About a class of linear positive operators ${ }^{1}$
 Ovidiu T. Pop and Mircea D. Fărcaş

Abstract

In this paper we construct a class of linear positive operators $\left(L_{m}\right)_{m \geq 1}$ with the help of some nodes. We study the convergence and we demonstrate the Voronovskaja-type theorem for them. By particularization, we obtain some known operators.

2000 Mathematics Subject Classification: 41A10, 41A25, 41A35, 41A36.

Key words: Linear positive operators, convergence theorem.

1 Introduction

In this section, we recall some notions and operators which we will use in this article.

Let \mathbb{N} be the set of positive integers and $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. For $m \in \mathbb{N}$, let $p_{m, k}(x)$ the fundamental polynomials of Bernstein, defined as follows

$$
\begin{equation*}
p_{m, k}(x)=\binom{m}{k} x^{k}(1-x)^{m-k} \tag{1.1}
\end{equation*}
$$

[^0]for any $x \in[0,1]$ and any $k \in\{0,1, \ldots, m\}$ (see [5] or [21]). For the following construction see [15]. Define the natural number m_{0} by
\[

m_{0}=\left\{$$
\begin{array}{lll}
\max \{1,-[\beta]\}, & \text { if } & \beta \in \mathbb{R} \backslash \mathbb{Z} \tag{1.2}\\
\max \{1,1-\beta\}, & \text { if } & \beta \in \mathbb{Z}
\end{array}
$$\right.
\]

For the real number β, we have that

$$
\begin{equation*}
m+\beta \geq \gamma_{\beta} \tag{1.3}
\end{equation*}
$$

for any natural number $m, m \geq m_{0}$, where

$$
\gamma_{\beta}=m_{0}+\beta= \begin{cases}\max \{1+\beta,\{\beta\}\}, & \text { if } \beta \in \mathbb{R} \backslash \mathbb{Z} \tag{1.4}\\ \max \{1+\beta, 1\}, & \text { if } \beta \in \mathbb{Z}\end{cases}
$$

For the real numbers $\alpha, \beta, \alpha \geq 0$, we note

$$
\mu^{(\alpha, \beta)}=\left\{\begin{array}{lll}
1, & \text { if } & \alpha \leq \beta \tag{1.5}\\
1+\frac{\alpha-\beta}{\gamma_{\beta}}, & \text { if } & \alpha>\beta
\end{array}\right.
$$

For the real numbers α and $\beta, \alpha \geq 0$, we have that $1 \leq \mu^{(\alpha, \beta)}$ and

$$
\begin{equation*}
0 \leq \frac{k+\alpha}{m+\beta} \leq \mu^{(\alpha, \beta)} \tag{1.6}
\end{equation*}
$$

for any natural number $m, m \geq m_{0}$ and for any $k \in\{0,1, \ldots, m\}$.
For the real numbers α and $\beta, \alpha \geq 0, m_{0}$ and $\mu^{(\alpha, \beta)}$ defined by (1.2)(1.6), let the operators $P_{m}^{(\alpha, \beta)}: C\left(\left[0, \mu^{(\alpha, \beta)}\right]\right) \rightarrow C([0,1])$, defined for any function $f \in C\left(\left[0, \mu^{(\alpha, \beta)}\right]\right)$ by

$$
\begin{equation*}
\left(P_{m}^{(\alpha, \beta)} f\right)(x)=\sum_{k=0}^{m} p_{m, k}(x) f\left(\frac{k+\alpha}{m+\beta}\right), \tag{1.7}
\end{equation*}
$$

for any natural number $m, m \geq m_{0}$ and for any $x \in[0,1]$. These operators are named Stancu operators, introduced and studied in 1969 by D. D. Stancu in the paper [20]. In [20], the domain of definition of the Stancu operators is $C([0,1])$ and the numbers α and β verify the condition $0 \leq \alpha \leq \beta$.

Remark 1.1. For $\alpha=\beta=0$ we obtain the Bernstein operators.
Remark 1.2. For $\alpha=0, p \in \mathbb{N}_{0}$ and choosing m by $m+p$ and p by $m-p$, we obtain the Schurer operators.

In 1980, G. Bleimann, P. L. Butzer and L. Hahn introduced in [4] a sequence of linear positive operators $\left(L_{m}\right)_{m \geq 1}, L_{m}: C_{B}([0, \infty)) \rightarrow C_{B}([0, \infty))$, defined for any function $f \in C_{B}([0, \infty))$ by

$$
\begin{equation*}
\left(L_{m} f\right)(x)=\frac{1}{(1+x)^{m}} \sum_{k=0}^{m}\binom{m}{k} x^{k} f\left(\frac{k}{m+1-k}\right) \tag{1.8}
\end{equation*}
$$

for any $x \in[0, \infty)$ and any $m \in \mathbb{N}$, where $C_{B}([0, \infty))=\{f \mid f:[0, \infty) \rightarrow \mathbb{R}$, f bounded and continuous on $[0, \infty)\}$.

For $m \in \mathbb{N}$ consider the operators $S_{m}: C_{2}([0, \infty)) \rightarrow C([0, \infty))$ defined for any function $f \in C_{2}([0, \infty))$ by

$$
\begin{equation*}
\left(S_{m} f\right)(x)=e^{-m x} \sum_{k=0}^{\infty} \frac{(m x)^{k}}{k!} f\left(\frac{k}{m}\right) \tag{1.9}
\end{equation*}
$$

for any $x \in[0, \infty)$, where $C_{2}([0, \infty))=\left\{f \in C([0, \infty)): \lim _{x \rightarrow \infty} \frac{f(x)}{1+x^{2}}\right.$ exists and is finite $\}$.

The operators $\left(S_{m}\right)_{m \geq 1}$ are named Mirakjan-Favard-Szász operators and were introduced in 1941 by G. M. Mirakjan in [11].

They were intensively studied by J. Favard in 1944 in [8] and O. Szász in 1950 in [22].

Let for $m \in \mathbb{N}$ the operators $V_{m}: C_{2}([0, \infty)) \rightarrow C([0, \infty))$ be defined for any function $f \in C_{2}([0, \infty))$ by

$$
\begin{equation*}
\left(V_{m} f\right)(x)=(1+x)^{-m} \sum_{k=0}^{\infty}\binom{m+k-1}{k}\left(\frac{x}{1+x}\right)^{k} f\left(\frac{k}{m}\right) \tag{1.10}
\end{equation*}
$$

for any $x \in[0, \infty)$.
The operators $\left(V_{m}\right)_{m \geq 1}$ are named Baskakov operators and they were introduced in 1957 by V. A. Baskakov in [2].
W. Meyer-König and K. Zeller have introduced in [10] a sequence of linear and positive operators. After a slight adjustment given by E. W. Cheney and A. Sharma in [6], these operators take the form $Z_{m}: B([0,1)) \rightarrow$ $C([0,1))$, defined for any function $f \in B([0,1))$ by

$$
\begin{equation*}
\left(Z_{m} f\right)(x)=\sum_{k=0}^{\infty}\binom{m+k}{k}(1-x)^{m+1} x^{k} f\left(\frac{k}{m+k}\right) \tag{1.11}
\end{equation*}
$$

for any $m \in \mathbb{N}$ and for any $x \in[0,1)$.
These operators are named the Meyer-König and Zeller operators.
Observe that $Z_{m}: C([0,1]) \rightarrow C([0,1]), m \in \mathbb{N}$.
In the paper [9], M. Ismail and C. P. May consider the operators $\left(R_{m}\right)_{m \geq 1}$.
For $m \in \mathbb{N}, R_{m}: C([0, \infty)) \rightarrow C([0, \infty))$ is defined for any function $f \in C([0, \infty))$ by

$$
\begin{equation*}
\left(R_{m} f\right)(x)=e^{-\frac{m x}{1+x}} \sum_{k=0}^{\infty} \frac{m(m+k)^{k-1}}{k!}\left(\frac{x}{1+x}\right)^{k} e^{-\frac{k x}{1+x}} f\left(\frac{k}{m}\right) \tag{1.12}
\end{equation*}
$$

for any $x \in[0, \infty)$.
We consider $I \subset \mathbb{R}, I$ an interval and we shall use the following functions sets: $E(I), F(I)$ which are subsets of the set of real functions defined on $I, B(I)=\{f \mid f: I \rightarrow \mathbb{R}, f$ bounded on $I\}, C(I)=\{f \mid f: I \rightarrow \mathbb{R}, f$ continuous on $I\}$ and $C_{B}(I)=B(I) \cap C(I)$. For any $x \in I$, consider the function $\psi_{x}: I \rightarrow \mathbb{R}$ defined by $\psi_{x}(t)=t-x$, for any $t \in I$.

2 Preliminaries

The following construction is about the idea from [15]. Let I, J be real intervals with $I \cap J \neq \emptyset$ and $p_{m}=m$ for any $m \in \mathbb{N}$ (the finite case) or $p_{m}=$ ∞ for any $m \in \mathbb{N}$ (the infinite case). For any $m \in \mathbb{N}$ and $k \in\left\{0,1, \ldots, p_{m}\right\} \cap \mathbb{N}_{0}$, consider the nodes $x_{m, k} \in I$ and the functions $\varphi_{m, k}: J \rightarrow \mathbb{R}$ with the property that $\varphi_{m, k}(x) \geq 0$, for any $x \in J$. We suppose that for any compact $K \subset I \cap J$ there exists the sequence $\left(u_{m}(K)\right)_{m \geq 1}$, depending on K such that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} u_{m}(K)=0 \tag{2.1}
\end{equation*}
$$

uniformly on K and

$$
\begin{equation*}
\left|\sum_{k=0}^{p_{m}} \varphi_{m, k}(x)-1\right| \leq u_{m}(K) \tag{2.2}
\end{equation*}
$$

for any $x \in K$, any $m \in \mathbb{N}$ and we note $u(K)=\sup \left\{u_{m}(K): m \in K\right\}$.
Remark 2.1. From (2.1) it result that $\lim _{m \rightarrow \infty} \sum_{k=0}^{p_{m}} \varphi_{m, k}(x)=1$, for any $x \in J$.
Let a fixed function $w: I \rightarrow(0, \infty)$, called the weight function and the set functions

$$
\begin{equation*}
E_{w}(I)=\{f \mid f: I \rightarrow \mathbb{R} \text { such that } w f \text { is bounded on } I\} . \tag{2.3}
\end{equation*}
$$

For $f \in E_{w}(I)$ there exists a positive constant $M(f)$, depending on f, such that $w(x)|f(x)| \leq M(f)$ for any $x \in I$. Then, for $m \in \mathbb{N}$ and $x \in J$, and taking in the end (2.2) into account, we have

$$
\begin{aligned}
& \left|\sum_{k=0}^{p_{m}} \varphi_{m, k}(x) f\left(x_{m, k}\right)\right| \leq \sum_{k=0}^{p_{m}} \varphi_{m, k}(x)\left|f\left(x_{m, k}\right)\right| \leq \frac{M(f)}{w(x)} \sum_{k=0}^{p_{m}} \varphi_{m, k}(x) \leq \\
& \leq \frac{M(f)}{w(x)}\left(1+u_{m}(K)\right) \leq \frac{M(f)}{w(x)}(1+u(K)),
\end{aligned}
$$

from where it results that the sum $\sum_{k=0}^{p_{m}} \varphi_{m, k}(x) f\left(x_{m, k}\right)$ exists.
We consider the operators $\left(L_{m}\right)_{m \geq 1}$ defined by

$$
\begin{equation*}
\left(L_{m} f\right)(x)=\sum_{k=0}^{p_{m}} \varphi_{m, k}(x) f\left(x_{m, k}\right) \tag{2.4}
\end{equation*}
$$

for any $f \in E_{w}(I), x \in J$ and $m \in \mathbb{N}$.
Proposition 2.1. The operators $\left(L_{m}\right)_{m \geq 1}$ are linear and positive on $E_{w}(I)$.
Proof. The proof follows immediately.

3 Main results

In the following, let s be fixed natural number, s even. For any $x \in I \cap J$ we suppose that $\psi_{x}^{i} \in E_{w}(I)$, where $i \in\{0,1, \ldots, s+2\}$. For $m \in \mathbb{N}$ and $i \in\{0,1, \ldots, s+2\}$ define

$$
\begin{equation*}
\left(T_{i} L_{m}\right)(x)=m^{i}\left(L_{m} \psi_{x}^{i}\right)(x)=m^{i} \sum_{k=0}^{p_{m}}\left(x_{m, k}-x\right)^{i} \varphi_{m, k}(x) \tag{3.1}
\end{equation*}
$$

for any $x \in I \cap J$.
Theorem 3.1. Let $x \in I \cap J$ and we suppose that there exist $\alpha_{s+2} \geq 0$ and $m(s) \in \mathbb{N}$ such that $\frac{\left(T_{s+2} L_{m}\right)(x)}{m^{\alpha_{s+2}}}$ is bounded for any $m \in \mathbb{N}, m \geq m(s)$. If $\gamma \in \mathbb{R}$ verify $\gamma<s+2-\alpha_{s+2}$ and $\delta>0$, then

$$
\begin{equation*}
\lim _{m \rightarrow \infty} m^{\gamma} \sum_{\left|x_{m, k}-x\right| \geq \delta}\left(x_{m, k}-x\right)^{\delta} \varphi_{m, k}(x)=0 . \tag{3.2}
\end{equation*}
$$

If for the compact interval $K \subset I \cap J$ exist $m(s) \in \mathbb{N}$ and the constant $k_{s+2}(K) \in \mathbb{R}$, depending on K, such that for any $m \in \mathbb{N}$, $m \geq m(s)$ and $x \in K$ we have

$$
\begin{equation*}
\frac{\left(T_{s+2} L_{m}\right)(x)}{m^{\alpha_{s+2}}} \leq k_{s+2}(K), \tag{3.3}
\end{equation*}
$$

then the convergence given in (3.2) is uniform on K.
Proof. We have

$$
\begin{aligned}
& \quad \sum_{\left|x_{m, k}-x\right| \geq \delta}\left(x_{m, k}-x\right)^{s} \varphi_{m, k}(x) \leq \frac{1}{\delta^{2}} \sum_{\left|x_{m, k}-x\right| \geq \delta}\left(x_{m, k}-x\right)^{s+2} \varphi_{m, k}(x) \leq \\
& \leq \sum_{k=0}^{p_{m}}\left(x_{m, k}-x\right)^{s+2} \varphi_{m, k}(x)=\frac{1}{\delta^{2} m^{s+2}}\left(T_{s+2} L_{m}\right)(x),
\end{aligned}
$$

so

$$
\begin{equation*}
m^{\gamma} \sum_{\left|x_{m, k}-x\right| \geq \delta}\left(x_{m, k}-x\right)^{s} \varphi_{m, k}(x) \leq \frac{1}{\delta^{2} m^{s+2-\gamma}}\left(T_{s+2} L_{m}\right)(x) . \tag{3.4}
\end{equation*}
$$

But

$$
\frac{1}{\delta^{2} m^{s+2-\gamma}}\left(T_{s+2} L_{m}\right)(x)=\frac{1}{\delta^{2} m^{s+2-\alpha_{s+2}-\gamma}} \cdot \frac{\left(T_{s+2} L_{m}\right)(x)}{m^{\alpha_{s+2}}}
$$

and because $\gamma<s+2-\alpha_{s+2}$, we get $s+2-\alpha_{s+2}-\gamma>0$. Because $\frac{\left(T_{s+2} L_{m}\right)(x)}{m^{\alpha_{s}+2}}$ is bounded for any $m \in \mathbb{N}, m \geq m(s)$, it results that

$$
\lim _{m \rightarrow \infty} \frac{1}{\delta^{2} m^{s+2-\alpha_{s+2}-\gamma}} \cdot \frac{\left(T_{s+2} L_{m}\right)(x)}{m^{\alpha_{s+2}}}=0 .
$$

Considering the limit compute above, the fact that s is even and (3.4), we obtain (3.2).

Remark 3.1. In Theorem 3.1 we choose the smallest α_{s+2} and the bigger γ, if they exists.

In the following, we suppose that exists $M>0$ such that the inequality

$$
\begin{equation*}
\sum_{k=0}^{p_{m}} \varphi_{m, k}(x) \leq M \tag{3.5}
\end{equation*}
$$

holds for any $x \in J$ and any $m \in \mathbb{N}$.
Theorem 3.2. If $f \in E_{w}(I)$ is a s times differentiable function at $x \in I \cap J$ (if $s=0$ we consider that f is continuous on $I \cap J$) and we suppose that exists $\alpha_{s+2} \geq 0$ and $m(s) \in \mathbb{N}$ such that $\frac{\left(T_{s+2} L_{m}\right)(x)}{m^{\alpha_{s+2}}}$ is bounded for any $m \in \mathbb{N}, m \geq m(s)$, then for any γ which verify

$$
\begin{equation*}
\gamma<s+2-\alpha_{s+2} \tag{3.6}
\end{equation*}
$$

we have

$$
\begin{equation*}
\lim _{m \rightarrow \infty} m^{\gamma}\left[\left(L_{m} f\right)(x)-\sum_{i=0}^{s} \frac{1}{m^{i} i!}\left(T_{i} L_{m}\right)(x) f^{(i)}(x)\right]=0 . \tag{3.7}
\end{equation*}
$$

If $f \in E_{w}(I)$ is a s times differentiable function on I and for the compact interval $K \subset I \cap J$ exist $m(s) \in \mathbb{N}$ and the constant $k_{s+2}(K) \in \mathbb{R}$, depending on K, such that for any $m \in \mathbb{N}, m \geq m(s)$ and $x \in K$ we have

$$
\begin{equation*}
\frac{\left(T_{s+2} L_{m}\right)(x)}{m^{\alpha_{s+2}}} \leq k_{s+2}(K), \tag{3.8}
\end{equation*}
$$

then the convergence given in (3.7) is uniform on K.

Proof. According to Taylor's formula for the function f arround x, we have

$$
\begin{equation*}
f(t)=\sum_{i=0}^{s} \frac{(t-x)^{i}}{i!} f^{(i)}(x)+(t-x)^{s} \mu(t-x) \tag{3.9}
\end{equation*}
$$

where μ is a bounded function and $\lim _{t \rightarrow x} \mu(t-x)=0$. Then exists a neighborhood $V=[-a, a]$ of the point 0 such that for any $\epsilon>0$, exists $\delta_{\epsilon}>0$, for any $h \in V$ with $|h|<\delta_{\epsilon}$, we have

$$
\begin{equation*}
|\mu(h)|<\epsilon . \tag{3.10}
\end{equation*}
$$

If we replace t with $x_{m, k}$ in (3.9), multiply by $\varphi_{m, k}(x)$ and sum after k, when $k \in\left\{0,1, \ldots, p_{m}\right\}$, we obtain

$$
\begin{aligned}
& \left(L_{m} f\right)(x)=\sum_{k=0}^{p_{m}} \sum_{i=0}^{s} \frac{\left(x_{m, k}-x\right)^{i}}{i!} \varphi_{m, k}(x) f^{(i)}(x)+ \\
& +\sum_{k=0}^{p_{m}}\left(x_{m, k}-x\right)^{s} \varphi_{m, k}(x) \mu\left(x_{m, k}-x\right)= \\
& =\sum_{i=0}^{s} \frac{1}{m^{i} i!}\left[m^{i} \sum_{k=0}^{p_{m}}\left(x_{m, k}-x\right)^{i} \varphi_{m, k}(x)\right] f^{(i)}(x)+ \\
& +\sum_{k=0}^{p_{m}}\left(x_{m, k}-x\right)^{s} \varphi_{m, k}(x) \mu\left(x_{m, k}-x\right)
\end{aligned}
$$

or

$$
\left(L_{m} f\right)(x)-\sum_{i=0}^{s} \frac{1}{m^{i} i!}\left(T_{i} L_{m}\right)(x) f^{(i)}(x)=\sum_{k=0}^{p_{m}}\left(x_{m, k}-x\right)^{s} \varphi_{m, k}(x) \mu\left(x_{m, k}-x\right)
$$

and thus

$$
\begin{equation*}
m^{\gamma}\left[\left(L_{m} f\right)(x)-\sum_{i=0}^{s} \frac{1}{m^{i} i!}\left(T_{i} L_{m}\right)(x) f^{(i)}(x)\right]=\left(R_{m} f\right)(x), \tag{3.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(R_{m} f\right)(x)=m^{\gamma} \sum_{k=0}^{p_{m}}\left(x_{m, k}-x\right)^{s} \varphi_{m, k}(x) \mu\left(x_{m, k}-x\right) . \tag{3.12}
\end{equation*}
$$

Consider δ_{ϵ} from (3.10), $I_{m}=\left\{0,1, \ldots, p_{m}\right\} \cap \mathbb{N}, I_{m, 1}=\left\{k \in I_{m}: \mid x_{m, k}-\right.$ $\left.x \mid<\delta_{\epsilon}\right\}$ and $I_{m, 2}=\left\{k \in I_{m}:\left|x_{m, k}-x\right| \geq \delta_{\epsilon}\right\}$. Then

$$
\begin{aligned}
& \left|\left(R_{m} f\right)(x)\right| \leq m^{\gamma} \sum_{k=0}^{p_{m}}\left(x_{m, k}-x\right)^{s} \varphi_{m, k}(x)\left|\mu\left(x_{m, k}-x\right)\right|= \\
& =m^{\gamma} \sum_{k \in I_{m, 1}}\left(x_{m, k}-x\right)^{s} \varphi_{m, k}(x)\left|\mu\left(x_{m, k}-x\right)\right|+ \\
& +m^{\gamma} \sum_{k \in I_{m, 2}}\left(x_{m, k}-x\right)^{s} \varphi_{m, k}(x)\left|\mu\left(x_{m, k}-x\right)\right|
\end{aligned}
$$

and taking (3.10) into account, and considering the fact that μ is bounded, so $\sup _{t \in V}|\mu(t)|=\eta$, we have

$$
\begin{align*}
& \left|\left(R_{m} f\right)(x)\right| \leq m^{\gamma} \epsilon \sum_{k \in I_{m, 1}}\left(x_{m, k}-x\right)^{s} \varphi_{m, k}(x)+ \tag{3.13}\\
& +m^{\gamma} \eta \sum_{k \in I_{m, 2}}\left(x_{m, k}-x\right)^{s} \varphi_{m, k}(x)
\end{align*}
$$

But $\left(x_{m, k}-x\right)^{s} \leq(2 a)^{s}$, so

$$
\begin{equation*}
\sum_{k \in I_{m, 1}}\left(x_{m, k}-x\right)^{s} \varphi_{m, k}(x) \leq(2 a)^{s} \sum_{k \in I_{m, 1}} \varphi_{m, k}(x) \leq(2 a)^{s} \sum_{k=0}^{p_{m}} \varphi_{m, k}(x) . \tag{3.14}
\end{equation*}
$$

Taking (3.5) and (3.14) into account, we have that

$$
\begin{equation*}
m^{\gamma} \epsilon \sum_{k \in I_{m, 1}}\left(x_{m, k}-x\right)^{s} \varphi_{m, k}(x) \leq m^{\gamma}(2 a)^{s} M . \tag{3.15}
\end{equation*}
$$

From (3.6), we have that $\gamma<s+2-\alpha_{s+2}$ and then from Theorem 3.1 we obtain $\lim _{m \rightarrow \infty} m^{\gamma} \sum_{k \in I_{m, 2}}\left(x_{m, k}-x\right)^{s} \varphi_{m, k}(x)=0$, thus for ϵ from (3.10), there exists $m(\epsilon) \in \mathbb{N}$, for any $m \in \mathbb{N}, m \geq m(\epsilon)$, we have

$$
\begin{equation*}
m^{\gamma} \eta \sum_{k \in I_{m, 2}}\left(x_{m, k}-x\right)^{s} \varphi_{m, k}(x)<\epsilon . \tag{3.16}
\end{equation*}
$$

Choose $\epsilon=\frac{1}{m\left[m^{\gamma}(2 a)^{s} M+1\right]}$ and there exists $m(\epsilon) \in \mathbb{N}$, for any $m \in \mathbb{N}$, $m \geq m(\epsilon)$, from (3.13)-(3.16) it results that $\left|\left(R_{m} f\right)(x)\right|<\frac{1}{m}$, and so

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(R_{m} f\right)(x)=0 \tag{3.17}
\end{equation*}
$$

From (3.11) and (3.13), (3.7) follows. For the second afirmation from Theorem 3.2, we apply in the proof above the Theorem 3.1.

For $s=0$, respectively $s=2$ in Theorem 3.2 we obtain the Corollary 3.1.

Corollary 3.1. If $f \in E_{w}(I)$ is a s times differentiable function at $x \in I \cap J$ and we suppose that exist $\alpha_{s+2} \geq 0$ and $m(s) \in \mathbb{N}$ such that $\frac{\left(T_{s+2} L_{m}\right)(x)}{m^{\alpha_{s}+2}}$ is bounded for any $m \in \mathbb{N}, m \geq m(s)$, then for any γ which verify

$$
\begin{equation*}
\gamma<s+2-\alpha_{s+2}, \tag{3.18}
\end{equation*}
$$

we have

$$
\begin{equation*}
\lim _{m \rightarrow \infty} m^{\gamma}\left[\left(L_{m} f\right)(x)-\left(T_{0} L_{m}\right)(x) f(x)\right]=0 \tag{3.19}
\end{equation*}
$$

if $s=0$, and

$$
\begin{align*}
& \lim _{m \rightarrow \infty} m^{\gamma}\left[\left(L_{m} f\right)(x)-\left(T_{0} L_{m}\right)(x) f(x)-\frac{1}{m}\left(T_{1} L_{m}\right)(x) f^{(1)}(x)-\right. \tag{3.20}\\
& \left.-\frac{1}{2 m^{2}}\left(T_{2} L_{m}\right)(x) f^{(2)}(x)\right]=0
\end{align*}
$$

if $s=2$.
If $f \in E_{w}(I)$ is a s times differentiable function on I and for the compact $K \subset I \cap J$ exist $m(s) \in \mathbb{N}$ and the constant $k_{s+2}(K) \in \mathbb{R}$, depending on K such that for any $m \in \mathbb{N}, m \geq m(s)$ and $x \in K$ we have

$$
\begin{equation*}
\frac{\left(T_{s+2} L_{m}\right)(x)}{m^{\alpha_{s+2}}} \leq k_{s+2}(K) \tag{3.21}
\end{equation*}
$$

where $s \in\{0,2\}$, then the convergences given in (3.19) and (3.20) are uniform on K.

Remark 3.2. The relation (3.20) from Corollary 3.1 is a Voronovskajatype identity.

In the following, in every application we have $\sum_{k=0}^{p_{m}} \varphi_{m, k}(x)=1$, so $\left(T_{0} L_{m}\right)(x)=1$ for any $x \in J, m \in \mathbb{N}, u_{m}(K)=0$ for any $K \subset I \cap J$ and $m \in \mathbb{N}, \alpha_{2}=1, \alpha_{4}=2, \gamma=0$ if $s=0$ and $\gamma=1$ if $s=2$.

In the following, by particularization of the sequence $x_{m, k}, m \in \mathbb{N}, k \in$ $\left\{0,1, \ldots, p_{m}\right\} \cap \mathbb{N}_{0}$ and applying Corollary 3.1, we can obtain convergence theorems and Voronovskaja-type theorems for the operators from the first section of this paper. Because every application is a simple substitute in the Corollary 3.1, we won't replace anything.

Application 3.1. We study a particular case of the Stancu operators. Let $\alpha=10$ and $\beta=-\frac{1}{2}$. We obtain $I=[0,22], K=J=[0,1]$ and for any $f \in C([0,22]), x \in[0,1]$ and $m \in \mathbb{N}$

$$
\left(P_{m}^{(10,-1 / 2)} f\right)(x)=\sum_{k=0}^{m} p_{m, k}(x) f\left(\frac{2 k+20}{2 m-1}\right),
$$

where $\varphi_{m, k}(x)=p_{m, k}(x)$ and $x_{m, k}=\frac{2 k+20}{2 m-1}, k \in\{0,1, \ldots, m\}$. We obtain $\left(T_{1} P_{m}^{(10,-1 / 2)}\right)(x)=\frac{m(20+x)}{2 m-1},\left(T_{2} P_{m}^{(10,-1 / 2)}\right)(x)=m^{2} \frac{4 m x(1-x)+(20+x)^{2}}{(2 m-1)^{2}}$ for any $m \in \mathbb{N}$ and $x \in[0,1], k_{2}(K)=\frac{5}{4}, k_{4}(K)=\frac{19}{16}$ (see [19]).

For the Bleimann-Butzer-Hahn operators and for the Meyer-König and Zeller operators we only give the convergence theorems.

Application 3.2. We consider $I=J=[0, \infty), E_{w}(I)=C_{B}([0, \infty))$, $w(x)=1$ for any $x \in[0, \infty), K=[0, b], b>0, p_{m}=m, x_{m, k}=\frac{k}{m+1-k}$, $\varphi_{m, k}(x)=\frac{1}{(1+x)^{m}}\binom{m}{k} x^{k}, m \in \mathbb{N}, k \in\{0,1, \ldots, m\}, x \in[0, \infty)$ and in this case we obtain the Bleimann-Butzer-Hahn operators. We have $\left(T_{1} L_{m}\right)(x)=$ $-m x\left(\frac{x}{1+x}\right)^{m}, x \in K$ and $k_{2}(K)=4 b(1+b)^{2}$ for $m \geq 24(1+b)$ (see [17]).

Application 3.3. If $I=J=[0,1], w(x)=1$ for any $x \in[0,1], E_{w}(I)=$ $B([0,1]), K=[0,1], p_{m}=\infty, x_{m, k}=\frac{k}{m+k},\left(\varphi_{m, k}\right)(x)=\binom{m+k}{k}(1-x)^{m+1} x^{k}$, $m \in \mathbb{N}, k \in \mathbb{N}_{0}, x \in[0,1]$, we obtain the Meyer-König and Zeller operators and we have $\left(T_{1} Z_{m}\right)(x)=0, m \in \mathbb{N}, x \in[0,1]$, and $k_{2}(K)=2$ (see [16]).

Application 3.4. If $I=J=[0, \infty), w(x)=\frac{1}{1+x^{2}}$ for any $x \in[0, \infty)$, $E_{w}(I)=C_{2}([0, \infty)), K=[0, b], b>0, p_{m}=\infty, x_{m, k}=\frac{k}{m}, \varphi_{m, k}(x)=$ $e^{-m x} \frac{(m x)^{k}}{k!}, m \in \mathbb{N}, k \in \mathbb{N}_{0}, x \in[0, \infty)$, we obtain the Mirakjan-Favard-Szász operators. We have $\left(T_{1} S_{m}\right)(x)=0,\left(T_{2} S_{m}\right)(x)=m x, m \in \mathbb{N}, x \in[0, \infty)$, $k_{2}(K)=b$ and $k_{4}(K)=3 b^{2}+b$ (see [16]).

Application 3.5. Let $I=J=[0, \infty), w(x)=\frac{1}{1+x^{2}}$ for any $x \in[0, \infty)$, $E_{w}(I)=C_{2}([0, \infty)), K=[0, b], b>0, p_{m}=\infty, x_{m, k}=\frac{k}{m}, \varphi_{m, k}(x)=(1+$ $x)^{-m}\binom{m+k-1}{k}\left(\frac{x}{1+x}\right)^{k}, m \in \mathbb{N}, k \in \mathbb{N}_{0}$ and $x \in[0, \infty)$. In this case we obtain the Baskakov operators and we have $\left(T_{1} V_{m}\right)(x)=0,\left(T_{2} V_{m}\right)(x)=m x(1+x)$, $m \in \mathbb{N}, x \in[0, \infty), k_{2}(K)=b(1+b)$ and $k_{4}(K)=9 b^{4}+10 b^{3}+10 b^{2}+b$ (see [16]).

Application 3.6. If $I=J=[0, \infty), w(x)=1$ for any $x \in[0, \infty)$, $E_{w}(I)=C([0, \infty)), K=[0, b], b>0, p_{m}=\infty, x_{m, k}=\frac{k}{m}, \varphi_{m, k}(x)=$ $\frac{m(m+k)^{k-1}}{k!}\left(\frac{x}{1+x}\right)^{k} e^{-\frac{(k+m) x}{1+x}}, m \in \mathbb{N}, k \in \mathbb{N}_{0}, x \in[0, \infty)$, we obtain the IsmailMay operators. We have $\left(T_{1} R_{m}\right)(x)=0,\left(T_{2} R_{m}\right)(x)=m x(1+x)^{2}, m \in \mathbb{N}$, $x \in[0, \infty), k_{2}(K)=1+b(1+b)^{2}$ and $k_{4}(K)=1+b^{2}(1+b)^{4}($ see [18]).

References

[1] Agratini, O., Aproximare prin operatori liniari, Presa Universitară Clujeană, Cluj-Napoca, 2000 (Romanian)
[2] Baskakov, V. A., An example of a sequence of linear positive operators in the space of continuous functions, Dokl. Acad. Nauk, SSSR, 113 (1957), 249-251
[3] Becker, M., Nessel, R. J., A global approximation theorem for MeyerKönig and Zeller operators, Math. Zeitschr., 160 (1978), 195-206
[4] Bleimann, G., Butzer, P. L., Hahn, L. A., Bernstein-type operator approximating continuous functions on the semi-axis, Indag. Math., 42 (1980), 255-262
[5] Bernstein, S. N., Démonstration du théorème de Weierstrass fondée sur le calcul de probabilités, Commun. Soc. Math. Kharkow (2), 13 (1912-1913), 1-2
[6] Cheney, E. W., Sharma, A., Bernstein power series, Canadian J. Math., 16 (1964), 2, 241-252
[7] Ditzian, Z., Totik, V., Moduli of Smoothness, Springer Verlag, Berlin, 1987
[8] Favard, J., Sur les multiplicateurs d'interpolation, J. Math. Pures Appl., 23 (9) (1944), 219-247
[9] Ismail, M., May, C. P., On a family of approximation operators, J. Math. Anal. Appl., 63 (1978), 446-462
[10] Meyer-König, W., Zeller, K., Bernsteinsche Potenzreihen, Studia Math., 19 (1960), 89-94
[11] Mirakjan, G. M., Approximation of continuous functions with the aid of polynomials, Dokl. Acad. Nauk SSSR, 31 (1941), 201-205 (Russian)
[12] Müller, M. W., Die Folge der Gammaoperatoren, Dissertation, Stuttgart, 1967
[13] Pop, O. T., New properties of the Bernstein-Stancu operators, Anal. Univ. Oradea, Fasc. Matematica, Tom XI (2004), 51-60
[14] Pop, O. T., The generalization of Voronovskaja's theorem for a class of linear and positive operators, Rev. Anal. Num. Théor. Approx., 34 (2005), No. 1, 79-91
[15] Pop, O. T., About a class of linear and positive operators, Carpathian J. Math., 21 (2005), No. 1-2, 99-108
[16] Pop, O. T., About some linear and positive operators defined by infinite sum, Dem. Math., XXXIX, No. 2 (2006), 377-388
[17] Pop, O. T., On operators of the type Bleimann, Butzer and Hahn, Anal. Univ. Timişoara, XLIII, Fasc. 1 (2005), 115-124
[18] Pop, O. T., The generalization of Voronovskaja's theorem for exponential operators, Creative Math \& Inf., 16(2007), 54-62
[19] Pop, O.T., Fărcaş, M.D., The Voronovskaja-type theorem for a class of linear positive operators (to appear)
[20] Stancu, D. D., Asupra unei generalizări a polinoamelor lui Bernstein, Studia Univ. Babeş-Bolyai, Ser. Math.-Phys., 14 (1969), 31-45 (Romanian)
[21] Stancu, D. D., Coman, Gh., Agratini, O., Trîmbiţaş, R., Analiză numerică şi teoria aproximării, I, Presa Universitară Clujeană, ClujNapoca, 2001 (Romanian)
[22] Szász, O., Generalization of. S. N. Bernstein's polynomials to the infinite interval, J. Research, National Bureau of Standards, 45 (1950), 239-245
[23] Timan, A. F., Theory of Approximation of Functions of Real Variable, New York: Macmillan Co. 1963, MR22\#8257
[24] Voronovskaja, E., Détermination de la forme asymptotique d'approximation des fonctions par les polynômes de S. N. Bernstein, C. R. Acad. Sci. URSS (1932), 79-85

Ovidiu T. Pop
M. D. Fărcaş

Vest University "Vasile Goldiss" of Arad National College "Mihai Eminescu"
Branch of Satu Mare,
26 Mihai Viteazul Street, 5 Mihai Eminescu Street, Satu Mare,
Satu Mare, 440014,
440030,
Romania
Romania E-mail: mirceafarcas2005@yahoo.com
E-mail: ovidiutiberiu@yahoo.com

[^0]: ${ }^{1}$ Received 9 November 2007
 Accepted for publication (in revised form) 4 December 2007

