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Abstract

By slightly modifying some of the examples given in [6], we ob-

tain further examples of positive operators on the discrete Banach

lattices c0, c, and `p (1 ≤ p < ∞) without non-trivial closed invariant

sublattices.
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1 Introduction

There has been an extensive research (see, for instance, [8]) over more than

seventy years on the famous invariant subspace problem, which originally asks

whether a bounded linear operator on a separable and infinite-dimensional
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Hilbert space has a closed subspace, different than the trivial ones, that is

mapped into itself by this operator. Albeit unsolved in its original form,

namely on Hilbert spaces, there are oodles of different directions in which

much has been done for this important problem of functional analysis. For

general Banach spaces, due to the monumental work of P. Enflo [4], the

invariant subspace problem is known to have a negative answer; more-

over, it is still not known as of today whether a positive operator on an

infinite-dimensional Banach lattice has a non-trivial, closed invariant sub-

space. Because of the extra order structure they have in addition to their

being Banach spaces though, Banach lattices provide important advanges

when considered for the search for invariant subspaces for positive oper-

ators on them [2]. This led some researchers to distinguish, using their

natural order structure, among different types of subspaces of Banach lat-

tices. In this vein, A.K. Kitover and A.W. Wickstead have constructed

in [6] examples of positive operators on the discrete Banach lattices c0, c,

and `p (1 ≤ p < ∞) without non-trivial closed invariant sublattices. It

should be noted that the operators constructed by Kitover and Wickstead

have non-trivial closed invariant subspaces. The purpose of this short note

is to slightly modify some of the examples given in [6] and obtain further

examples of positive operators without invariant sublattices. We will also

show, via an example again, that our approach of taking a multiple of one

of the shift operators does not work for both shifts. It should also be noted

that in the proofs of the main results of the present paper, two well-known

facts, namely the Kakutani-Krein Representation Theorem and that any of

the spaces `p (1 ≤ p < ∞), c0, and c can be represented as a C(K)-space
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for some compact Hausdorff space K, are intrinsically used. Throughout

the paper the term “operator” will be synonimuous with “linear operator,”

and by a non-trivial subspace/sublattice is meant one that is different from

{0} and the whole space. For all unexplained notation and terminology, we

refer to [1], [3] and [7].

2 Definitions and heuristics

Before seeing the main results, we shall need some basic definitions from

the theory of ordered vector spaces, as well as some classical representation

theorems from operator theory along with their consequences.

An ordered vector space is a real vector space X equipped with an order

relation ≤ (i.e., ≤ is reflexive, anti-symmetric, and transitive) that is com-

patible with the algebraic structure of X in the sense that it satisfies the

following two axioms:

• if x ≤ y, then x + z ≤ y + z for all z ∈ X;

• if x ≤ y, then αx ≤ αy holds for all 0 ≤ α ∈ R.

A Riesz space or a vector lattice is an ordered vector space X with the

additional property that for each pair of elements x, y in X, the supremum

of the set {x, y}, denoted by x ∨ y, exists in X, which in turn is equivalent

to that the infimum of the set {x, y}, denoted by x∧y, exists in X. If x and

y are two elements in a Riesz space X with x ≤ y, then the order interval

[x, y] is the subset defined by

[x, y] := {z ∈ X | x ≤ z ≤ y}.
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A set is called order-bounded if it is contained in an order interval. For a

Riesz space X, the subset

X+ := {x ∈ X | x ≥ 0}

is called the positive cone of X and the elements of X+ are called the positive

elements of X. For any x ∈ X, we shall write

x+ := x ∨ 0, x− := (−x) ∨ 0, and |x| := x ∨ (−x)

and call the elements x+, x−, and |x| as the positive part, the negative part,

and the absolute value of x, respectively. If a Riesz space X is equipped with

a norm ‖ · ‖ with the property that |x| ≤ |y| in X implies ‖x‖ ≤ ‖y‖, then

X is called a normed Riesz space. A norm-complete normed Riesz space,

that is a normed Riesz space which is also a Banach space, is referred to

as a Banach lattice. Note that all classical spaces of functional analysis

are Banach lattices under their natural orderings. In particular, the real

sequence spaces c0, c, and `p (1 ≤ p ≤ ∞) become Banach lattices under

their natural coordinate-wise orderings and norms. Throughout the paper,

all Banach spaces will be assumed to be real vector spaces unless otherwise

stated. For more about Banach lattices, see [3] and [7].

A subspace E of a Banach lattice X is a sublattice if it is closed under

the lattice operations: that is, for any x, y ∈ E, the elements x∨y and x∧y

belong to E. It then follows that x+, x− and |x| are in E. A subspace E of

a Banach lattice X is an ideal if x ∈ E and |y| ≤ |x| imply y ∈ E. It can

be easily checked that every ideal is a sublattice.

An operator T : X → Y between two ordered vector spaces is said to



On Positive Operators Without Invariant Sublattices 115

be positive and denoted by T ≥ 0 or 0 ≤ T , whenever T (X+) ⊆ Y + holds.

For an extensive treatment of positive operators, we refer the reader to [3].

A Banach lattice X is said to be an AM -space if x∧ y = 0 in X implies

‖x∨ y‖ = max{‖x‖, ‖y‖}. The following classical result characterizes those

Banach lattices that are AM -spaces; its proof can be found, for instance,

in [3, Theorem 4.29].

Theorem 1 (Kakutani−Bohnenblust & M. Krein−S. Krein). A Banach

lattice X is an AM-space with unit if and only if it is lattice isometric

to some C(K) for a (unique up to homeomorphism) Hausdorff compact

topological space K. In particular, a Banach lattice is an AM -space if and

only if it is lattice isometric to a closed Riesz subspace of a C(K)-space.

As a counterpart of the above result, we have the following fact.

Theorem 2 ([5], Theorem 3). Let K be a compact Hausdorff space, X be

a closed subspace of C(K), and

F := {(k1, k2, λ) | for each f ∈ X, f(k1) = λf(k2) for some k1, k1 ∈ K,λ ≥ 0}.

Then X is a sublattice of C(K) if and only if

{f ∈ C(K) | for each (k1, k2, λ) ∈ F, f(k1) = λf(k2)} ⊆ X.

That the space of all convergent sequences and the space of all continu-

ous functions on the one-point compactification of the natural numbers are

isometric is a very well-known fact, which we only state here as the subject

matter of the following proposition. Its proof can be found in a standard

functional analysis book.
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Proposition 1 The Banach lattices c and C(N∗), where N∗ is the one-point

compactification of the natural numbers N, are lattice isometric.

Using Theorem 1 and Proposition 1, the closed sublattices of c can easily

be characterized as follows.

Corollary 1 Let H be a closed vector sublattice of c. Then one of the

following holds for all x := (xn)n∈N ∈ H:

(1) there exist α ≥ 0 and m,n ∈ N such that xm = αxn;

(2) there exist α ≥ 0 and m ∈ N such that xm = α limn→∞ xn;

(3) there exist α ≥ 0 and m ∈ N such that limn→∞ xn = αxm.

Conversely, if some x ∈ c satisfies the equalities given in the constraints

(1), (2) and (3) above, then x belongs to H.

On the other hand, for the closed sublattices of `p (1 ≤ p < ∞) or c0, we

have the following result. Recall that two vectors x and y in a Riesz space

X are called disjoint if |x| ∧ |y| = 0.

Theorem 3 ([9], 5.2). Every closed sublattice of `p with 1 ≤ p < ∞ or c0

is the closed span of a finite or infinite sequence of disjoint positive vectors.

Since c0 is a closed ideal in c, Theorem 2, Corollary 1 and Theorem 3

readily imply that for every x := (xn)n∈N ∈ H, where H is a proper closed

sublattice of `p (1 ≤ p < ∞) or c0, there exist α ≥ 0 and m,n ∈ N such

that xm = αxn.
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3 Main results

We will give now the main results of this note, following the same lines of

thought as in [6] in their proofs. It should be noted, and is straightforward

to check, that all the operators constructed in the following theorems are

positive. The operator given in Example 3.5 in [6] is the sum of a back-

ward and a forward shift operator. We will show below that the conclusion

therein still holds true if the backward shift operator is made into a weighted

backward shift operator, with a constant weight.

Theorem 4 Let X = `p (1 ≤ p < ∞) or c0, α ≥ 1, and T be the operator

on X defined by

(Tx)n =





αxn−1 + xn+1, if n > 0;

x1, if n = 0.

Then there is no non-trivial closed T -invariant sublattice of X.

Proof. By Example 3.5 in [6], one can assume that α > 1. We will show

that T does not have a positive eigenvector. Each elemet x ∈ X defines

a function f(z) =
∑∞

n=0 xnz
n that is analytic on the open unit disc in the

complex plane. The action of T on X corresponds to the mapping taking f

to αzf(z)+(f(z)−f(0))/z. If x is positive and Tx = λx, then 0 ≤ λ ≤ 1+α

since ‖T‖ = 1 + α. We also have

αzf(z) + (f(z)− f(0))/z = λf(z)

so that

f(z) =
f(0)

αz2 − λz + 1
.
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Thus, by scaling and taking f(0) = α, one has f(z) = (z2 − (λ/α)z + 1/α)
−1

.

For 0 ≤ λ ≤ 1 + α, since at least one of the roots of z2 − (λ/α)z + 1/α = 0

lies inside it, f has a pole in the open unit disc, contradicting the fact that

f is analytic. This shows that T has no positive eigenvector.

Now suppose that H is a non-trivial closed T -invariant sublattice of

X. First we show that there is no m such that xm = 0 for all x ∈ H.

If m = 0 then (Tx)0 = x1 = 0 for all x ∈ H so we may suppose that

m > 0. If there were such an m, then take x ∈ H+ and observe that

(Tx)m = αxm−1 +xm+1 = 0 so (as x ≥ 0) xm−1 = xm+1 = 0. This must also

hold for all x = x+ − x− ∈ H. Proceeding inductively we see that xp = 0

for all non-negative integers p so that H = {0}. Otherwise, if H 6= X, there

are m,n ≥ 0 with m > n and γ > 0 such that xm = γxn for all x ∈ H. We

claim that if x ∈ H and x1, x2, . . . , xm are known then x is specified uniquely.

Consider the statement P (p) that we can express xk uniquely as a linear

combination of term xj, with 1 ≤ j ≤ m, for all k ≤ p. This is trivially true

for p = m. Let us assume P (p). Note that T p+1−mx ∈ H as H is T -invariant

and that (T p+1−m(x))m is a linear combination of xk for k ≤ p + 1 with the

coefficient of xp+1 being 1. Similarly, (T p+1−m(x))n is a linear combination

of xk for k ≤ p + n + 1 − m. As (T p+1−m(x))m = γ(T p+1−m(x))n we can

solve for xp+1 in terms of xk for k ≤ p and hence express xp+1 as a linear

combination of xk for 1 ≤ k ≤ m. That is, we have proved P (p + 1). It

follows that H is finite-dimensional. But now Theorem 8.11 of [1] tells us

that T has a positive eigenvector, which we already know to be false. ¤

The argument in Theorem 4 is no longer true if X = c, as c0 is a non-

trivial closed ideal in that case. Interestingly, if the forward shift operator
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becomes a weighted forward shift with a constant weight, the conclusion of

Theorem 4 still cease to exist. The following result illustrates this fact.

Theorem 5 Let X = `p (1 ≤ p < ∞) or c0, α > 1, and T be the operator

on X defined by

(Tx)n =





xn−1 + αxn+1, if n > 0;

αx1, if n = 0.

Then T has a positive eigenvector, and consequently T has a non-trivial

closed invariant sublattice.

Proof. We will show that 2
√

α is an eigenvalue of T with the corresponding

eigenvector x = (2n + 2)/(n + 2). Indeed, for n = 0, since (Tx)0 = αx1 =

2/
√

α and 2
√

αx0 = 2/
√

α, we have (Tx)0 = 2
√

αx0. Moreover, for n > 0,

since

(Tx)n = xn−1 + αxn+1 =
n

α
n+1

2

+ α
n + 2

α
n+3

2

=
2n + 2

α
n+1

2

= 2
√

αxn,

we conclude that (Tx)n = 2
√

αxn for each n, so that Tx = 2
√

αx. Thus,

2
√

α is an eigenvalue of T with x being the corresponding eigenvector, and

therefore span {x} is a non-trivial closed T -invariant sublattice of X. ¤
The following is a weighted-shift-variant of Example 3.6 in [6].

Theorem 6 Let X = c, α ≥ 1, and T be the operator on X defined by

(Tx)n =





αxn−1 + xn+1 + x0, if n > 0;

αx1 + x0, if n = 0.

Then there is no non-trivial closed T -invariant sublattice of X.
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Proof. By Example 3.6 in [6], one may assume that α > 1. We will show that

T does not have a positive eigenvector. As in the proof of Theorem 4, each

element x ∈ X defines a function f(z) =
∑∞

n=0 xnzn that is analytic on the

open unit disc in the complex plane. Now the action of T on X corresponds

to the mapping taking f to αzf(z)+(f(z)−f(0))/z+f(0)/(1−z). If x ∈ X+

is an eigenvector of T , then there exists a λ ≥ 0 such that Tx = λx. Thus

αzf(z) + (f(z)− f(0))/z + f(0)/(1− z) = λf(z),

from which it follows that

f(z) =
(1− 2z)f(0)

(1− z)(αz2 − λz + 1)
.

If λ ≥ 2
√

α then λ−√λ2−4α
2α

< 1; on the other hand, if λ < 2
√

α then, as

λ2 − 4α < 0, we have

∣∣∣∣
λ∓√λ2 − 4α

2α

∣∣∣∣ =

√
λ2 + 4α− λ2

2α
=

1√
α

< 1

for each non-negative λ, therefore, f has a pole in the open unit disc, con-

tradicting the fact that f is analytic. This shows that T has no positive

eigenvector.

Now suppose that H is a non-trivial closed T -invariant sublattice of X.

Arguing as in the proof of Theorem 4, we first show that there is no m

such that xm = 0 for all x ∈ H. If m > 1 and we take any x ∈ H+, then

(Tx)m = αxm−1 +xm+1 +x0, so, by positivity, x0 = xm−1 = xm+1 = 0 for all

x ∈ H+ and hence for all x ∈ H. Proceeding inductively we see that xp = 0

for all p (the fact that x2 = 0 will give us x0 = x1 = x3 = 0). If m = 1,

then the fact that (Tx)1 = (α + 1)x0 + x2 will give us x0 = x2 = 0 for all
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x ∈ H in a similar way. We may now revert to the m > 1 case. Finally, if

m = 0 then (Tx0) = αx1 + x0 showing that x1 = 0 for all x ∈ H and again

we may revert to a previous case. It is also impossible that limn→∞ xn = 0

for all x ∈ H as in that case we would have, for each x ∈ H+,

lim
n→∞

(Tx)n = lim
n→∞

(αxn−1 + xn+1 + x0) = x0

so that x0 = 0 for all x ∈ H+ and hence for all x ∈ H. But we have already

seen that this is impossible.

The only possibility left, if H 6= X, is that there are m, n and γ > 0 such

that xm = γxn for all x ∈ H or that there are m and γ > 0 such that xm =

γ limn→∞ xn. In the first of these cases, the proof that H must be finite-

dimensional proceeds exactly as in the Example 3.5 of [6] and we obtain a

contradiction. In the second case, notice that there can only be one such

constraint as if we also have xp = β limn→∞ xn for some β > 0 and for all

x ∈ H, then xm = (α/β)xp for all x ∈ H, which we have already established

is impossible. This means that the constraint that xm = γ limn→∞ xn is the

only possible restriction on H.

If m = 0, set b to be the sequence starting from γ, 0 and then having all

its terms 1 so that b ∈ H. Note that limn→∞(Tb)n = 3 whilst (Tb)0 = γ so

that γ = 3γ which contradicts γ > 0. If m > 0 then let am = γ, an = 1

for n ≥ m + 2 and with all other an = 0. This time, (Tam) = 0 whilst

limn→∞(Tb)n = 3 so that 0 × γ = 3, which is impossible. All possible

constraints, which can be possibly hold on a proper closed sublattice of X,

have now been eliminated, and therefore it follows that there can be no such

closed T -invariant sublattice. ¤
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