# Some Results On Janowski Starlike Log-harmonic Mappings Of Complex Order $b$ 

Melike Aydog̃an


#### Abstract

Let $H(\mathbb{D})$ be a linear space of all analytic functions defined on the open unit disc $\mathbb{D}=\{z| | z \mid<1\}$. A sense-preserving log-harmonic function is the solution of the non-linear elliptic partial differential equation $$
\overline{f_{\bar{z}}}=w \frac{\bar{f}}{f} f_{z},
$$ where $w(z)$ is analytic, satisfies the condition $|w(z)|<1$ for every $z \in \mathbb{D}$ and is called the second dilatation of $f$. It has been shown that if $f$ is a non-vanishing log-harmonic mapping then $f$ can be represented by $$
f(z)=h(z) \overline{g(z)},
$$ where $h(z)$ and $g(z)$ are analytic in $\mathbb{D}$ with $h(0) \neq 0, g(0)=1([1])$. If $f$ vanishes at $z=0$ but it is not identically zero, then $f$ admits the representation


$$
f(z)=z|z|^{2 \beta} h(z) \overline{g(z)},
$$

where $\operatorname{Re} \beta>-\frac{1}{2}, h(z)$ and $g(z)$ are analytic in $D$ with $g(0)=1$ and $h(0) \neq 0$. The class of sense-preserving log-harmonic mappins is denoted by $\mathcal{S}_{L H}$. We say that $f$ is a Janowski starlike log-harmonic mapping.If

$$
1+\frac{1}{b}\left(\frac{z f_{z}-\bar{z} f_{\bar{z}}}{f}-1\right)=\frac{1+A \phi(z)}{1+B \phi(z)}
$$

where $\phi(z)$ is Schwarz function. The class of Janowski starlike logharmonic mappings is denoted by $\mathcal{S}_{L H}^{*}(A, B, b)$. We also note that, if $(z h(z))$ is a starlike function, then the Janowski starlike log-harmonic mappings will be called a perturbated Janowski starlike log-harmonic mappings. And the family of such mappings will be denoted by $\mathcal{S}_{P L H}^{*}(A, B, b)$. The aim of this paper is to give some distortion theorems of the class $\mathcal{S}_{L H}^{*}(A, B, b)$.

2000 Mathematics Subject Classification: Primary 30C55, 30C45.
Key words and phrases: Starlike function, Distortion theorem.

## 1 Introduction

Let $\Omega$ be the family of functions $\phi(z)$ which are regular in $\mathbb{D}$ and satisfying the conditions $\phi(0)=0,|\phi(z)|<1$ for all $z \in \mathbb{D}$. Next, denote by $\mathcal{P}(A, B)$ the family of functions

$$
p(z)=1+p_{1} z+p_{2} z^{2}+\ldots
$$

regular in $\mathbb{D}$, such that $p(z)$ is in $\mathcal{P}(A, B)$ if and only if

$$
\begin{equation*}
p(z)=\frac{1+A \phi(z)}{1+B \phi(z)}, \quad-1 \leq B<A \leq 1 \tag{1}
\end{equation*}
$$

for some function $\phi(z) \in \Omega$ and for every $z \in \mathbb{D}$. Therefore we have $p(0)=1$, $\operatorname{Rep}(z)>\frac{1-A}{1-B}>0$ whenever $p(z) \in \mathcal{P}(A, B)$. Moreover, let $\mathcal{S}^{*}(A, B)$ denote the family of functions

$$
s(z)=z+a_{2} z^{2}+\ldots
$$

regular in $\mathbb{D}$, and such that $s(z)$ is in $\mathcal{S}^{*}$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left(z \frac{s^{\prime}(z)}{s(z)}\right)=p(z)=\frac{1+\phi(z)}{1-\phi(z)}, p(z) \in \mathcal{P}(1,-1) \tag{2}
\end{equation*}
$$

Let $S_{1}(z)$ and $S_{2}(z)$ be analytic functions in $\mathbb{D}$ with $S_{1}(0)=S_{2}(0)$. We say that $S_{1}(z)$ subordinated to $S_{2}(z)$ and denote by $S_{1}(z) \prec S_{2}(z)$, if $S_{1}(z)=S_{2}(\phi(z))$ for some function $\phi(z) \in \Omega$ and every $z \in \mathbb{D}$. If $S_{1}(z) \prec S_{2}(z)$, then $S_{1}(\mathbb{D}) \subset S_{2}(\mathbb{D})([5])$.

The radius of starlikeness of the class of sense-preserving log-harmonic mapping is

$$
r_{s}=\sup \left\{r \left\lvert\, \operatorname{Re}\left(\frac{z f_{z}-\bar{z} f_{\bar{z}}}{f}\right)>0\right.,0<r<1\right\} .
$$

Finally, let $H(D)$ be the linear space of all analytic functions defined on the open unit disc $\mathbb{D}$. A sense-preserving log-harmonic mapping is the solution of the non-linear elliptic partial differential equation

$$
\begin{equation*}
\frac{\overline{f_{\bar{z}}}}{\bar{f}}=w(z) \frac{f_{z}}{f}, \tag{3}
\end{equation*}
$$

where $w(z) \in H(\mathbb{D})$ is the second dilatation of $f$ such that $|w(z)|<1$ for every $z \in \mathbb{D}$. It has been shown that if $f$ is a non-vanishing log-harmonic mapping, then $f$ can be expressed as

$$
\begin{equation*}
f=h(z) \overline{g(z)} \tag{4}
\end{equation*}
$$

where $h(z)$ and $g(z)$ are analytic functions in $\mathbb{D}$.
On the other hand, if $f$ vanishes at $z=0$ and at no other point, then $f$ admits the representation,

$$
\begin{equation*}
f=z|z|^{2 \beta} h(z) \overline{g(z)}, \tag{5}
\end{equation*}
$$

where $\operatorname{Re} \beta>-1 / 2, h(z)$ and $g(z)$ are analytic in $\mathbb{D}$ with $g(0)=1$ and $h(0) \neq 0$. We note that the class of log-harmonic mappings is denoted by $\mathcal{S}_{L H}$.
Let $f=z h(z) \overline{g(z)}$ be an element of $\mathcal{S}_{L H}$. We say that $f$ is a Janowski starlike log-harmonic mapping if

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{z f_{z}-\bar{z} f_{\bar{z}}}{f}-1\right)=p(z)=\frac{1+A \phi(z)}{1+B \phi(z)}, p(z) \in \mathcal{P}(A, B) \tag{6}
\end{equation*}
$$

where $-1 \leq B<A \leq 1, b \neq 0$ and complex and denote by $\mathcal{S}_{L H}^{*}(A, B, b)$ the set of all starlike log-harmonic mappings. Also we denote $\mathcal{S}_{P L H}^{*}(A, B, b)$ the class of all functions in $\mathcal{S}_{L H}^{*}(A, B, b)$ for which $(z h(z)) \in \mathcal{S}^{*}(A, B)$ for all $z \in \mathbb{D}$.

We note that if we give special values to $b$, then we obtain important subclasses of Janowski starlike log-harmonic mappings
i. For $b=0$, we obtain the class of starlike log-harmonic mappings.
ii. For $b=1-\alpha, 0 \leq \alpha<1$, we obtain the class of starlike log-harmonic mappings of order $\alpha$.
iii. For $b=e^{-i \lambda} \cos \lambda,|\lambda|<\frac{\pi}{2}$, we obtain the class of $\lambda$ - spirallike logharmonic mappings.
iv. For $b=(1-\alpha) e^{-i \lambda} \cos \lambda, 0 \leq \alpha<1,|\lambda|<\frac{\pi}{2}$, we obtain the class of $\lambda-$ spirallike log-harmonic mappings of order $\alpha$.

## 2 Main results

Theorem 1 Let $f=z h(z) \overline{g(z)}$ be an element of $\mathcal{S}_{P L H}^{*}(A, B, b)$. Then

$$
f=z h(z) \overline{g(z)} \in \mathcal{S}_{L H}^{*}(A, B, b) \text { iff } \begin{cases}z \frac{h^{\prime}(z)}{h(z)}-\bar{z} \frac{\overline{g^{\prime}(z)}}{g(z)} \prec \frac{b(A-B) z}{1+B z} ; & B \neq 0  \tag{7}\\ z \frac{h^{\prime}(z)}{h(z)}-\bar{z} \frac{\overline{g^{\prime}(z)}}{g(z)} \prec b A z ; & B=0\end{cases}
$$

Proof. Let $f \in \mathcal{S}_{L H}^{*}(A, B, b)$. Using the principle of subordination then we have

$$
\begin{gathered}
1+\frac{1}{b}\left(\frac{z f z-\bar{z} f_{\bar{z}}}{f}-1\right)=1+\frac{1}{b}\left(z \frac{h^{\prime}(z)}{h(z)}-\bar{z} \frac{\overline{g^{\prime}(z)}}{\overline{g(z)}}\right)= \begin{cases}\frac{1+A \phi(z)}{1+B \phi(z)} ; & B \neq 0, \\
1+A \phi(z) ; & B=0,\end{cases} \\
\text { iff } z \frac{h^{\prime}(z)}{h(z)}-\bar{z} \frac{\overline{g^{\prime}(z)}}{\overline{g(z)}}= \begin{cases}\frac{b(A-B) \phi(z)}{1+B \phi(z)} ; & B \neq 0, \\
b A \phi(z) ; & B=0,\end{cases} \\
\text { iff } z \frac{h^{\prime}(z)}{h(z)}-\bar{z} \frac{\overline{g^{\prime}(z)}}{\overline{g(z)}} \prec \begin{cases}\frac{b(A-B) z}{1+B z} ; & B \neq 0, \\
b A z ; & B=0 .\end{cases}
\end{gathered}
$$

Theorem 2 Let $f=z h(z) \overline{g(z)}$ be an element of $\mathcal{S}_{P L H}^{*}(A, B, b)$.Then

$$
\begin{cases}G(A, B,-r) \leq\left|\frac{h(z)}{g(z)}\right| \leq G(A, B, r) ; & B \neq 0 \\ G_{1}(A,-r) \leq\left|\frac{h(z)}{g(z)}\right| \leq G_{1}(A, r) ; & B=0\end{cases}
$$

where

$$
\begin{cases}G(A, B, r)=\frac{(1+B r)^{\frac{(A-B)(|b|-R e b)}{2 b}}}{(1-B r) \frac{(A-B)(b \mid+R e b)}{2 B}} ; & B \neq 0  \tag{8}\\ G_{1}(A, r)=\frac{(1+r)^{\frac{A|b|}{2}}}{(1-r)^{\frac{A|b|}{2}}} ; & B=0\end{cases}
$$

Proof. The function $\left(\frac{1+A z}{1+B z}\right)$ maps $|z|=r$ on to crcle with the centre $C(r)=$ $\left(\frac{1-A B r^{2}}{1-B^{2} r^{2}}, 0\right)$ and the raidus $p(r)=\frac{(A-B) r}{1-B^{2} r^{2}}$. Therefore using the definition of subordination and Theorem 1, we get

$$
\left\{\begin{array}{l}
\left|\left(1+\frac{1}{b}\left(z \frac{h^{\prime}(z)}{h(z)}-\bar{z} \frac{\overline{g^{\prime}(z)}}{g(z)}\right)-\frac{1-A B r^{2}}{1-B^{2} r^{2}}\right)\right| \leq \frac{(A-B) r}{1-B^{2} r^{2}} ; B \neq 0  \tag{9}\\
\left|\left(1+\frac{1}{b}\left(z \frac{h^{\prime}(z)}{h(z)}-\bar{z} \frac{g^{\prime}(z)}{g(z)}\right)-0\right)\right| \leq A r ; B=0
\end{array}\right.
$$

The inequality (9) takes in the form,

$$
\left\{\begin{align*}
& \frac{(B(A-B) R e b) r^{2}-|b|(A-B) r}{1-B^{2} r^{2}} \leq \operatorname{Re}\left(z \frac{h^{\prime}(z)}{h(z)}-z \frac{g^{\prime}(z)}{g(z)}\right) \leq \frac{b(A-B) r}{1-B^{2} r^{2}}  \tag{10}\\
&+\frac{(B(A-B) R e b) r^{2}}{1-B^{2} r^{2}} ; B \neq 0 \\
&-\frac{A|b| r}{1-r^{2}} \leq \operatorname{Re}\left(z \frac{h^{\prime}(z)}{h(z)}-z \frac{g^{\prime}(z)}{g(z)}\right) \leq \frac{A|b| r}{1-r^{2}} ; B=0
\end{align*}\right.
$$

on the other hand we have,

$$
R e\left(z \frac{h^{\prime}(z)}{h(z)}-z \frac{g^{\prime}(z)}{g(z)}\right)=r \frac{\partial}{\partial r}(\log |h(z)|-\log |g(z)|)
$$

Thus the inequality (10) can be written in the form,

$$
\left\{\begin{array}{l}
\frac{[B(A-B) R e b . r-|b|(A-B)]}{(1-B r)(1+B r)} \leq \frac{\partial}{\partial r} \log |h(z)-g(z)| \leq \frac{[B(A-B) R e b . r+|b|(A-B)]}{(1-B r)(1+B r)} ; B \neq 0,  \tag{11}\\
-\frac{A|b|}{(1-r)(1+r)} \leq \frac{\partial}{\partial r} \log |h(z)-g(z)| \leq \frac{A|b|}{(1-r)(1+r)} ; B=0,
\end{array}\right.
$$

integrating both sides of (11) from 0 to $r$ we get (8).

Corollary 1 The radius of starlikeness of the class $\mathcal{S}_{P L H}^{*}$ is

$$
r_{s}= \begin{cases}\frac{2}{(A-B)|b|+\sqrt{(A-B)^{2}|b|^{2}+4\left[B^{2}+\left(A B-B^{2}\right) R e b\right]}} ; & B \neq 0,  \tag{12}\\ \frac{1}{|b| A} ; & B=0\end{cases}
$$

Proof. The inequality (9) can be written in the form

$$
\begin{cases}\left|\frac{z f_{; z}-\bar{z} f_{\bar{z}}}{f}-\left[\frac{1-\left(B^{2}+\left(A B-B^{2} R e b\right) r^{2}-i\left(\left(A B-B^{2}\right) I m b\right) r^{2}\right)}{1-B^{2} r^{2}}\right]\right| \leq \frac{|b|(A-B) r}{1-B^{2} r^{2}} ; & B \neq 0, \\ \left|\frac{z f_{z}-\bar{z} f_{\bar{z}}}{f}-1\right| \leq|b| A r ; & B=0 .\end{cases}
$$

Therefore we have

$$
\operatorname{Re}\left(\frac{z f_{z}-\bar{z} f_{\bar{z}}}{f}\right) \geq \begin{cases}\frac{1-(A-B)|b| r-\left(B^{2}+\left(A B-B^{2}\right) R e b\right) r^{2}}{1-B^{2} r^{2}} ; & B \neq 0, \\ 1-|b| A r ; & B=0\end{cases}
$$

which gives (12).
Lemma 1 Let $f=z|z|^{2 \beta} h(z) \overline{g(z)} \in \mathcal{S}_{L H}$ and let $w(z)$ be the second dilatation of $f$. Then

$$
\begin{equation*}
\frac{\| \beta|-|\beta+1| r|}{\| \beta+1|-|\beta| r|} \leq|w(z)| \leq \frac{\| \beta|+|\beta+1| r|}{\| \beta+1|+|\beta| r|} \tag{13}
\end{equation*}
$$

This inequality is sharp because the extremal function is

$$
w(z)=e^{i \theta} \frac{e^{i \ell} z-\left|\frac{\bar{\beta}}{\beta+1}\right|}{1-\left|\frac{\bar{\beta}}{\beta+1}\right| e^{i \ell} z}, \quad z \in \mathbb{D}, \ell \in \mathbb{R} .
$$

Proof. $f=z|z|^{2 \beta} h(z) \overline{g(z)} \in \mathcal{S}_{L H}$ and let $1^{2 \beta}=1$. Then $f$ is the solution of the nonlinear elliptic partial differential equation

$$
w(z)=\frac{\overline{f_{\bar{z}}}}{\bar{f}} \cdot \frac{f}{f_{z}}
$$

$$
\begin{gathered}
f_{z}=\left(\frac{1}{z}+\frac{\beta}{z}+\frac{h^{\prime}(z)}{h(z)}\right) f \\
f_{\bar{z}}=\left(\frac{\bar{\beta}}{z}+\frac{g^{\prime}(z)}{g(z)}\right) \bar{f} \\
w(z)=\frac{\overline{f_{\bar{z}}}}{\bar{f}} \cdot \frac{f}{f_{z}}=\frac{\bar{\beta}+z \frac{g^{\prime}(z)}{g(z)}}{(\beta+1)+z \frac{h^{\prime}(z)}{h(z)}}, \quad w(0)=\frac{\bar{\beta}}{\beta+1}, \quad|w(0)|<1 .
\end{gathered}
$$

On the other hand for $\operatorname{Re} \beta>-\frac{1}{2}$, we have $\left|\frac{\bar{\beta}}{\beta+1}\right|<1$. Therefore we can take $w(0)=c_{0}=\left|\frac{\bar{\beta}}{\beta+1}\right| e^{i \theta}, \quad \theta \in \mathbb{R}$.
Now consider the function

$$
\phi(z)=\frac{e^{-i \theta} w(z)-\left|\frac{\bar{\beta}}{\beta+1}\right|}{1-\left|\frac{\bar{\beta}}{\beta+1}\right| e^{i \theta} w(z)}, \quad z \in \mathbb{D},
$$

which satisfies the conditions Schwarz lemma and use the estimate $|\phi(z)| \leq$ $|z|<r$, to get

$$
\left|e^{-i \theta} w(z)-\left|\frac{\bar{\beta}}{\beta+1}\right|\right| \leq r| | \frac{\bar{\beta}}{\beta+1}\left|e^{-i \theta} w(z)-1\right| .
$$

This is equivalent to

$$
\begin{equation*}
\left|w(z)-\frac{\left|\frac{\bar{\beta}}{\beta+1}\right|\left(1-r^{2}\right)}{1-\left|\frac{\bar{\beta}}{\beta+1}\right|^{2} r^{2}}\right| \leq \frac{r\left(1-\left|\frac{\bar{\beta}}{\beta+1}\right|^{2}\right)}{1-\left|\frac{\bar{\beta}}{\beta+1}\right|^{2} r^{2}} \tag{14}
\end{equation*}
$$

and the equality holds only for a function of the form

$$
w(z)=e^{i \theta} \frac{e^{i \ell} z-\left|\frac{\bar{\beta}}{\beta+1}\right|}{1-\left|\frac{\bar{\beta}}{\beta+1}\right| e^{i \ell} z}, \quad z \in \mathbb{D}, \ell \in \mathbb{R} .
$$

From the inequality (14)) we have then

$$
\begin{aligned}
& |w(z)|=\left|e^{-i \theta} w(z)\right| \geq\left|\frac{\left|\frac{\bar{\beta}}{\beta+1}\right|\left(1-r^{2}\right)}{1-\left|\frac{\bar{\beta}}{\beta+1}\right|^{2} r^{2}}-\frac{r\left(1-\left|\frac{\bar{\beta}}{\beta+1}\right|^{2}\right)}{1-\left|\frac{\bar{\beta}}{\beta+1}\right|^{2} r^{2}}\right|=\frac{\left.\left|\frac{\bar{\beta}}{\beta+1}\right|-r \right\rvert\,}{1-\left|\frac{\bar{\beta}}{\beta+1}\right| r} \\
& |w(z)|=\left|e^{-i \theta} w(z)\right| \leq \frac{\left|\frac{\bar{\beta}}{\beta+1}\right|\left(1-r^{2}\right)}{1-\left|\frac{\bar{\beta}}{\beta+1}\right|^{2} r^{2}}-\frac{r\left(1-\left|\frac{\bar{\beta}}{\beta+1}\right|^{2}\right)}{1-\left|\frac{\bar{\beta}}{\beta+1}\right|^{2} r^{2}}=\frac{\left|\frac{\bar{\beta}}{\beta+1}\right|+r}{1+\left|\frac{\bar{\beta}}{\beta+1}\right| r}
\end{aligned}
$$

Lemma $2 \phi(z) \in \mathcal{S}^{*}(A, B)$ ise

$$
\begin{cases}\frac{1-A r}{r(1-B r)} \leq\left|\frac{\phi^{\prime}(z)}{\phi(z)}\right| \leq \frac{1+A r}{r(1+B r)}, & B \neq 0  \tag{15}\\ \frac{1-A r}{r} \leq\left|\frac{\phi^{\prime}(z)}{\phi(z)}\right| \leq \frac{1+A r}{r}, & B=0\end{cases}
$$

we get the result.
Proof. $\phi(z)=z . h(z) \in \mathcal{S}^{*}(A, B) ;$

$$
\begin{cases}\left|z \frac{\phi^{\prime}(z)}{\phi(z)}-\frac{1-A B r^{2}}{1-B^{2} r^{2}}\right| \leq \frac{(A-B) r}{1-B^{2} r^{2}}, & B \neq 0  \tag{16}\\ \left|z \frac{\phi^{\prime}(z)}{\phi(z)}-1\right| \leq A r, & B=0\end{cases}
$$

these inequalities can be written. Then we have,

$$
\begin{cases}\frac{1-A r}{1-B r} \leq\left|z \frac{\phi^{\prime}(z)}{\phi(z)}\right| \leq \frac{1+A r}{1+B r}, & B \neq 0  \tag{17}\\ 1-A r \leq\left|z \frac{\phi^{\prime}(z)}{\phi(z)}\right| \leq 1+A r, & B=0\end{cases}
$$

.And if we divide by $|z|=r$ each of these ;we obtain the result easily.

Lemma $3 f(z)=z h(z) \overline{g(z)}=\phi(z) \overline{g(z)} \in \mathcal{S}_{l h}^{*}(A, B)$ ve $\phi(z)=z h(z) \in$ $\mathcal{S}^{*}(A, B)$

$$
\begin{cases}-\frac{1-A r}{1-B r}<\left|\frac{g^{\prime}(z)}{g(z)}\right|<\frac{1+A r}{1+B r}, & B \neq 0  \tag{18}\\ -(1-A r)<\left|\frac{g^{\prime}(z)}{g(z)}\right|<1+A r, & B=0\end{cases}
$$

we get the result.

Proof. $f(z)=\phi(z) \overline{g(z)}$ and we use the second dilatation function's elliptic differentional solution,

$$
w(z)=\frac{\frac{g^{\prime}(z)}{g(z)}}{\frac{\phi^{\prime}(z)}{\phi(z)}}
$$

we hold this result. Therefore, $w(z)$ function is analytic at $\mathbb{D}$ disc; $|w(z)|<$ 1 (sense-preserving) and $w(0)=0$;because of Schwarz Lemma,

$$
-r<|w(z)|<r
$$

We can write these inequalities. Then we have,

$$
-r<\left|\frac{\frac{g^{\prime}(z)}{g(z)}}{\frac{\phi^{\prime}(z)}{\phi(z)}}\right|<r
$$

And if we use Lemma (11), We can take the result easily.

Theorem 3 Let $f=z h(z) \overline{g(z)}$ be an element of $\mathcal{S}_{P L H}^{*}(A, B, b)$ then

$$
\left.\begin{array}{rl}
F(A, B,-r) & \leq|g(z)|
\end{array}\right)=F(A, B, r),
$$

where

$$
\begin{gathered}
F(A, B, r)=\frac{1}{(1+B r)^{\frac{B-A}{B}}} \cdot \frac{(1+B r)^{\frac{(A-B)(|b|+R e b)}{2 B}}}{(1-B r)^{\frac{(A-B)(| | \mid-R e b)}{2 B}}} \\
F_{1}(A, r)=e^{A r} \cdot \frac{(1-r)^{\frac{|-b| A}{2}}}{(1+r)^{\frac{|-b| A}{2}}} .
\end{gathered}
$$

Proof. $f \in \mathcal{S}_{l h}^{*}(A, B)$ then we $h(z)$ function satisfies, $h(0)=1$ and has a Taylor formula $h(z)=1+\sum_{n=1}^{\infty} a_{n} z^{n}$ We know that, $\phi(z)=z h(z) \in$ $\mathcal{S}^{*}(A, B)$ from starlikeness radius formula,

$$
\begin{equation*}
\operatorname{Re}\left(z \frac{\phi^{\prime}(z)}{\phi(z)}\right)=\operatorname{Re}\left(z \frac{(z h(z))^{\prime}}{z h(z)}\right)=\operatorname{Re}\left(\frac{(z h(z))^{\prime}}{h(z)}\right)=\operatorname{Re}\left(1+z \frac{h^{\prime}(z)}{h(z)}\right)>0 \tag{19}
\end{equation*}
$$

satisfied. And also for Janowski Starlike logharmonic mappings,

$$
\begin{cases}\left|\frac{(z h(z))^{\prime}}{h(z)}-\frac{1-A B r^{2}}{1-B^{2} r^{2}}\right| \leq \frac{(A-B) r}{1-B^{2} r^{2}}, & B \neq 0  \tag{20}\\ \left|\frac{(z h(z))^{\prime}}{h(z)}-1\right| \leq A r, & B=0\end{cases}
$$

Then we have,

$$
\begin{cases}\left|1+\frac{z h^{\prime}(z)}{h(z)}-\frac{1-A B r^{2}}{1-B^{2} r^{2}}\right| \leq \frac{(A-B) r}{1-B^{2} r^{2}}, & B \neq 0  \tag{21}\\ \left|1+\frac{z h^{\prime}(z)}{h(z)}-1\right| \leq A r, & B=0\end{cases}
$$

we can write these inequalities.

$$
-|z| \leq R e z \leq|z|
$$

if we use this inequality ;

$$
\begin{cases}\frac{1}{(1-B r)^{\frac{B-A}{B}}} \leq|h(z)| \leq \frac{1}{(1+B r)^{\frac{B-A}{B}}}, & B \neq 0  \tag{22}\\ e^{-A r} \leq|h(z)| \leq e^{A r}, & B=0\end{cases}
$$

Then we have the result.
Corollary 2 Let $f=z h(z) \overline{g(z)} \in \mathcal{S}_{L H}^{*}(A, B, b)$ and let $(z h(z)) \in \mathcal{S}^{*}(A, B)$.
Then

$$
\left\{\begin{array}{l}
-\left(\frac{1-A r}{1-B r}\right) F(A, B,-r)<\left|g^{\prime}(z)\right|<\left(\frac{1+A r}{1+B r}\right) F(A, B, r), B \neq 0  \tag{23}\\
-(1-A r) F_{1}(A,-r)<\left|g^{\prime}(z)\right|<(1+A r) F_{1}(A, r), B=0
\end{array}\right.
$$

Proof. Follows immediately from Lemma (12) and Theorem3
Corollary 3 Let $f=z h(z) \overline{g(z)} \in \mathcal{S}_{L H}^{*}(A, B, b)$. Then

$$
\left\{\begin{align*}
& \frac{1}{(1-B r)^{\frac{B-A}{B}}}\left[\frac{1-(A-B) r-A B r^{2}}{1-B^{2} r^{2}}\right] \leq\left|h(z)+z h^{\prime}(z)\right|  \tag{24}\\
& \leq \frac{1}{(1+B r)^{\frac{B-A}{B}}}\left[\frac{1+(A-B) r-A B r^{2}}{1-B^{2} r^{2}}\right], B \neq 0 ; \\
& e^{-A r}(1-A r) \leq\left|h(z)+z h^{\prime}(z)\right| \leq e^{A r}(1+A r), \quad B=0
\end{align*}\right.
$$

Proof. This result is a simple consequence of Lemma (12).
Corollary 4 Let $f=z h(z) \overline{g(z)} \in \mathcal{S}_{L H}^{*}(A, B, b)$.Then

$$
\left\{\begin{array}{l}
\frac{r}{(1-B r)^{\frac{B-A}{B}}} \cdot F(A, B,-r) \leq|f| \leq \frac{r}{(1+B r)^{\frac{B-A}{B}}} F(A, B, r), B \neq 0  \tag{25}\\
r \cdot e^{-A r} \cdot F_{1}(A,-r) \leq|f| \leq r \cdot e^{A r} \cdot F_{1}(A, r), B=0
\end{array}\right.
$$

Proof. This result is a simple consequence of Theorem 3.

## References

[1] Z. Abdulhadi, D. Bshouty, Univalent functions in H. $\bar{H}(D)$, Trans. Amer. Math. Soc., 305(1988), 841-849.
[2] Z. Abdulhadi, W. Hengartner, One pointed univalent logharmonic mappings, J. Math. Anal. Apply. 203(2)(1996), 333-351.
[3] Z. Abdulhadi, Y. Abu Muhanna, Starlike log-harmonic mappings of order $\alpha$, JIPAM.Vol.7, Issue 4, Article 123(2006).
[4] I. I. Barvin, Functions Star and Convex Univalent of Order $\alpha$ with Weight, Doklady. Math., Vol 76. Issue 3 (2007), 848-850.
[5] A. W. Goodman, Univalent functions, Vol I, Mariner Publishing Company, Inc., Washington, New Jersey, 1983.
[6] Zdzislaw Lewandowski, Starlike Majorants ans Subordination, Annales Universitatis Marie-Curie Sklodowska, Sectio A, Vol XV (1961) 79-84.
[7] H.E.Ozkan,Log-harmonic Univalent Functions For Which Analytic Part is Janowski Starlike Functions,Internat.Symp.on Development of GFTA,222-226,2008

Melike Aydog̃an
İstanbul Aydn University
Department of Mathematics and Computer Science
İstanbul Aydn University, İstanbul, Turkey
E-mail: melikeaydogan@aydin.edu.tr

