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On Fuzzy ϕψ-Continuous Function Between

L-fuzzy Uniform Spaces

Bayaz Daraby

Abstract

In this paper, by means of operations (is called in [1, 2, 3] ϕ,ψ)

we shall define ϕψ-continuity between two L-fuzzy quasi-uniform

spaces. We shall prove that ϕψ-continuity between two L-fuzzy

quasi-uniformity induces ϕψ-continuity between L-fuzzy topology

generated by them. We shall investigate some Theorems on L-fuzzy

uniform spaces.
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1 Introduction

Fuzzy versions of uniformity theory were established by B. Hutton , R.

Lowen , U. Höhle , A. K. Katsaras , etc. Fuzzy uniformity in Hutton’s
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sense has been accepted by many authors and has attracted wide attention

in the literature.

In an analogous way to that in general topology, A. K. Katsaras intro-

duced proximity structures in fuzzy spaces and investigated the F-topology

generated by these proximities. However, as was pointed in [6], that those

F-topologies are always crisp. Thus a new and more reasonable definition

was given in [6] independently. An bijective correspondence between the

fuzzy uniformities in the sense of Hutton and proximities on a set X was

obtained in [6], and it was also proved that an L-fts is completely regular if

and only if it can be generated by a proximity.

In the present paper, by means of operations (is called in [1, 2, 3] ϕ, ψ)

we shall define L-fuzzy quasi-uniformly ϕψ-continuous mapping between

two L-fuzzy quasi-uniform spaces. We shall prove that ϕψ-continuous map-

ping defined between two L-fuzzy quasi-uniformity induces ϕψ-continuity

between L-fuzzy topology generated by them. Finally we shall investigate

some Theorems on L-fuzzy uniform spaces and L-fuzzy proximity spaces.

2 Preliminaries

bf Definition 2.1 (Liu et al. [6]). Let L◦, L1 be complete lattices. Denote

by T (L◦, L1) the family of all the arbitrary join preserving mapping from

L◦ to L1. Equip T (L◦, L1) with the partial order ≤ as follows :

∀f, g ∈ T (L◦, L1), f ≤ g implies ∀a ∈ L, f(a) ≤ g(a).
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A self mapping f : LX → LX on LX , LX always means an L-fuzzy space

such that L is a F-lattice, is called value increasing, if f(a) ≥ a for every

a ∈ LX . Denote by ε(LX) the family of all the value increasing and arbitrary

join preserving self mapping on LX . Equip ε(LX) with the partial order ≤
defined in T (LX , LX) ⊃ ε(LX), i.e.

∀f, g ∈ ε(LX), f ≤ g implies ∀a ∈ LX , f(a) ≤ g(a).

Definition 2.2 (Liu et al. [6]). Let D ⊂ ε(LX).D is called an L-fuzzy

quasi-uniformity on X, if D fulfils the following conditions (UF1)- (UF3) :

(UF1) f ∈ ε(LX), g ∈ D, f ≥ g → f ∈ D.

(UF2) f, g ∈ D implies f ∧ g ∈ D.

(UF3) f ∈ D implies ∃g ∈ D, g ◦ g ≤ f .

D is called an L-fuzzy uniformity on X, if D fulfills the above conditions

(UF1)− (UF3) and the following condition :

(UF4) f ∈ D implies f / ∈ D.

Call (LX ,D) an L-fuzzy quasi-uniform space (or L-fuzzy uniform space,

respectively ), if D is an L-fuzzy quasi-uniformity (or an L-fuzzy uniformity,

respectively ) on X.

Definition 2.3 Let L be a complete lattice with order-reversing involution

′ : L → L.

λ ∈ LR is called monotonically decreasing, if s, t ∈ R, s ≤ t implies λ(s) ≤
λ(t). Denote the family of all the monotonically decreasing mappings

λ ∈ LR fulfilling the following conditions by mdR(L) :

∨t∈R λ(t) = 1, ∧t∈Rλ(t) = 0.
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Denote the family of all the elements in mdR(L) fulfilling the following

conditions by mdI(L):

t < 0 implies λ(t) = 1, t > 1 implies λ(t) = 0.

For every λ ∈ mdR(L) and every t ∈ R, define

λ(t−) = ∧s<tλ(s), λ(t+) = ∨s>tλ(s).

Define the equivalent relation ∼ on mdR(L) as follows:

∀λ, µ ∈ mdR(L), λ ∼ µ iff ∀t ∈ R, λ(t−) = µ(t−), λ(t+) = µ(t+).

[λ] = {µ ∈ mdR(L) : µ ∼ λ}.
Denote the family of all equivalent classes in mdR(L) with respect to ∼ by

R[L]. For every t ∈ R, define Lt, Rt ∈ LR[L] as follows:

∀λ ∈ R[L], Lt(λ) = λ(t−)′, Rt(λ) = λ(t+).

Also denote the restrictions of Lt, Rt : R[L] → L on I[L] by Lt, Rt for every

t ∈ R respectively.

Denote:

SI
L = {Lt, Rt ∈ LI[L] : t ∈ R}.

BI
L = {∧F : F ∈ [SI

L]<ω\∅},
T I

L = {∨A : A ⊂ BI
L}.

Remark 2.1 L-fuzzy unit interval I(L) is uniformizable.

For convenience, is defined

L−∞ = 0I[L], L+∞ = 1I[L],

R−∞ = 1I[L], R+∞ = 0I[L],

S = SI
L

⋃ {L−∞, L+∞, R−∞, R+∞} ,

and denoted X = I[L], δ = T I
L , then S is a subbase of δ. For every A ∈ LX ,

let

S(A) = {s ∈ R : A ≤ L′s} , u(A) =
∨

S(A), (2.2)
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T (A) = {t ∈ R : A ≤ R′
t} , l(A) =

∧
T (A), (2.3)

then we always have (−∞, 0) ⊂ S(A), (1, +∞) ⊂ T (A). So both S(A) and

T (A) are always nonempty. For every ε > 0 and every A ∈ LX , let

fε(A) = Ru(A)−ε, (2.4)

then the family {fε : ε > 0} possesses the following properties,

(i) fε ∈ ε(LX), and fε ≥ fρ whenever ε ≥ ρ > 0.

(ii) For every ε > 0 and every A ∈ LX ,

f /
ε (A) = Ll(A)+ε. (2.5)

(iii) For every ε > 0 and every ρ > 0,

fε ◦ fρ = fε+ρ. (2.6)

(iv) ε = {f ∈ ε(LX) : ∃ε > 0, f ≤ fε ∧ f /
ε } is an L-fuzzy uniformity on X.

(v) The L-fuzzy topology on X generated by ε is just T I
L .

Definition 2.4 (Daraby et al. [1, 2]). Let (LX ,D) be an L-fuzzy quasi-

uniform space. A mapping α : LX −→ LX is called an operation on LX

if for each A ∈ LX \ {∅} , int(A) ≤ Aα and ∅α = ∅ where Aα denotes the

value of α in A.

3 L-fuzzy quasi-uniformly ϕψ-continuous map-

ping

Definition 3.1 Let (LX , D◦), (LY ,D1) be L-fuzzy quasi-uniform spaces

( uniform spaces, respectively), F→ : LX −→ LY an L-fuzzy mapping.
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Let ϕ, ψ be two operations on LX , LY respectively. F→ is called quasi-

uniformly continuous (uniformly ϕψ-continuous, respectively), if for every

g ∈ D1, there exists f ∈ D◦ such that F→ ◦ fϕ ≤ gψ ◦ F→. Particularly, an

L-fuzzy uniformly ϕψ-continuous mapping F→ : (LX ,D) −→ I(L) defined

on an L-fuzzy uniform space (LX ,D) is called an L-fuzzy uniformly ϕψ-

continuous function.

Theorem 3.1 Let ϕ, ψ be two operations on LX , LY respectively. If F→ :

(LX ,D◦) −→ (LY ,D1) an L-fuzzy quasi-uniformly ϕψ-continuous mapping,

then F→ : (LX , δ(D◦)) −→ (LY , δ(D1)) is L-fuzzy ϕψ-continuous mapping.

Proof Suppose that B ∈ δ(D1) including F→(A), A ∈ δ(D◦) such that

i◦(B) = B. We know that

i1(B) =
∨{C ∈ LY : ∃g ∈ D1; g(C) ≤ B} = B, so we have

Bψ =
∨{C ∈ LY : ∃g ∈ D1; gψ(C) ≤ Bψ}. (I)

From L-fuzzy quasi-uniformly ϕψ-continuity F→ : (LX ,D◦) −→ (LY ,D1)

for each g ∈ D1, there exists f ∈ D◦ such that F→ ◦ fϕ ≤ gψ ◦ F→, then

f(F←(B)) ≤ F←F→fF←(B) ≤ F←gF→F←(B) ≤ F←(g(B)).

It follows that fϕ(F←(B)) ≤ F←(gψ(B)).

Hence
∨

fϕ(F←(B)) ≤ ∨
F←(gψ(B)).

We know that f is value increasing, so F←(B) ≤ f(F←(B)). Hence (F←(B))ϕ ≤
(f(F←(B))ϕ = fϕ(F←(B)). It follows that (F←(B))ϕ ≤ ∨

F←(gψ(B)).

Since F← is arbitrary join preserving and order preserving, it follows that

(F←(B))ϕ ≤ F← ∨
(gψ(B)). (II)

From relations (I) and (II), we have
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F←(B))ϕ ≤ F←(Bψ).

So F→(F←(B))ϕ ≤ F→(F←(Bψ)). It follows that F→(F←(B))ϕ ≤ Bψ.

Thus F→ : (LX , δ(D◦)) −→ (LY , δ(D1)) is L-fuzzy ϕψ-continuous mapping.

¤
Theorem 3.2 Let (LX ,D) be an L-fuzzy uniform space, f ∈ D and

A,B ∈ LX such that f(A) ≤ B. Then there exists an L-fuzzy uniformity

ϕψ-continuous mapping F→ : (LX ,D) −→ I(L) such that

A ≤ F←(L′1) ≤ F←(R◦) ≤ B. (3.1)

Proof For every r ∈ R, take Ar ∈ LX as follows : as the first step, let

Ar = 1 if r < 0, Ar = B if r = 0, Ar = A if r = 1 and Ar = 0 if r > 1.

Denote

N◦ = {0} ∪N,

B(n) = {2i− 1

2k
: k ≤ n, 0 < i ≤ 2k−1}, ∀n ∈ N◦,

B◦ = {2i− 1

2k
: k ∈ N◦, 0 < i ≤ 2k−1}.

Then

∀n ∈ N◦, B(n) ⊂ B(n + 1) ⊂ B◦,
⋃

n∈N◦ B(n) = B◦. (3.2)

We shall construct {h 1
2n

: n ∈ N◦} ⊂ D and A = {Ar : r ∈ B◦} ⊂ LX

such that for every n ∈ N◦ and 1 ≤ i ≤ 2n−1,

(I) k ∈ N implies h 1

2k
◦ h 1

2k
≤ h 1

2k−1
,

(II) m ≤ n, 1
2m ≤ 2i−1

2n implies hϕ
1

2m
(A 2i−1

2n
) ≤ Aψ

2i−1
2n − 1

2m
,

(III) r, s ∈ B(n), r ≤ s implies Ar ≤ As.

Let h1 = f ∈ D. Suppose for some n ∈ N and every k ∈ n we have

constructed h 1

2k
fulfilling condition (I), then by condition (UF3) of unifor-

mity, there exists h 1
2n+1

∈ D such that h 1
2n+1

◦ h 1
2n=1

≤ h 1
2n

. By inductive
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method, we have constructed {h 1
2n

: n ∈ N◦} ⊂ D satisfying condition (I).

Suppose n ∈ N◦, i ≤ 2n, denote

ξ(n, i) = {h 1
2m◦

◦ · · · ◦ h 1
2mk

: k ∈ N◦, m◦, · · · ,mk ≤ n,
∑k

j=0
1

2mj ≤
1− 1

2n}, (3.3)

then

m,n ∈ N◦, i ≤ 2m, j ≤ 2n, i
2m ≤ j

2n implies ξ(m, i) ⊃ ξ(n, j). (3.4)

We have had A◦ ≥ A1, which satisfy condition (II) and (III). Suppose

for some n ∈ N◦ we have constructed {Ar : r ∈ B(n)} ⊂ LX satisfying

conditions (II) and (III). Define {Aψ
2i−1

2n+1

: 1 ≤ i ≤ 2n} as follows:

Aψ
2i−1

2n+1

= (
∨{g(A1) : g ∈ ξ(n + 1, 2i− 1)})ϕ,

then by (3.4), we have constructed the family {Aψ
r : r ∈ B(n + 1)} ⊂ LX .

Let 1 ≤ i ≤ 2n,m ≤ n + 1, we have

hϕ
1

2m
(A 2i−1

2n+1
) = hϕ

1
2m

(
∨{g(A1) : g ∈ ξ(n + 1, 2i− 1)})

= ϕ(
∨{h 1

2m
◦ h 1

2m◦
◦ · · · ◦ h 1

2mk
(A1) : k ∈ N◦,m◦, · · · ,mk ≤ n + 1,

∑k
j=0

1
2mj ≤ 1− 2i−1

2n+1}
=

∨{h 1
2m
◦ h 1

2m◦
◦ · · · ◦ h 1

2mk
(A1) : k ∈ N◦,m◦, · · · ,mk ≤ n + 1,

1
2m +

∑k
j=0

1
2mj ≤ 1− ( 2i−1

2n+1 − 1
2m )}ϕ

≤ ∨{h 1
2m◦

◦ · · · ◦ h 1
2mk

(A1) : k ∈ N◦, m◦, · · · , mk ≤ n + 1,
∑k

j=0
1

2mj ≤ 1− ( 2i−1
2n+1 − 1

2m )}ϕ

=
∨{g(A1) : g ∈ ξ(n + 1, (2i− 1)− 2n+1−m)}ϕ

= Aψ
(2i−1)−2n+1−m

2n+1

= Aψ
2i−1
2n+1− 1

2m
.

condition (II) holds for n+1. To prove (III), note that every number in the

form of 2i
2n can be represented as a member in B◦, we need only prove the
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following inequalities for i ∈ {1, · · · , 2n} :

A 2i−2
2n+1

≥ A 2i−1
2n+1

≥ A 2i
2n+1

. (3.5)

Suppose the irreducible form of 2i−2
2n+1 is 2j−1

2k , i.e. 2i−2
2n+1 = 2j−1

2k , then

2j−1
2k < 2i−1

2n+1 , by (3.4) the first inequality of (3.5) is true. Similarly, the

second inequality of (3.5) holds also. Therefore, for n + 1, we have proved

condition (I) - (III). By inductive method and (3.2), we have constructed

{h 1
2n

: n ∈ N◦} ⊂ D and A = {Ar : r ∈ B◦} ⊂ LX such that the

conditions (I) - (III) hold.

Since every h 1
2m

is arbitrary join preserving, h 1
2m

(0) = 0, and hence by

the previous definition of Ar, for every n < ω and i > 2n, we have

h 1
2m

(A i
2n

) = h 1
2m

(0) = 0 ≤ A i
2n− 1

2m
;

since h 1
2m

is value increasing, for i ≤ 0,

h 1
2m

(A i
2n

) = h 1
2n

(1) ≥ 1,

h 1
2m

(A i
2n

) = 1 = A i
2n
− 1

2m .

Therefore, condition (II) holds for every i ∈ Z.

Denote

B = {2i−1
2n : n < ω, i ∈ Z}. (3.6)

For every t ∈ R and every m ∈ N◦, let

Bm(< t) = {2i−1
2n ∈ B : n ≥ m, 2i−1

2n < t},
Bm(> t) = {2i−1

2n ∈ B : n ≥ m, 2i−1
2n > t},

At =
∨{As : s ∈ B, s > t}, ∀ ∈ [0, 1],
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then B is dense in R, for every m ∈ N◦,Bm(< t) is dense in (−∞, t),Bm(>

t) is dense in (t, = ∞). By the previous definition of Ar, we obtain a

family A∗ = {At : t ∈ R} ⊂ LX . For every x ∈ X and every t ∈ R,

if let λ(t) = At(x), then by condition (III), λ : R → L is monotonically

decreasing and λ(t) = 1 for every t < 0, λ(t) = 0 for every t > 1. So

λ ∈ mdI(L) (see [9]), [λ] ∈ I[L]. Therefore, following the stipulation about

the meaning of F (x)(t) in the statement of this theorem, we can reasonably

define an ordinary mapping F : X → I[L] as follows:

∀x ∈ X, ∀t ∈ R, F (x)(t) = At(x).

Then

A(x) = A1(x) ≤ ∧
ε>0 A1−ε(x) = F (x)(1−) = F←(L′1)(x),

B(x) = A◦(x) ≥ ∨
ε>0 Aε(x) = F (x)(0+) = F←(R◦)(x),

(3.1) holds.

Now we turn to the proof of the uniform ϕψ-continuity of F→. First of

all, we prove the following two equalize : ∀r ∈ R,m ∈ N◦, r ∈ R implies F←(Rr) =
∨

s∈Bm(>r) As, F←(Lr) =
∨

s∈Bm(<r) A′
s. (3.7)

To prove (3.1), suppose x ∈ X,F (x) = [λ], then for every t ∈ R, At(x) =

λ(t). Since Bm(> r) is dense in (r, = ∞),

F←(Rr)(x) = Rr(F (x)) = Rr([λ]) = λ(r+)

=
∨

s∈Bm(>r) λ(s) =
∨

s∈Bm(>r) As(x)

= (
∨

s∈Bm(>r) As(x).

So F←(Rr) =
∨

s∈Bm(>r) As. Similarly prove the second equality in (3.7).

To consider the members of the canonical uniformity of I(L), suppose fε is
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defined by (2.4) for ε > 0, then f /
ε is determined by (2.5), and there exist

g1, g2 ∈ D such that

F→ ◦ gϕ
1 ≤ fψ

ε ◦ F→, F→ ◦ gϕ
2 ≤ f /ψ

ε ◦ F→. (3.8)

In fact, fix a 1
2m ∈ (0, ε), then for every r ∈ R, by condition (II) ( It has

been proved above, (II) holds for every i ∈ Z ) and (3.7),

F→hϕ
1

2m
F←(Rr)

= F→hϕ
1

2m
(
∨

s∈Bm(>r) As)

= F→(
∨

s∈Bm(>r) hϕ
1

2m
(As))

≤ F→(
∨

s∈Bm(>r) Aψ

s− 1
2m

)

= F→F←(Rψ

r− 1
2m

)

≤ Rψ

r− 1
2m

≤ Rψ
r−ε.

On the other hand, since Rr ≤ L′s if and only if Rr ≤ Rs. By (2.4),

fε(Rr) = Ru(Rr)−ε = RW{s:Rr≤L′s}−ε = RW{s:Rr≤Rs}−ε = Rr−ε.

So

F→hφ
1

2m
F←(Rr) ≤ fψ

ε (Rr).

Suppose C ∈ LX \ {0}. If u(C) > 0 for the function u defined in (2.2, 2.3),

take

σ ∈ (0, ε) ∩ (0, u(C)), then by (2.6),

fε(C) = fε−σ(fσ(C)) = fε−σ(Ru(C)−σ).

Take m ∈ N such that 1
2m < ε− σ, then by C ≤ fσ(C) = Ru(C)−σ,

F→hϕ
1

2m
F←(C) ≤ F→hϕ

1
2m

F←(Ru(C)−σ)
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≤ fψ
ε−σ(Ru(C)−σ)

= fψ
ε−σ(fσ(C))

= fψ
ε (C).

So the following implication holds for arbitrary C ∈ LX \ {0} such that

u(C) > 0:

ε > 0,m ∈ N, 1
2m < ε implies F→hϕ

1
2m

F←(C) ≤ fψ
ε (C). (3.9)

If u(C) not > 0, then by u(C) ≥ 0 we have u(C) =
∨{s ∈ R : C ≤ L′s} = 0.

Hence

fε(C) = Ru(C)−ε = R−ε = 1,

the implication (3.9) still holds. Since (3.9) is true for C = 0, so (3.9) holds

for every C ∈ LX . Therefore, F→hϕ
1

2m
F← ≤ fψ

ε . Take g1 = h 1
2m

we obtain

the first inequality in (3.8). Similarly prove the second inequality in (3.8).

Suppose h is a member of the canonical uniformity ε of I(L), then there

exists ε > 0 such that h ≥ fε ∧ f /
ε , since ψ is monotonous operation, so

hψ ≥ fψ
ε ∧ (f /

ε )ψ. Take g1, g2 ∈ D such that (3.8) holds, let g = g1 ∧ g2,then

F→gϕF← ≤ ((F→gϕ
1 F←) ∧ (F→gϕ

2 F←) ≤ fψ
ε ∧ f /ψ

ε ≤ hψ,

hence F→ ◦ gϕ ≤ hψ ◦ F→. This completes the proof of the uniform ϕψ-

continuity of F→.
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