i)}(x) \right] = 0.$$

If $f \in E_w(I)$ is a s times differentiable function on I and for the compact interval $K \subset I \cap J$ exist $m(s) \in \mathbb{N}$ and the constant $k_{s+2}(K) \in \mathbb{R}$, depending on K, such that for any $m \in \mathbb{N}$, $m \ge m(s)$ and $x \in K$ we have

(3.8)
$$\frac{(T_{s+2}L_m)(x)}{m^{\alpha_{s+2}}} \le k_{s+2}(K),$$

then the convergence given in (3.7) is uniform on K.

Proof. According to Taylor's formula for the function f arround x, we have

(3.9)
$$f(t) = \sum_{i=0}^{s} \frac{(t-x)^{i}}{i!} f^{(i)}(x) + (t-x)^{s} \mu(t-x)$$

where μ is a bounded function and $\lim_{t\to x} \mu(t-x) = 0$. Then exists a neighborhood V = [-a, a] of the point 0 such that for any $\epsilon > 0$, exists $\delta_{\epsilon} > 0$, for any $h \in V$ with $|h| < \delta_{\epsilon}$, we have

$$(3.10) \qquad \qquad |\mu(h)| < \epsilon.$$

If we replace t with $x_{m,k}$ in (3.9), multiply by $\varphi_{m,k}(x)$ and sum after k, when $k \in \{0, 1, \ldots, p_m\}$, we obtain

$$(L_m f)(x) = \sum_{k=0}^{p_m} \sum_{i=0}^{s} \frac{(x_{m,k} - x)^i}{i!} \varphi_{m,k}(x) f^{(i)}(x) + + \sum_{k=0}^{p_m} (x_{m,k} - x)^s \varphi_{m,k}(x) \mu(x_{m,k} - x) = = \sum_{i=0}^{s} \frac{1}{m^i i!} \left[m^i \sum_{k=0}^{p_m} (x_{m,k} - x)^i \varphi_{m,k}(x) \right] f^{(i)}(x) + + \sum_{k=0}^{p_m} (x_{m,k} - x)^s \varphi_{m,k}(x) \mu(x_{m,k} - x),$$

or

$$(L_m f)(x) - \sum_{i=0}^{s} \frac{1}{m^i i!} (T_i L_m)(x) f^{(i)}(x) = \sum_{k=0}^{p_m} (x_{m,k} - x)^s \varphi_{m,k}(x) \mu(x_{m,k} - x)$$

and thus

(3.11)
$$m^{\gamma} \left[(L_m f)(x) - \sum_{i=0}^{s} \frac{1}{m^i i!} (T_i L_m)(x) f^{(i)}(x) \right] = (R_m f)(x),$$

where

(3.12)
$$(R_m f)(x) = m^{\gamma} \sum_{k=0}^{p_m} (x_{m,k} - x)^s \varphi_{m,k}(x) \mu(x_{m,k} - x).$$

Consider δ_{ϵ} from (3.10), $I_m = \{0, 1, \dots, p_m\} \cap \mathbb{N}, I_{m,1} = \{k \in I_m : |x_{m,k} - x| < \delta_{\epsilon}\}$ and $I_{m,2} = \{k \in I_m : |x_{m,k} - x| \ge \delta_{\epsilon}\}$. Then

$$|(R_m f)(x)| \le m^{\gamma} \sum_{k=0}^{p_m} (x_{m,k} - x)^s \varphi_{m,k}(x) |\mu(x_{m,k} - x)| =$$

= $m^{\gamma} \sum_{k \in I_{m,1}} (x_{m,k} - x)^s \varphi_{m,k}(x) |\mu(x_{m,k} - x)| +$
+ $m^{\gamma} \sum_{k \in I_{m,2}} (x_{m,k} - x)^s \varphi_{m,k}(x) |\mu(x_{m,k} - x)|$

and taking (3.10) into account, and considering the fact that μ is bounded, so $\sup_{t \in V} |\mu(t)| = \eta$, we have

(3.13)
$$|(R_m f)(x)| \le m^{\gamma} \epsilon \sum_{k \in I_{m,1}} (x_{m,k} - x)^s \varphi_{m,k}(x) + m^{\gamma} \eta \sum_{k \in I_{m,2}} (x_{m,k} - x)^s \varphi_{m,k}(x).$$

But $(x_{m,k} - x)^s \le (2a)^s$, so

(3.14)
$$\sum_{k \in I_{m,1}} (x_{m,k} - x)^s \varphi_{m,k}(x) \le (2a)^s \sum_{k \in I_{m,1}} \varphi_{m,k}(x) \le (2a)^s \sum_{k=0}^{p_m} \varphi_{m,k}(x).$$

Taking (3.5) and (3.14) into account, we have that

(3.15)
$$m^{\gamma} \epsilon \sum_{k \in I_{m,1}} (x_{m,k} - x)^s \varphi_{m,k}(x) \le m^{\gamma} (2a)^s M.$$

From (3.6), we have that $\gamma < s + 2 - \alpha_{s+2}$ and then from Theorem 3.1 we obtain $\lim_{m \to \infty} m^{\gamma} \sum_{k \in I_{m,2}} (x_{m,k} - x)^s \varphi_{m,k}(x) = 0$, thus for ϵ from (3.10), there exists $m(\epsilon) \in \mathbb{N}$, for any $m \in \mathbb{N}$, $m \ge m(\epsilon)$, we have

(3.16)
$$m^{\gamma}\eta \sum_{k \in I_{m,2}} (x_{m,k} - x)^s \varphi_{m,k}(x) < \epsilon.$$

Choose $\epsilon = \frac{1}{m[m^{\gamma}(2a)^s M+1]}$ and there exists $m(\epsilon) \in \mathbb{N}$, for any $m \in \mathbb{N}$, $m \ge m(\epsilon)$, from (3.13)-(3.16) it results that $|(R_m f)(x)| < \frac{1}{m}$, and so

(3.17)
$$\lim_{m \to \infty} (R_m f)(x) = 0.$$

From (3.11) and (3.13), (3.7) follows. For the second afirmation from Theorem 3.2, we apply in the proof above the Theorem 3.1.

For s = 0, respectively s = 2 in Theorem 3.2 we obtain the Corollary 3.1.

Corollary 3.1. If $f \in E_w(I)$ is a s times differentiable function at $x \in I \cap J$ and we suppose that exist $\alpha_{s+2} \geq 0$ and $m(s) \in \mathbb{N}$ such that $\frac{(T_{s+2}L_m)(x)}{m^{\alpha_{s+2}}}$ is bounded for any $m \in \mathbb{N}$, $m \geq m(s)$, then for any γ which verify

$$(3.18) \qquad \gamma < s + 2 - \alpha_{s+2}$$

we have

(3.19)
$$\lim_{m \to \infty} m^{\gamma} [(L_m f)(x) - (T_0 L_m)(x) f(x)] = 0$$

if s = 0, and

(3.20)
$$\lim_{m \to \infty} m^{\gamma} \left[(L_m f)(x) - (T_0 L_m)(x) f(x) - \frac{1}{m} (T_1 L_m)(x) f^{(1)}(x) - \frac{1}{2m^2} (T_2 L_m)(x) f^{(2)}(x) \right] = 0,$$

if s = 2.

If $f \in E_w(I)$ is a s times differentiable function on I and for the compact $K \subset I \cap J$ exist $m(s) \in \mathbb{N}$ and the constant $k_{s+2}(K) \in \mathbb{R}$, depending on K such that for any $m \in \mathbb{N}$, $m \ge m(s)$ and $x \in K$ we have

(3.21)
$$\frac{(T_{s+2}L_m)(x)}{m^{\alpha_{s+2}}} \le k_{s+2}(K),$$

where $s \in \{0,2\}$, then the convergences given in (3.19) and (3.20) are uniform on K.

Remark 3.2. The relation (3.20) from Corollary 3.1 is a Voronovskajatype identity.

In the following, in every application we have $\sum_{k=0}^{p_m} \varphi_{m,k}(x) = 1$, so $(T_0L_m)(x) = 1$ for any $x \in J$, $m \in \mathbb{N}$, $u_m(K) = 0$ for any $K \subset I \cap J$ and $m \in \mathbb{N}$, $\alpha_2 = 1$, $\alpha_4 = 2$, $\gamma = 0$ if s = 0 and $\gamma = 1$ if s = 2.

In the following, by particularization of the sequence $x_{m,k}$, $m \in \mathbb{N}$, $k \in \{0, 1, \ldots, p_m\} \cap \mathbb{N}_0$ and applying Corollary 3.1, we can obtain convergence theorems and Voronovskaja-type theorems for the operators from the first section of this paper. Because every application is a simple substitute in the Corollary 3.1, we won't replace anything.

Application 3.1. We study a particular case of the Stancu operators. Let $\alpha = 10$ and $\beta = -\frac{1}{2}$. We obtain I = [0, 22], K = J = [0, 1] and for any $f \in C([0, 22]), x \in [0, 1]$ and $m \in \mathbb{N}$

$$(P_m^{(10,-1/2)}f)(x) = \sum_{k=0}^m p_{m,k}(x)f\left(\frac{2k+20}{2m-1}\right)$$

where $\varphi_{m,k}(x) = p_{m,k}(x)$ and $x_{m,k} = \frac{2k+20}{2m-1}$, $k \in \{0, 1, \dots, m\}$. We obtain $(T_1 P_m^{(10,-1/2)})(x) = \frac{m(20+x)}{2m-1}$, $(T_2 P_m^{(10,-1/2)})(x) = m^2 \frac{4mx(1-x)+(20+x)^2}{(2m-1)^2}$ for any $m \in \mathbb{N}$ and $x \in [0,1]$, $k_2(K) = \frac{5}{4}$, $k_4(K) = \frac{19}{16}$ (see [19]).

For the Bleimann-Butzer-Hahn operators and for the Meyer-König and Zeller operators we only give the convergence theorems.

Application 3.2. We consider $I = J = [0, \infty)$, $E_w(I) = C_B([0, \infty))$, w(x) = 1 for any $x \in [0, \infty)$, K = [0, b], b > 0, $p_m = m$, $x_{m,k} = \frac{k}{m+1-k}$, $\varphi_{m,k}(x) = \frac{1}{(1+x)^m} {m \choose k} x^k$, $m \in \mathbb{N}$, $k \in \{0, 1, \ldots, m\}$, $x \in [0, \infty)$ and in this case we obtain the Bleimann-Butzer-Hahn operators. We have $(T_1L_m)(x) =$ $-mx \left(\frac{x}{1+x}\right)^m$, $x \in K$ and $k_2(K) = 4b(1+b)^2$ for $m \ge 24(1+b)$ (see [17]).

Application 3.3. If I = J = [0,1], w(x) = 1 for any $x \in [0,1]$, $E_w(I) = B([0,1])$, K = [0,1], $p_m = \infty$, $x_{m,k} = \frac{k}{m+k}$, $(\varphi_{m,k})(x) = \binom{m+k}{k}(1-x)^{m+1}x^k$, $m \in \mathbb{N}, k \in \mathbb{N}_0, x \in [0,1]$, we obtain the Meyer-König and Zeller operators and we have $(T_1Z_m)(x) = 0, m \in \mathbb{N}, x \in [0,1]$, and $k_2(K) = 2$ (see [16]).

Application 3.4. If $I = J = [0, \infty)$, $w(x) = \frac{1}{1+x^2}$ for any $x \in [0, \infty)$, $E_w(I) = C_2([0, \infty))$, K = [0, b], b > 0, $p_m = \infty$, $x_{m,k} = \frac{k}{m}$, $\varphi_{m,k}(x) = e^{-mx}\frac{(mx)^k}{k!}$, $m \in \mathbb{N}$, $k \in \mathbb{N}_0$, $x \in [0, \infty)$, we obtain the Mirakjan-Favard-Szász operators. We have $(T_1S_m)(x) = 0$, $(T_2S_m)(x) = mx$, $m \in \mathbb{N}$, $x \in [0, \infty)$, $k_2(K) = b$ and $k_4(K) = 3b^2 + b$ (see [16]).

Application 3.5. Let $I = J = [0, \infty)$, $w(x) = \frac{1}{1+x^2}$ for any $x \in [0, \infty)$, $E_w(I) = C_2([0, \infty))$, K = [0, b], b > 0, $p_m = \infty$, $x_{m,k} = \frac{k}{m}$, $\varphi_{m,k}(x) = (1 + x)^{-m} {\binom{m+k-1}{k}} (\frac{x}{1+x})^k$, $m \in \mathbb{N}$, $k \in \mathbb{N}_0$ and $x \in [0, \infty)$. In this case we obtain the Baskakov operators and we have $(T_1V_m)(x) = 0$, $(T_2V_m)(x) = mx(1+x)$, $m \in \mathbb{N}$, $x \in [0, \infty)$, $k_2(K) = b(1+b)$ and $k_4(K) = 9b^4 + 10b^3 + 10b^2 + b$ (see [16]).

Application 3.6. If $I = J = [0, \infty)$, w(x) = 1 for any $x \in [0, \infty)$, $E_w(I) = C([0, \infty))$, K = [0, b], b > 0, $p_m = \infty$, $x_{m,k} = \frac{k}{m}$, $\varphi_{m,k}(x) = \frac{m(m+k)^{k-1}}{k!} \left(\frac{x}{1+x}\right)^k e^{-\frac{(k+m)x}{1+x}}$, $m \in \mathbb{N}$, $k \in \mathbb{N}_0$, $x \in [0, \infty)$, we obtain the Ismail-May operators. We have $(T_1R_m)(x) = 0$, $(T_2R_m)(x) = mx(1+x)^2$, $m \in \mathbb{N}$, $x \in [0, \infty)$, $k_2(K) = 1 + b(1+b)^2$ and $k_4(K) = 1 + b^2(1+b)^4$ (see [18]).

References

- [1] Agratini, O., *Aproximare prin operatori liniari*, Presa Universitară Clujeană, Cluj-Napoca, 2000 (Romanian)
- [2] Baskakov, V. A., An example of a sequence of linear positive operators in the space of continuous functions, Dokl. Acad. Nauk, SSSR, 113 (1957), 249-251
- [3] Becker, M., Nessel, R. J., A global approximation theorem for Meyer-König and Zeller operators, Math. Zeitschr., 160 (1978), 195-206
- [4] Bleimann, G., Butzer, P. L., Hahn, L. A., Bernstein-type operator approximating continuous functions on the semi-axis, Indag. Math., 42 (1980), 255-262

- [5] Bernstein, S. N., Démonstration du théorème de Weierstrass fondée sur le calcul de probabilités, Commun. Soc. Math. Kharkow (2), 13 (1912-1913), 1-2
- [6] Cheney, E. W., Sharma, A., Bernstein power series, Canadian J. Math., 16 (1964), 2, 241-252
- [7] Ditzian, Z., Totik, V., Moduli of Smoothness, Springer Verlag, Berlin, 1987
- [8] Favard, J., Sur les multiplicateurs d'interpolation, J. Math. Pures Appl., 23 (9) (1944), 219-247
- Ismail, M., May, C. P., On a family of approximation operators, J. Math. Anal. Appl., 63 (1978), 446-462
- [10] Meyer-König, W., Zeller, K., Bernsteinsche Potenzreihen, Studia Math., 19 (1960), 89-94
- [11] Mirakjan, G. M., Approximation of continuous functions with the aid of polynomials, Dokl. Acad. Nauk SSSR, 31 (1941), 201-205 (Russian)
- [12] Müller, M. W., Die Folge der Gammaoperatoren, Dissertation, Stuttgart, 1967
- [13] Pop, O. T., New properties of the Bernstein-Stancu operators, Anal. Univ. Oradea, Fasc. Matematica, Tom XI (2004), 51-60
- [14] Pop, O. T., The generalization of Voronovskaja's theorem for a class of linear and positive operators, Rev. Anal. Num. Théor. Approx., 34 (2005), No. 1, 79-91
- [15] Pop, O. T., About a class of linear and positive operators, Carpathian J. Math., 21 (2005), No. 1-2, 99-108
- [16] Pop, O. T., About some linear and positive operators defined by infinite sum, Dem. Math., XXXIX, No. 2 (2006), 377-388

- [17] Pop, O. T., On operators of the type Bleimann, Butzer and Hahn, Anal. Univ. Timişoara, XLIII, Fasc. 1 (2005), 115-124
- [18] Pop, O. T., The generalization of Voronovskaja's theorem for exponential operators, Creative Math & Inf., 16(2007), 54-62
- [19] Pop, O.T., Fărcaş, M.D., The Voronovskaja-type theorem for a class of linear positive operators (to appear)
- [20] Stancu, D. D., Asupra unei generalizări a polinoamelor lui Bernstein, Studia Univ. Babeş-Bolyai, Ser. Math.-Phys., 14 (1969), 31-45 (Romanian)
- [21] Stancu, D. D., Coman, Gh., Agratini, O., Trîmbiţaş, R., Analiză numerică şi teoria aproximării, I, Presa Universitară Clujeană, Cluj-Napoca, 2001 (Romanian)
- [22] Szász, O., Generalization of. S. N. Bernstein's polynomials to the infinite interval, J. Research, National Bureau of Standards, 45 (1950), 239-245
- [23] Timan, A. F., Theory of Approximation of Functions of Real Variable, New York: Macmillan Co. 1963, MR22#8257
- [24] Voronovskaja, E., Détermination de la forme asymptotique d'approximation des fonctions par les polynômes de S. N. Bernstein, C. R. Acad. Sci. URSS (1932), 79-85

Ovidiu T. Pop	M. D. Fărcaş
Vest University "Vasile Goldiş" of Arad	National College "Mihai Eminescu"
Branch of Satu Mare,	5 Mihai Eminescu Street,
26 Mihai Viteazul Street,	Satu Mare,
Satu Mare,	440014,
440030,	Romania
Romania	E-mail: mirceafarcas2005@yahoo.com
E-mail: ovidiutiberiu@yahoo.com	