Growth Theorems for Perturbated Starlike Log-Harmonic Mappings of Complex Order

Yaşar Polatog̃lu, Emel Yavuz Duman and H. Esra Özkan

Abstract

Let $\mathcal{H}(\mathbb{D})$ be the linear space of all analytic functions defined on the open unit disc $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$. A sense-preserving logharmonic mapping is the solution of the non-linear elliptic partial differential equation $\overline{f_{\bar{z}}}=w f_{z}(\bar{f} / f)$, where $w(z) \in \mathcal{H}(\mathbb{D})$ is the second dilatation of f such that $|w(z)|<1$ for every $z \in \mathbb{D}$. It has been shown that if f is a non-vanishing log-harmonic mapping, then f can be expressed as $f=h(z) g(z)$, where $h(z)$ and $g(z)$ are analytic in \mathbb{D}. If f vanishes at $z=0$ but it is not identically zero, then f admits the representation $f=z|z|^{2 \beta} h(z) \overline{g(z)}$, where $\operatorname{Re} \beta>-1 / 2$, $h(z)$ and $g(z)$ are analytic in $\mathbb{D}, g(0)=1, h(0) \neq 0$ (see [1], [2], [3]). Let $f=z h(z) \overline{g(z)}$ be a univalent log-harmonic mapping. We say that f is a starlike log-harmonic mapping of complex order $b(b \neq 0$, complex) if

$$
\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{z f_{z}-\bar{z} f_{\bar{z}}}{f}-1\right)\right\}>0, \quad z \in \mathbb{D} .
$$

The class of all starlike log-harmonic mappings of complex order b is denoted by $\mathcal{S}_{\mathcal{L H}}^{*}(1-b)$. We also note that if $z h(z)$ is a starlike function of complex order b, then the starlike log-harmonic mapping $f=z h(z) \overline{g(z)}$ will be called a perturbated starlike log-harmonic mapping of complex order b, and the family of such mappings will be denoted by $\mathcal{S}_{\mathcal{L H}}^{*}(p)(1-b)$.

The aim of this paper is to obtain the growth theorems for the perturbated starlike log-harmonic mappings of complex order.

2000 Mathematical Subject Classification: 30C45, 30C55.

1 Introduction

Let Ω be the family of functions $\phi(z)$ which are regular in \mathbb{D} and satisfying the conditions $\phi(0)=0,|\phi(z)|<1$ for all $z \in \mathbb{D}$.

Next, denote by \mathcal{P} the family of functions $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots$ regular in \mathbb{D}, such that $p(z)$ in \mathcal{P} if and only if

$$
\begin{equation*}
p(z)=\frac{1+\phi(z)}{1-\phi(z)} \tag{1}
\end{equation*}
$$

for some functions $\phi(z) \in \Omega$ and every $z \in \mathbb{D}$. Therefore we have $p(0)=1$ and $\operatorname{Re} p(z)>0$ whenever $p(z) \in \mathcal{P}$.

Moreover, let $\mathcal{S}^{*}(1-b)$ denote the family of functions $s(z)=z+a_{2} z^{2}+\cdots$ regular in \mathbb{D}, and such that $s(z)$ in $\mathcal{S}^{*}(1-b)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{1}{b}\left(z \frac{s^{\prime}(z)}{s(z)}-1\right)\right\}>0 \quad\left(\text { or } 1+\frac{1}{b}\left(z \frac{s^{\prime}(z)}{s(z)}-1\right)=p(z), p(z) \in \mathcal{P}\right) . \tag{2}
\end{equation*}
$$

Let $s_{1}(z)$ and $s_{2}(z)$ be analytic functions in \mathbb{D} with $s_{1}(0)=s_{2}(0)$. We say that $s_{1}(z)$ subordinate to $s_{2}(z)$ and denote by $s_{1}(z) \prec s_{2}(z)$ if $s_{1}(z)=$ $s_{2}(\phi(z))$ for some function $\phi(z) \in \Omega$ and every $z \in \mathbb{D}$. If $s_{1}(z) \prec s_{2}(z)$ then $s_{1}(\mathbb{D}) \subset s_{2}(\mathbb{D})($ see $[5])$.

Finally, let $\mathcal{H}(\mathbb{D})$ be the linear space of all analytic functions defined on the open unit disc \mathbb{D}. A sense-preserving log-harmonic mapping is the solution of the non-linear elliptic partial differential equation

$$
\overline{f_{\bar{z}}}=w \frac{\bar{f}}{f} f_{z},
$$

where $w(z) \in \mathcal{H}(\mathbb{D})$ is the second dilatation of f such that $|w(z)|<1$ for every $z \in \mathbb{D}$. It has been shown that if f is a non-vanishing log-harmonic mapping, then f can be expressed as

$$
f=h(z) \overline{g(z)}
$$

where $h(z)$ and $g(z)$ are analytic in \mathbb{D}, with $h(0) \neq 0$, and $g(0)=1$.
On the other hand, if f vanishes at $z=0$ and at no other point, then f admits the representation

$$
f=z|z|^{2 \beta} h(z) \overline{g(z)}
$$

where $\operatorname{Re} \beta>-1 / 2, h(z)$ and $g(z)$ are analytic in \mathbb{D} and $h(0) \neq 0, g(0)=1$. We note that the class of log-harmonic function is denoted by $\mathcal{S}_{\mathcal{L H}}$.

Let $f=z h(z) \overline{g(z)}$ be an element of $\mathcal{S}_{\mathcal{L H}}$. We say that f is a starlike log-harmonic mapping of complex order b, if

$$
\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{z f_{z}-\bar{z} f_{\bar{z}}}{f}-1\right)\right\}>0, \quad z \in \mathbb{D} .
$$

and denote by $\mathcal{S}_{\mathcal{L H}}^{*}(1-b)$ the set of all starlike log-harmonic mappings of complex order b. Also we denote by $\mathcal{S}_{\mathcal{L H}}^{*}(p)(1-b)$ the class of all functions in $\mathcal{S}_{\mathcal{L H}}$ for which $z h(z) \in \mathcal{S}^{*}(1-b)$ and $f(z) \in \mathcal{S}_{\mathcal{L H}}^{*}(1-b)$ for all $z \in \mathbb{D}$.

2 Main Results

Lemma 1 Let $f=z h(z) \overline{g(z)}$ be an element of $\mathcal{S}_{\mathcal{L H}}$. Then

$$
f \in \mathcal{S}_{\mathcal{L H}}^{*} \text { iff } \quad\left(z \frac{h^{\prime}(z)}{h(z)}-z \frac{g^{\prime}(z)}{g(z)}\right) \prec \frac{2 z}{1-z} .
$$

Proof. If $f \in \mathcal{S}_{\mathcal{L H}}^{*}$, then we have

$$
0<\operatorname{Re}\left(\frac{z f_{z}-\bar{z} f_{\bar{z}}}{f}\right)=\operatorname{Re}\left(1+z \frac{h^{\prime}(z)}{h(z)}-\bar{z} \frac{\overline{g^{\prime}(z)}}{\overline{g(z)}}\right)=\operatorname{Re}\left(1+z \frac{h^{\prime}(z)}{h(z)}-z \frac{g^{\prime}(z)}{g(z)}\right)
$$

iff

$$
\begin{gathered}
1+z \frac{h^{\prime}(z)}{h(z)}-z \frac{g^{\prime}(z)}{g(z)}=p(z)=\frac{1+\phi(z)}{1-\phi(z)} \text { iff } z \frac{h^{\prime}(z)}{h(z)}-z \frac{g^{\prime}(z)}{g(z)}=\frac{2 \phi(z)}{1-\phi(z)} \text { iff } \\
z \frac{h^{\prime}(z)}{h(z)}-z \frac{g^{\prime}(z)}{g(z)} \prec \frac{2 z}{1-z} .
\end{gathered}
$$

Theorem 1 Let $f=z h(z) \overline{g(z)}$ be an element of $\mathcal{S}_{\mathcal{L H}}^{*}(1-b)$. Then

$$
\begin{equation*}
\frac{(1-r)^{|b|-R e b}}{(1+r)^{|b|+R e b}} \leq\left|\frac{h(z)}{g(z)}\right| \leq \frac{(1+r)^{|b|-R e b}}{(1-r)^{|b|+R e b}} \quad(|z|=r<1) \tag{6}
\end{equation*}
$$

Proof. The function $\frac{2 z}{1-z}$ maps $|z|=r$ onto the circle with center $C(r)=$ $\left(\frac{2 r^{2}}{1-r^{2}}, 0\right)$ and radius $\rho(r)=\frac{2 r}{1-r^{2}}$. Therefore using the definition of the subordination and Lemma 1, we get

$$
\begin{equation*}
\left|\left(z \frac{h^{\prime}(z)}{h(z)}-\bar{z} \overline{\overline{g^{\prime}(z)}} \overline{g(z)}\right)-\frac{2\{(\operatorname{Re} b)+(\operatorname{Im} b)\} r^{2}}{1-r^{2}}\right| \leq \frac{2|b| r}{1-r^{2}} \tag{7}
\end{equation*}
$$

The inequality (7) can be written in the form

$$
\begin{equation*}
\frac{2\{(\operatorname{Re} b) r-|b|\} r}{1-r^{2}} \leq \operatorname{Re}\left\{z \frac{h^{\prime}(z)}{h(z)}-z \frac{g^{\prime}(z)}{g(z)}\right\} \leq \frac{2\{(\operatorname{Re} b) r+|b|\} r}{1-r^{2}} \tag{8}
\end{equation*}
$$

On the other hand, we have

$$
\operatorname{Re}\left\{z \frac{h^{\prime}(z)}{h(z)}-z \frac{g^{\prime}(z)}{g(z)}\right\}=r \frac{\partial}{\partial r}(\log |h(z)|-\log |g(z)|)
$$

Thus the inequality (8) can be written in the form
(9) $\quad \frac{2\{(\operatorname{Re} b) r-|b|\}}{(1-r)(1+r)} \leq \frac{\partial}{\partial r}(\log |h(z)|-\log |g(z)|) \leq \frac{2\{(\operatorname{Re} b) r+|b|\}}{(1-r)(1+r)}$.

Integrating both sides of (9) from 0 to r we get (6).

Theorem 2 Let $h(z)=1+a_{1} z+a_{2} z^{2}+\cdots$ be an analytic function in the open unit disc \mathbb{D}. If $z h(z)$ is starlike of complex order b, then

$$
\begin{equation*}
\frac{(1-r)^{|b|-R e b}}{(1+r)^{|b|+R e b}} \leq|h(z)| \leq \frac{(1+r)^{|b|-R e b}}{(1-r)^{|b|+R e b}} \quad(|z|=r<1) . \tag{10}
\end{equation*}
$$

Proof. If $z h(z)$ is a starlike function of complex order b, then we have

$$
\operatorname{Re}\left\{1+\frac{1}{b}\left(z \frac{(z h(z))^{\prime}}{z h(z)}-1\right)\right\}>0 \text { implies } 1+\frac{1}{b}\left(z \frac{(z h(z))^{\prime}}{z h(z)}-1\right)=p(z)
$$

where $p(z) \in \mathcal{P}$. Then we have

$$
\left|\left\{1+\frac{1}{b}\left(z \frac{(z h(z))^{\prime}}{z h(z)}-1\right)\right\}-\frac{1+r^{2}}{1-r^{2}}\right| \leq \frac{2 r}{1-r^{2}}
$$

implies

$$
\begin{equation*}
\frac{1-2|b| r+(2(\operatorname{Re} b)-1) r^{2}}{1-r^{2}} \leq \operatorname{Re}\left(z \frac{(z h(z))^{\prime}}{z h(z)}\right) \leq \frac{1+2|b| r+(2(\operatorname{Re} b)-1) r^{2}}{1-r^{2}} \tag{11}
\end{equation*}
$$

On the other hand we have

$$
\operatorname{Re}\left(z \frac{(z h(z))^{\prime}}{z h(z)}\right)=r \frac{\partial}{\partial r} \log |z h(z)| .
$$

Therefore the inequality (11) can be written in the form

$$
\begin{equation*}
\frac{1-2|b| r+(2(\operatorname{Re} b)-1) r^{2}}{r(1-r)(1+r)} \leq \frac{\partial}{\partial r} \log |z h(z)| \leq \frac{1+2|b| r+(2(\operatorname{Re} b)-1) r^{2}}{r(1-r)(1+r)} \tag{12}
\end{equation*}
$$

and upon integration of both sides of (14) from 0 to r, we get (10) (see [4]).
Corollary 1 Let $f=z h(z) \overline{g(z)} \in \mathcal{S}_{\mathcal{L H}}^{*}(p)(1-b)$. Then

$$
F(|b|, \operatorname{Reb},-r) \leq\left|h(z)+z h^{\prime}(z)\right| \leq F(|b|, \text { Reb }, r) \quad(|z|=r<1),
$$

where

$$
F(|b|, \text { Reb }, r)=\frac{(1+r)^{|b|-R e b}}{(1-r)^{|b|+R e b}} \frac{\left|1+(2 b-1) r^{2}\right|+2|b| r}{1-r^{2}} .
$$

Proof. Since $\varphi(z) \in \mathcal{S}^{*}(1-b)$, then using the definition of the subordination we can write

$$
\left|\left\{1+\frac{1}{b}\left(z \frac{\varphi^{\prime}(z)}{\varphi(z)}-1\right)\right\}-\frac{1+r^{2}}{1-r^{2}}\right| \leq \frac{2 r}{1-r^{2}}
$$

implies

$$
\left|z \frac{\varphi^{\prime}(z)}{\varphi(z)}-\frac{1+(2 b-1) r^{2}}{1-r^{2}}\right| \leq \frac{2|b| r}{1-r^{2}}
$$

After simple calculations from above inequality, then we have

$$
\frac{\left|1+(2 b-1) r^{2}\right|-2|b| r}{1-r^{2}} \leq\left|z \frac{\varphi^{\prime}(z)}{\varphi(z)}\right| \leq \frac{\left|1+(2 b-1) r^{2}\right|+2|b| r}{1-r^{2}}
$$

The last inequality can be written in the form

$$
|h(z)| \frac{\left|1+(2 b-1) r^{2}\right|-2|b| r}{1-r^{2}} \leq\left|(z h(z))^{\prime}\right| \leq|h(z)| \frac{\left|1+(2 b-1) r^{2}\right|+2|b| r}{1-r^{2}} .
$$

Using the Theorem 2 we obtain the result.

Corollary 2 Let $f=z h(z) \overline{g(z)} \in \mathcal{S}_{\mathcal{L} \mathcal{H}}^{*}(p)(1-b)$. Then

$$
\begin{equation*}
\left(\frac{1-r}{1+r}\right)^{2|b|} \leq|g(z)| \leq\left(\frac{1+r}{1-r}\right)^{2|b|} \tag{13}
\end{equation*}
$$

Proof. The result is a consequence of Theorem 1 and Theorem 2.
Theorem 3 Let $f=z h(z) \overline{g(z)}$ be an element of $\mathcal{S}_{\mathcal{L H}}^{*}(p)(1-b)$. Then

$$
\begin{equation*}
F(|b|,-r) \leq\left|g^{\prime}(z)\right| \leq F(|b|, r) \tag{14}
\end{equation*}
$$

where

$$
F(|b|, r)=\left(\frac{1+r}{1-r}\right)^{2|b|} \frac{\left|1+(2 b-1) r^{2}\right|+2|b| r}{(1-r)^{2}}
$$

for all $|z|=r<1$.

Proof. Let $f=z|z|^{2 \beta} h(z) \overline{g(z)}$ be an element of $\mathcal{S}_{\mathcal{L H}}$. Then f is the solution of the non-linear elliptic partial differential equation

$$
w(z)=\frac{\overline{f_{\bar{z}}}}{\bar{f}} \frac{f}{f_{z}}
$$

from which it follows that

$$
w(z)=\frac{\overline{f_{\bar{z}}}}{\bar{f}} \frac{f}{f_{z}}=\frac{\bar{\beta}+z \frac{g^{\prime}(z)}{g(z)}}{\beta+z \frac{\varphi^{\prime}(z)}{\varphi(z)}}, w(0)=\frac{\bar{\beta}}{\beta+1}
$$

where $w(z)$ is the second dilatation of f and $\varphi(z) \in \mathcal{S}^{*}(1-b)$, and we are studying on the Riemann branch which is $1^{2 \beta}=1, \operatorname{Re} \beta>-1 / 2$. If we take $\beta=0$, then $w(z)$ satisfy the conditions of Schwarz lemma. Therefore we have

$$
-r \leq|w(z)|=\left|\frac{g^{\prime}(z) / g(z)}{\varphi^{\prime}(z) / \varphi(z)}\right| \leq r
$$

Using Theorem 2, Corollary 1 and Corollary 2 we obtain (14).

Corollary 3 If $f=z h(z) \overline{g(z)}$ is an element of $\mathcal{S}_{\mathcal{L H}}^{*}(p)(1-b)$, then

$$
r \frac{(1-r)^{3|b|-R e b}}{(1+r)^{3|b|+R e b}} \leq|f| \leq r \frac{(1+r)^{3|b|-R e b}}{(1-r)^{3|b|+R e b}}
$$

Proof. Follows immediately from Theorem 2 and Corollary 2.

Corollary 4 Let $f=z h(z) \overline{g(z)} \in \mathcal{S}_{\mathcal{L H}}^{*}(p)(1-b)$. Then

$$
\begin{equation*}
G(|b|,-r)-r^{2} G(|b|, r) \leq J_{f} \leq G(|b|,-r) \quad(|z|=r<1) \tag{16}
\end{equation*}
$$

where

$$
G(|b|,-r)=\frac{(1+r)^{6|b|-2 R e b}}{(1-r)^{6|b|+2 R e b}} \frac{\left|1+(2 b-1) r^{2}\right|+2|b| r}{\left|1+(2 b-1) r^{2}\right|-2|b| r}
$$

Proof. Using Theorem 3 and

$$
J_{f}=|f|^{2}\left(\left|\frac{\varphi^{\prime}(z)}{\varphi(z)}\right|^{2}-\left|\frac{g^{\prime}(z)}{g(z)}\right|^{2}\right)
$$

we obtain (16) after simple calculations.

References

[1] Z. Abdulhadi and D. Bshouty, Univalent functions in $H \bar{H}(\mathbb{D})$, Trans. Amer. Math. Soc., 305 (1998), 841-849.
[2] Z. Abdulhadi, W. Hengartner, On pointed univalent log-harmonic mappings, J. Math. Anal. Appl., 203 (2) (1996), 333-351.
[3] Z. Abdulhadi, Y. Abu Muhanna, Starlike log-harmonic mappings of order α, JIPAM, Vol. 7, Issue 4, Article 123, (2006).
[4] I.I. Bavrin, Functions star- and convex-univalent of order α with weight, Doklady Math., Vol. 76, Issue 3 (2007), 848-850.
[5] A.W. Goodman, Univalent Functions, Vol. I., Mariner Pub. Comp. Inc., New Jersey, 1983.

Department of Mathematics and Computer Science, Faculty of Science and Letters, İstanbul Kültür University, 34156 İstanbul, Turkey

E-mail: y.polatoglu@iku.edu.tr, e.yavuz@iku.edu.tr, e.ozkan@iku.edu.tr

