A note on a general integral operator of the bounded boundary rotation¹

S. Latha

Abstract

In this note, we consider the classes of bounded radius rotations, bounded radius rotation of order β , bounded boundary rotation. In these classes we study some properties of a general integral operator.

2000 Mathematics Subject Classification: 30C45

Key words and phrases: Functions of bounded boundary rotation, Functions of bounded radius rotation, Integral operator and Univalent function.

1 Introduction

Let $\mathcal{P}_k^{\lambda}(\beta)$ denote the class of analytic functions p(z) in defined in the unit disc $\mathcal{U} = \{z : |z| < 1\}$ with the following properties:

(i).
$$p(0) = 1$$

(ii).
$$\int_0^{2\pi} \left| \frac{\Re\{e^{i\lambda}p(z) - \beta\cos\lambda\}}{1 - \beta} \right| d\theta \le k\pi\cos\lambda$$

Accepted for publication (in revised form) 13 March, 2008

¹Received 28 december, 2007

34 S. Latha

where, $k \geq 2$, λ real, $|\lambda| < \frac{\pi}{2}$, $0 \leq \beta < 1$ and $z = re^{i\theta}$ for $0 \leq r < 1$. Let $\mathcal{V}_k^{\lambda}(\beta)$ [4] denote the class of functions f analytic in \mathcal{U} with the normalized properties f(0) = f'(0) - 1 = 0 and

$$1 + \frac{zf''(z)}{f'(z)} \in \mathcal{P}_k^{\lambda}(\beta), \quad z \in \mathcal{U}$$

where, k, λ and β are as above. For $\beta = 0$ we get the class \mathcal{V}_k^{λ} of functions with bounded boundary rotation studied by Moulis [3].

Any function $f \in \mathcal{V}_k^{\lambda}(\beta)$ if and only if

$$\Re\left\{e^{i\lambda}\left(1+\frac{zf''(z)}{f'(z)}\right)\right\} > \beta\cos\lambda, \quad \text{for} \quad |z| < \frac{k-\sqrt{k^2-4}}{2}.$$

A function f defined in \mathcal{U} with the normalization properties f(0) = 0 and f'(0) = 1 is said to be in the class $\mathcal{U}_k^{\lambda}(\beta)$ if $\frac{zf'}{f} \in \mathcal{P}_k^{\lambda}(\beta)$.

From the definition of the above classes it follows that $f \in \mathcal{V}_k^{\lambda}(\beta)$ if and only if $zf' \in \mathcal{U}_k^{\lambda}(\beta)$.

Now we consider the integral operator $F_n(z)$ [2], defined by

(1.1)
$$F_n(z) = \int_0^z \left(\frac{f_1(t)}{t}\right)^{\alpha_1} \dots \left(\frac{f_n(t)}{t}\right)^{\alpha_n} dt$$

and we study its properties.

Remark 1.1. We observe that for n=1 and $\alpha_1=1$, we obtain the integral operator of Alexander [1], $F(z)=\int_0^z \frac{f(t)}{t} dt$.

2 Main results

Theorem 2.1. Let α_i be real numbers with the properties $0 \le \alpha_i < 1$ for $i \in \{1, 2, ..., n\}$ and $\sum_{i=1}^{n} \alpha_i \le n+1$. If $f_i \in \mathcal{U}_k^{\lambda}\left(\frac{1}{\alpha_i}\right)$ then the integral operator defined in (1.1) belongs to \mathcal{V}_k^{λ} .

Proof. Consider,

$$F_n(z) = \int_0^z \left(\frac{f_1(t)}{t}\right)^{\alpha_1} \dots \left(\frac{f_n(t)}{t}\right)^{\alpha_n} dt.$$

We determine the derivatives of the first and second order for F_n .

$$F_n'(z) = \left(\frac{f_1(z)}{z}\right)^{\alpha_1} \dots \left(\frac{f_n(z)}{z}\right)^{\alpha_n}$$

$$F_n''(z) = \sum_{i=1}^n \alpha_i \left(\frac{f_i(z)}{z} \right)^{\alpha_i - 1} \frac{z f_i'(z) - f_i(z)}{z^2} \prod_{j=1, j \neq i}^n \left(\frac{f_j(z)}{z} \right)^{\alpha_j}$$

$$\frac{F_n''(z)}{F_n'(z)} = \alpha_1 \left(\frac{f_1''(z)}{f_1'(z)} - \frac{1}{z} \right) + \dots + \alpha_n \left(\frac{f_n''(z)}{f_n'(z)} - \frac{1}{z} \right)$$

$$\frac{zF_n''(z)}{F_n'(z)} + 1 = \alpha_1 \frac{zf_1''(z)}{f_1'(z)} + \dots + \alpha_n \frac{zf_n''(z)}{f_n'(z)} - \alpha_1 - \dots - \alpha_n + 1$$

$$\Re\left\{e^{i\lambda}\left(\frac{zF_n''(z)}{F_n'(z)}+1\right)\right\} = \alpha_1\Re\left\{e^{i\lambda}\frac{zf_1'(z)}{f_1(z)}\right\} + \ldots + \alpha_n\Re\left\{e^{i\lambda}\frac{zf_n'(z)}{f_n(z)}\right\}$$

$$+\Re\left\{e^{i\lambda}\left(-\alpha_1-\ldots-\alpha_n+1\right)\right\}$$

$$= (n+1)\cos\lambda - \sum_{i=1}^{n} \alpha_i \cos\lambda > 0.$$

Hence $F_n \in \mathcal{V}_k^{\lambda}$.

Corollary 2.2. For parametric values k = 2, $\lambda = 0$, we get the following result [2].

Let α_i , $i \in \{1, 2, ..., n\}$ be real numbers with the properties $\alpha_i > 0$ for $i \in \{1, 2, ..., n\}$ and $\sum_{i=1}^{n} \alpha_i \leq n+1$. We suppose that the functions f_i ,

36 S. Latha

 $i \in \{1, 2, ..., n\}$ are starlike functions of order $\frac{1}{\alpha_i}$, $i \in \{1, 2, ..., n\}$, that is $f_i \in \mathbb{S}^*\left(\frac{1}{\alpha_i}\right)$ for all $i \in \{1, 2, ..., n\}$. Then the integral operator defined in (1.1) is convex.

Theorem 2.3. Let α_i be real numbers with the properties $\alpha_i > 0$ for $i \in \{1, 2, ..., n\}$ with $\sum_{i=1}^{n} \alpha_i \leq 1$ and $f_i \in \mathcal{U}_k^{\lambda}\left(\frac{1}{\alpha_i}\right)$. Then the integral operator defined in (1.1) belongs to $\mathcal{V}_k^{\lambda}(\alpha)$, where $\alpha = 1 - \sum_{i=1}^{n} \alpha_i$.

Proof. Consider,

$$\begin{split} \frac{zF_n''(z)}{F_n'(z)} &= \sum_{i=1}^n \alpha_i \left(\frac{zf_i'(z)}{f_i(z)} - 1 \right) \\ &= \sum_{i=1}^n \alpha_i \frac{zf_i'(z)}{f_i(z)} - \alpha_1 - \dots - \alpha_n. \\ 1 + \frac{zF_n''(z)}{F_n'(z)} &= \alpha_1 \frac{zf_1'(z)}{f_1(z)} + \dots + \alpha_n \frac{zf_n'(z)}{f_n(z)} - \alpha_1 - \dots - \alpha_n + 1. \\ \Re \left\{ e^{i\lambda} \left(\frac{zF_n''(z)}{F_n'(z)} + 1 \right) \right\} &= \alpha_1 \Re \left\{ e^{i\lambda} \frac{zf_1'(z)}{f_1(z)} \right\} + \dots + \alpha_n \Re \left\{ e^{i\lambda} \frac{zf_n'(z)}{f_n(z)} \right\} \\ &+ \Re \left\{ e^{i\lambda} \left(-\alpha_1 - \dots - \alpha_n + 1 \right) \right\}. \end{split}$$

But $f_i \in \mathcal{U}_k^{\lambda}$ for all $i \in \{1, 2, ..., n\}$. Therefore

$$\Re\left\{e^{i\lambda}\frac{zf_i'(z)}{f_i(z)}\right\} > 0, \quad \forall \ i \in \{1, 2, ..., n\}.$$

This implies,

$$\Re\left\{e^{i\lambda}\left(\frac{zF_n''(z)}{F_n'(z)}+1\right)\right\} > 1 - \sum_{i=1}^n \alpha_i = \alpha.$$

Hence $F_n \in \mathcal{U}_k^{\lambda}(\alpha)$.

Corollary 2.4. For parametric values k = 2, $\lambda = 0$, we get the following result [2].

Let α_i , $i \in \{1, 2, ..., n\}$ be real numbers with the properties $\alpha_i > 0$ for $i \in \{1, 2, ..., n\}$ and $\sum_{i=1}^{n} \alpha_i \leq 1$. We suppose that the functions f_i , with $i \in \{1, 2, ..., n\}$ are starlike. Then the integral operator defined in (1.1) is convex by order $1 - \sum_{i=1}^{n} \alpha_i$.

References

- [1] Alexander J. W, Functions which map the interior of the unit circle upon simple regions, em Ann. of Maths, 17 (1915/16), 12 22.
- [2] Breaz D. and Breaz Nicoleta, Some convexity properties for a general integral operator, Journal of Inequalities in Pure and Applied Mathematics, Volume 7, Issue 5, Article 177, 2006.
- [3] Moulis E. J, A generalization of univalent functions with bounded boundary rotation, Trans. Am. Math. Soc., 174, 369 - 381.
- [4] Moulis E. J, Generalization of the Robertson functions, Pacific J. Math., 81, 169 - 174.

Department of Mathematics Yuvaraja's College University of Mysore Mysore - 570 005 INDIA.

E-mail: drlatha@gmail.com