Some sufficient problems for Strongly Close-to-Convex of order μ

Hitoshi Shiraishi, Shigeyoshi Owa

Abstract

For analytic functions $f(z)$ in the open unit disk \mathbb{U} with $f(0)=$ $f^{\prime}(0)-1=0$, a class $\mathcal{S T C}(\mu)$ is defined. The object of the present paper is to discuss some sufficient problems for $f(z)$ to be strongly close-to-convex of order μ in \mathbb{U}.

2000 Mathematics Subject Classification: Primary 30C4
Key words and phrases: analytic, univalent, close-to-convex of order μ

1 Introduction

Let $\mathcal{A}_{n_{j}}$ denote the class of functions

$$
f(z)=z+a_{n_{j}+1} z^{n_{j}+1}+a_{n_{j}+2} z^{n_{j}+2}+\ldots \quad(n=1,2,3, \ldots ; j=1,2)
$$

that are analytic in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$ and $\mathcal{A}=\mathcal{A}_{1}$.
We denote by \mathcal{S} the subclass of \mathcal{A}_{n} consisting of all univalent functions $f(z)$ in \mathbb{U}.

Let $\mathcal{S}^{*}(\alpha)$ be defined by

$$
\mathcal{S}^{*}(\alpha)=\left\{f(z) \in \mathcal{A}_{n}: \operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, 0 \leqq{ }^{\exists} \alpha<1\right\} .
$$

We denote by $\mathcal{S}^{*}=\mathcal{S}^{*}(0)$.
Also, let $\mathcal{S T C}(\mu)$ be defined by

$$
\mathcal{S T C}(\mu)=\left\{f(z) \in \mathcal{A}_{n}: \operatorname{Re}\left(\left(\frac{z f^{\prime}(z)}{g(z)}\right)^{\frac{1}{\mu}}\right)>0,0<{ }^{\exists} \mu \leqq 1,{ }^{\exists} g(z) \in \mathcal{S}^{*}\right\}
$$

A function $f(z) \in \mathcal{S T C}(\mu)$ is said to be strongly close-to-convex of order μ in \mathbb{U}.

The basic tool in proving our results is the following lemma due to Jack [1] (also, due to Miller and Mocanu [2]).

Lemma 1. Let the function $w(z)$ defined by

$$
w(z)=a_{n} z^{n}+a_{n+1} z^{n+1}+a_{n+2} z^{n+2}+\ldots \quad(n=1,2,3, \ldots)
$$

be analytic in \mathbb{U} with $w(0)=0$. If $|w(z)|$ attains its maximum value on the circle $|z|=r$ at a point $z_{0} \in \mathbb{U}$, then there exists a real number $k \geqq n$ such that

$$
\frac{z_{0} w^{\prime}\left(z_{0}\right)}{w\left(z_{0}\right)}=k
$$

2 Main results

Applying Lemma 1 , we drive the following results for $\mathcal{S T \mathcal { C }}(\mu)$.

Theorem 1. If $f(z) \in \mathcal{A}_{n_{1}}$ satisfies

$$
\left|\left(\frac{z f^{\prime}(z)}{g(z)}\right)^{\frac{1}{\mu}}-1\right|^{\beta}\left(\operatorname{Re}\left(\delta+1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z g^{\prime}(z)}{g(z)}\right)\right)^{\gamma}<\left(\operatorname{Re}(\delta)+\frac{\mu n}{2}\right)^{\gamma}
$$

for some real $\beta \geqq 0, \gamma \geqq 0$ such that $\beta+\gamma>0$, some real $0<\mu \leqq 1$, some complex δ with $\operatorname{Re}(\delta)>-\frac{\mu n}{2}$, and for some $g(z) \in \mathcal{A}_{n_{2}} \cap \mathcal{S}^{*}$ where $n=\min \left\{n_{1}, n_{2}\right\}$, then

$$
\left|\left(\frac{z f^{\prime}(z)}{g(z)}\right)^{\frac{1}{\mu}}-1\right|<1 \quad(z \in \mathbb{U})
$$

This means that $f(z) \in \mathcal{S T \mathcal { C }}(\mu)$.

Proof. Let us define $w(z)$ by

$$
\begin{align*}
w(z) & =\left(\frac{z f^{\prime}(z)}{g(z)}\right)^{\frac{1}{\mu}}-1 \quad(z \in \mathbb{U}) \tag{1}\\
& =b_{n} z^{n}+b_{n+1} z^{n+1}+\ldots
\end{align*}
$$

where $n=\min \left\{n_{1}, n_{2}\right\}$.
Then, clearly, $w(z)$ is analytic in \mathbb{U} and $w(0)=0$. Differentiating both sides in (1), we obtain

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z g^{\prime}(z)}{g(z)}=\frac{\mu z w^{\prime}(z)}{w(z)+1}
$$

and therefore,

$$
\begin{aligned}
& \left|\left(\frac{z f^{\prime}(z)}{g(z)}\right)^{\frac{1}{\mu}}-1\right|^{\beta}\left(\operatorname{Re}\left(\delta+1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z g^{\prime}(z)}{g(z)}\right)\right)^{\gamma} \\
& \quad=|w(z)|^{\beta}\left(\operatorname{Re}\left(\delta+\frac{\mu z w^{\prime}(z)}{w(z)+1}\right)\right)^{\gamma}<\left(\operatorname{Re}(\delta)+\frac{\mu n}{2}\right)^{\gamma} \quad(z \in \mathbb{U})
\end{aligned}
$$

If there exists a point $z_{0} \in \mathbb{U}$ such that

$$
\max _{|z| \leqq\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1,
$$

then Lemma 1 gives us that $w\left(z_{0}\right)=e^{i \theta}$ and $z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)(k \geqq n)$.
For such a point z_{0}, we have

$$
\begin{aligned}
& \left|\left(\frac{z_{0} f^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}\right)^{\frac{1}{\mu}}-1\right|^{\beta}\left(\operatorname{Re}\left(\delta+1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}-\frac{z_{0} g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}\right)\right)^{\gamma} \\
& =\left|w\left(z_{0}\right)\right|^{\beta}\left(\operatorname{Re}\left(\delta+\frac{\mu z_{0} w^{\prime}\left(z_{0}\right)}{w\left(z_{0}\right)+1}\right)\right)^{\gamma} \\
& =\left(\operatorname{Re}\left(\delta+\frac{\mu k w\left(z_{0}\right)}{w\left(z_{0}\right)+1}\right)\right)^{\gamma} \\
& =\left(\operatorname{Re}\left(\delta+\frac{\mu k}{2}\left(1+i \tan \frac{\theta}{2}\right)\right)\right)^{\gamma} \\
& =\left(\operatorname{Re}(\delta)+\frac{\mu k}{2}\right)^{\gamma} \\
& \geqq\left(\operatorname{Re}(\delta)+\frac{\mu n}{2}\right)^{\gamma} .
\end{aligned}
$$

This contradicts our condition in the theorem. Therefore, there is no $z_{0} \in \mathbb{U}$ such that $\left|w\left(z_{0}\right)\right|=1$. This means that $|w(z)|<1$ for all $z \in \mathbb{U}$. It follows that

$$
\left|\left(\frac{z f^{\prime}(z)}{g(z)}\right)^{\frac{1}{\mu}}-1\right|<1 \quad(z \in \mathbb{U})
$$

so that $f(z) \in \mathcal{S T C}(\mu)$.

We also derive

Theorem 2. If $f(z) \in \mathcal{A}_{n_{1}}$ satisfies

$$
\left|\left(\frac{z f^{\prime}(z)}{g(z)}\right)^{\frac{1}{\mu}}-1\right|^{\beta}\left(\operatorname{Re}\left(\delta+1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right)^{\gamma} \leqq\left(\operatorname{Re}(\delta)+\alpha+\frac{\mu n}{2}\right)^{\gamma}
$$

for some real $\beta \geqq 0, \gamma \geqq 0$ such that $\beta+\gamma>0$, some real $0<\mu \leqq 1$, $0 \leqq \alpha<1$, some complex δ with $\operatorname{Re}(\delta)>-\frac{\mu n}{2}-\alpha$, and for some $g(z) \in$ $\mathcal{A}_{n_{2}} \cap \mathcal{S}^{*}(\alpha)$ where $n=\min \left\{n_{1}, n_{2}\right\}$, then

$$
\left|\left(\frac{z f^{\prime}(z)}{g(z)}\right)^{\frac{1}{\mu}}-1\right|<1 \quad(z \in \mathbb{U})
$$

which shows that $f(z) \in \mathcal{S T C}(\mu)$.

Proof. Define $w(z)$ in \mathbb{U} by

$$
\begin{align*}
w(z) & =\left(\frac{z f^{\prime}(z)}{g(z)}\right)^{\frac{1}{\mu}}-1 \quad(z \in \mathbb{U}) \tag{2}\\
& =b_{n} z^{n}+b_{n+1} z^{n+1}+\ldots
\end{align*}
$$

where $n=\min \left\{n_{1}, n_{2}\right\}$.
Evidently, $w(z)$ is analytic in \mathbb{U} and $w(0)=0$. Differentiating (2) logarithmically and simplyfing, we have

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{z g^{\prime}(z)}{g(z)}+\frac{\mu z w^{\prime}(z)}{w(z)+1}
$$

and hence,

$$
\begin{aligned}
& \left|\left(\frac{z f^{\prime}(z)}{g(z)}\right)^{\frac{1}{\mu}}-1\right|^{\beta}\left(\operatorname{Re}\left(\delta+1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right)^{\gamma} \\
& \quad=|w(z)|^{\beta}\left(\operatorname{Re}\left(\delta+\frac{z g^{\prime}(z)}{g(z)}+\frac{\mu z w^{\prime}(z)}{w(z)+1}\right)\right)^{\gamma} \leqq\left(\operatorname{Re}(\delta)+\alpha+\frac{\mu n}{2}\right)^{\gamma}
\end{aligned}
$$

If there exists a point $z_{0} \in \mathbb{U}$ such that

$$
\max _{|z| \leqq\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1,
$$

then Lemma 1 gives us that $w\left(z_{0}\right)=e^{i \theta}$ and $z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)(k \geqq n)$.
For such a point z_{0}, we have

$$
\begin{aligned}
& \left|\left(\frac{z_{0} f^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}\right)^{\frac{1}{\mu}}-1\right|^{\beta}\left(\operatorname{Re}\left(\delta+1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right)\right)^{\gamma} \\
& =\left|w\left(z_{0}\right)\right|^{\beta}\left(\operatorname{Re}\left(\delta+\frac{z_{0} g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}+\frac{\mu z_{0} w^{\prime}\left(z_{0}\right)}{w\left(z_{0}\right)+1}\right)\right)^{\gamma} \\
& =\left(\operatorname{Re}\left(\delta+\frac{z_{0} g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}+\frac{\mu k w\left(z_{0}\right)}{w\left(z_{0}\right)+1}\right)\right)^{\gamma} \\
& =\left(\operatorname{Re}\left(\delta+\frac{z_{0} g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}+\frac{\mu k}{2}\left(1+i \tan \frac{\theta}{2}\right)\right)\right)^{\gamma} \\
& =\left(\operatorname{Re}(\delta)+\operatorname{Re}\left(\frac{z_{0} g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}\right)+\frac{\mu k}{2}\right)^{\gamma} \\
& >\left(\operatorname{Re}(\delta)+\alpha+\frac{\mu n}{2}\right)^{\gamma}
\end{aligned}
$$

This contradicts our condition in the theorem. Therefore, there is no $z_{0} \in \mathbb{U}$ such that $\left|w\left(z_{0}\right)\right|=1$. This means that $|w(z)|<1$ for all $z \in \mathbb{U}$. This implies that

$$
\left|\left(\frac{z f^{\prime}(z)}{g(z)}\right)^{\frac{1}{\mu}}-1\right|<1 \quad(z \in \mathbb{U})
$$

so that $f(z) \in \mathcal{S T C}(\mu)$.

We consider a new appplication for Lemma 1. Our new application is follows.

Theorem 3. If $f(z) \in \mathcal{A}_{n_{1}}$ satisfies

$$
\left|\left(\frac{z f^{\prime}(z)}{g(z)}\right)^{\frac{1}{\mu}}-1\right|^{\beta}\left|\delta+1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z g^{\prime}(z)}{g(z)}\right|^{\gamma}<\rho^{\beta}\left(\delta+\frac{\mu \rho n}{1+\rho}\right)^{\gamma}
$$

for some real $\beta \geqq 0, \gamma \geqq 0$ such that $\beta+\gamma>0$, some real $0<\mu \leqq 1, \delta>0$, ρ with $\rho>\sqrt{\frac{\delta}{\delta+\mu n}}$, and for some $g(z) \in \mathcal{A}_{n_{2}} \cap \mathcal{S}^{*}$ where $n=\min \left\{n_{1}, n_{2}\right\}$, then

$$
\left|\left(\frac{z f^{\prime}(z)}{g(z)}\right)^{\frac{1}{\mu}}-1\right|<\rho \quad(z \in \mathbb{U})
$$

In addition for $\rho<1$, we have $f(z) \in \mathcal{S T C}(\mu)$.

Proof. Defining the function $w(z)$ by

$$
\begin{aligned}
w(z) & =\left(\frac{z f^{\prime}(z)}{g(z)}\right)^{\frac{1}{\mu}}-1 \quad(z \in \mathbb{U}) \\
& =b_{n} z^{n}+b_{n+1} z^{n+1}+\ldots
\end{aligned}
$$

where $n=\min \left\{n_{1}, n_{2}\right\}$, we have that $w(z)$ is analytic in \mathbb{U} with $w(0)=0$. Since,

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z g^{\prime}(z)}{g(z)}=\frac{\mu z w^{\prime}(z)}{w(z)+1},
$$

we obtain that

$$
\begin{aligned}
\left|\left(\frac{z f^{\prime}(z)}{g(z)}\right)^{\frac{1}{\mu}}-1\right|^{\beta}\left|\delta+1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z g^{\prime}(z)}{g(z)}\right|^{\gamma} & =|w(z)|^{\beta}\left|\delta+\frac{\mu z w^{\prime}(z)}{w(z)+1}\right|^{\gamma} \\
& <\rho^{\beta}\left(\delta+\frac{\mu \rho n}{1+\rho}\right)^{\gamma}
\end{aligned}
$$

If there exists a point $z_{0} \in \mathbb{U}$ such that

$$
\max _{|z| \leqq\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=\rho,
$$

then Lemma 1 gives us that $w\left(z_{0}\right)=\rho e^{i \theta}$ and $z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)(k \geqq n)$.
Thus we have

$$
\begin{aligned}
& \left|\left(\frac{z_{0} f^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}\right)^{\frac{1}{\mu}}-1\right|^{\beta}\left|\delta+1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}-\frac{z_{0} g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}\right|^{\gamma} \\
& =\left|w\left(z_{0}\right)\right|^{\beta}\left|\delta+\frac{\mu z_{0} w^{\prime}\left(z_{0}\right)}{w\left(z_{0}\right)+1}\right|^{\gamma} \\
& =\rho^{\beta}\left|\delta+\frac{\mu k w\left(z_{0}\right)}{w\left(z_{0}\right)+1}\right|^{\gamma} \\
& =\rho^{\beta}\left|\delta+\frac{\mu \rho k(\rho+\cos \theta)}{\rho^{2}+1+2 \rho \cos \theta}+i \frac{\mu \rho k \sin \theta}{\rho^{2}+1+2 \rho \cos \theta}\right|^{\gamma} \\
& =\rho^{\beta}\left(\delta^{2}+\mu \delta k+\frac{\mu \delta k\left(\rho^{2}-1\right)+\mu^{2} \rho^{2} k^{2}}{\rho^{2}+1+2 \rho \cos \theta}\right)^{\frac{\gamma}{2}} \\
& \geqq \rho^{\beta}\left(\delta^{2}+\mu \delta k+\frac{\mu \delta k\left(\rho^{2}-1\right)+\mu^{2} \rho^{2} k^{2}}{\rho^{2}+1+2 \rho}\right)^{\frac{\gamma}{2}} \\
& =\rho^{\beta}\left(\delta+\frac{\mu \rho k}{1+\rho}\right)^{\gamma} \\
& \geqq \rho^{\beta}\left(\delta+\frac{\mu \rho n}{1+\rho}\right)^{\gamma} .
\end{aligned}
$$

This contradicts our condition in the theorem. Therefore, there is no $z_{0} \in \mathbb{U}$ such that $\left|w\left(z_{0}\right)\right|=\rho$. This means that $|w(z)|<\rho$ for all $z \in \mathbb{U}$.

We also consider a new aplocstion for Lemma 1.

Theorem 4. If $f(z) \in \mathcal{A}_{n_{1}}$ satisfies

$$
\left|\left(\frac{g(z)}{z f^{\prime}(z)}\right)^{\frac{1}{\mu}}-1\right|^{\beta}\left(\operatorname{Re}\left(\delta-1-\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\frac{z g^{\prime}(z)}{g(z)}\right)\right)^{\gamma}<\left(\operatorname{Re}(\delta)+\frac{\mu n}{2}\right)^{\gamma}
$$

for some real $\beta \geqq 0, \gamma \geqq 0$ such that $\beta+\gamma>0$, some real $0<\mu \leqq 1$, some complex δ with $\operatorname{Re}(\delta)>-\frac{\mu n}{2}$, and for some $g(z) \in \mathcal{A}_{n_{2}} \cap \mathcal{S}^{*}$ where $n=\min \left\{n_{1}, n_{2}\right\}$, then

$$
\left|\left(\frac{g(z)}{z f^{\prime}(z)}\right)^{\frac{1}{\mu}}-1\right|<1 \quad(z \in \mathbb{U})
$$

This means that $f(z) \in \mathcal{S T} \mathcal{C}(\mu)$.

Proof. Let us define the function $w(z)$ by

$$
\begin{align*}
w(z) & =\left(\frac{g(z)}{z f^{\prime}(z)}\right)^{\frac{1}{\mu}}-1 \quad(z \in \mathbb{U}) \tag{3}\\
& =b_{n} z^{n}+b_{n+1} z^{n+1}+\ldots
\end{align*}
$$

where $n=\min \left\{n_{1}, n_{2}\right\}$.
Clearly, $w(z)$ is analytic in \mathbb{U} with $w(0)=0$. We want to prove that $|w(z)|<1$ in \mathbb{U}. Since,

$$
-1-\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\frac{z g^{\prime}(z)}{g(z)}=\frac{\mu z w^{\prime}(z)}{w(z)+1}
$$

we see that

$$
\begin{aligned}
& \left|\left(\frac{g(z)}{z f^{\prime}(z)}\right)^{\frac{1}{\mu}}-1\right|^{\beta}\left(\operatorname{Re}\left(\delta-1-\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\frac{z g^{\prime}(z)}{g(z)}\right)\right)^{\gamma} \\
& \quad=|w(z)|^{\beta}\left(\operatorname{Re}\left(\delta+\frac{\mu z w^{\prime}(z)}{w(z)+1}\right)\right)^{\gamma}<\left(\operatorname{Re}(\delta)+\frac{\mu n}{2}\right)^{\gamma} \quad(z \in \mathbb{U})
\end{aligned}
$$

If there exists a point $z_{0} \in \mathbb{U}$ such that

$$
\max _{|z| \leqq\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1
$$

then Lemma 1 gives us that $w\left(z_{0}\right)=e^{i \theta}$ and $z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)(k \geqq n)$.
Thus we have

$$
\begin{aligned}
& \left|\left(\frac{g\left(z_{0}\right)}{z_{0} f^{\prime}\left(z_{0}\right)}\right)^{\frac{1}{\mu}}-1\right|^{\beta}\left(\operatorname{Re}\left(\delta-1-\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}+\frac{z_{0} g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}\right)\right)^{\gamma} \\
& =\left|w\left(z_{0}\right)\right|^{\beta}\left(\operatorname{Re}\left(\delta+\frac{\mu z_{0} w^{\prime}\left(z_{0}\right)}{w\left(z_{0}\right)+1}\right)\right)^{\gamma} \\
& =\left(\operatorname{Re}\left(\delta+\frac{\mu k w\left(z_{0}\right)}{w\left(z_{0}\right)+1}\right)\right)^{\gamma} \\
& =\left(\operatorname{Re}\left(\delta+\frac{\mu k}{2}\left(1+i \tan \frac{\theta}{2}\right)\right)\right)^{\gamma} \\
& =\left(\operatorname{Re}(\delta)+\frac{\mu k}{2}\right)^{\gamma} \\
& \geqq\left(\operatorname{Re}(\delta)+\frac{\mu n}{2}\right)^{\gamma} .
\end{aligned}
$$

This contradicts the condition in the theorem. Therefore, there is no $z_{0} \in \mathbb{U}$ such that $\left|w\left(z_{0}\right)\right|=1$. This means that $|w(z)|<1$ for all $z \in \mathbb{U}$. We conclude that

$$
\left|\left(\frac{g(z)}{z f^{\prime}(z)}\right)^{\frac{1}{\mu}}-1\right|<1 \quad(z \in \mathbb{U})
$$

which implies that $f(z) \in \mathcal{S} \mathcal{T C}(\mu)$.

Finally, we derive

Theorem 5. If $f(z) \in \mathcal{A}_{n_{1}}$ satisfies

$$
\left|\left(\frac{g(z)}{z f^{\prime}(z)}\right)^{\frac{1}{\mu}}-1\right|^{\beta}\left|\delta-1-\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\frac{z g^{\prime}(z)}{g(z)}\right|^{\gamma}<\rho^{\beta}\left(\delta+\frac{\mu \rho n}{1+\rho}\right)^{\gamma}
$$

for some real $\beta \geqq 0, \gamma \geqq 0$ such that $\beta+\gamma>0$, some real $0<\mu \leqq 1, \delta>0$, ρ with $\rho>\sqrt{\frac{\bar{\delta}}{\delta+\mu n}}$, and for some $g(z) \in \mathcal{A}_{n_{2}} \cap \mathcal{S}^{*}$ where $n=\min \left\{n_{1}, n_{2}\right\}$, then

$$
\left|\left(\frac{g(z)}{z f^{\prime}(z)}\right)^{\frac{1}{\mu}}-1\right|<\rho \quad(z \in \mathbb{U})
$$

In addition, if $\rho<1$, then we have $f(z) \in \mathcal{S T C}(\mu)$.

Proof. Let us define $w(z)$ by

$$
\begin{align*}
w(z) & =\left(\frac{g(z)}{z f^{\prime}(z)}\right)^{\frac{1}{\mu}}-1 \quad(z \in \mathbb{U}) \tag{4}\\
& =b_{n} z^{n}+b_{n+1} z^{n+1}+\ldots
\end{align*}
$$

where $n=\min \left\{n_{1}, n_{2}\right\}$.
Then, we have that $w(z)$ is analytic in \mathbb{U} and $w(0)=0$. Differenciating (4) in both side logarithmically and simplifying, we obtain

$$
-1-\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\frac{z g^{\prime}(z)}{g(z)}=\frac{\mu z w^{\prime}(z)}{w(z)+1}
$$

and hence,

$$
\begin{aligned}
\left|\left(\frac{g(z)}{z f^{\prime}(z)}\right)^{\frac{1}{\mu}}-1\right|^{\beta}\left|\delta-1-\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\frac{z g^{\prime}(z)}{g(z)}\right|^{\gamma} & =|w(z)|^{\beta}\left|\delta+\frac{\mu z w^{\prime}(z)}{w(z)+1}\right|^{\gamma} \\
& <\rho^{\beta}\left(\delta+\frac{\mu \rho n}{1+\rho}\right)^{\gamma}
\end{aligned}
$$

If there exists a point $z_{0} \in \mathbb{U}$ such that

$$
\max _{|z| \leqq\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=\rho
$$

then Lemma 1 gives us that $w\left(z_{0}\right)=\rho e^{i \theta}$ and $z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)(k \geqq n)$.
Therefore, we have

$$
\begin{aligned}
& \left|\left(\frac{g\left(z_{0}\right)}{z_{0} f^{\prime}\left(z_{0}\right)}\right)^{\frac{1}{\mu}}-1\right|^{\beta}\left|\delta-1-\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}+\frac{z_{0} g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}\right|^{\gamma} \\
& =\left|w\left(z_{0}\right)\right|^{\beta}\left|\delta+\frac{\mu z_{0} w^{\prime}\left(z_{0}\right)}{w\left(z_{0}\right)+1}\right|^{\gamma} \\
& =\rho^{\beta}\left|\delta+\frac{\mu k w\left(z_{0}\right)}{w\left(z_{0}\right)+1}\right|^{\gamma} \\
& =\rho^{\beta}\left|\delta+\frac{\mu \rho k(\rho+\cos \theta)}{\rho^{2}+1+2 \rho \cos \theta}+i \frac{\mu \rho k \sin \theta}{\rho^{2}+1+2 \rho \cos \theta}\right|^{\gamma} \\
& =\rho^{\beta}\left(\delta^{2}+\mu \delta k+\frac{\mu \delta k\left(\rho^{2}-1\right)+\mu^{2} \rho^{2} k^{2}}{\rho^{2}+1+2 \rho \cos \theta}\right)^{\frac{\gamma}{2}} \\
& \geqq \rho^{\beta}\left(\delta^{2}+\mu \delta k+\frac{\mu \delta k\left(\rho^{2}-1\right)+\mu^{2} \rho^{2} k^{2}}{\rho^{2}+1+2 \rho}\right)^{\frac{\gamma}{2}} \\
& =\rho^{\beta}\left(\delta+\frac{\mu \rho k}{1+\rho}\right)^{\gamma} \\
& \geqq \rho^{\beta}\left(\delta+\frac{\mu \rho n}{1+\rho}\right)^{\gamma} .
\end{aligned}
$$

This contradicts our condition in the theorem. Therefore, there is no $z_{0} \in \mathbb{U}$ such that $\left|w\left(z_{0}\right)\right|=\rho$. This means that $|w(z)|<\rho$ for all $z \in \mathbb{U}$.

References

[1] I. S. Jack, Functions starlike and convex of order α, J.London Math. Soc. 3(1971), 469-474.
[2] S. S. Miller and P. T. Mocanu, Second-order differential inequalities in the complex plane, J. Math. Anal. Appl. 65(1978), 289-305.
[3] R. Singh and S. Singh, Some sufficient conditions for univalence and starlikeness, Coll. Math. 47(1982), 309-314.
[4] H. Shiraishi and S. Owa, Some sufficient problems for certain univalent functions, Far East J. Math. Sci. 30(2008), 147-155.

Hitoshi Shiraishi

Kinki University
Department of Mathematics
Higashi-Osaka, Osaka 577-8502, Japan
e-mail: shiraishi@math.kindai.ac.jp

Shigeyoshi Owa
Kinki University
Department of Mathematics
Higashi-Osaka, Osaka 577-8502, Japan
e-mail: owa@math.kindai.ac.jp

