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Abstract

Let H(D) be the linear space of all analytic functions defined on

the open unit disc D = {z ∈ C : |z| < 1}. A sense-preserving log-

harmonic mapping is the solution of the non-linear elliptic partial

differential equation fz̄ = wfz

(
f/f

)
, where w(z) ∈ H(D) is the

second dilatation of f such that |w(z)| < 1 for every z ∈ D. It has

been shown that if f is a non-vanishing log-harmonic mapping, then

f can be expressed as f = h(z)g(z), where h(z) and g(z) are analytic

in D. If f vanishes at z = 0 but it is not identically zero, then f

admits the representation f = z|z|2βh(z)g(z), where Reβ > −1/2,

h(z) and g(z) are analytic in D, g(0) = 1, h(0) 6= 0 (see [1], [2], [3]).

Let f = zh(z)g(z) be a univalent log-harmonic mapping. We say

that f is a starlike log-harmonic mapping of complex order b (b 6= 0,

complex) if

Re
{

1 +
1
b

(
zfz − z̄fz̄

f
− 1

)}
> 0, z ∈ D.
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186 Yaşar Polatog̃lu, Emel Yavuz Duman and H. Esra Özkan

The class of all starlike log-harmonic mappings of complex order b

is denoted by S∗LH(1 − b). We also note that if zh(z) is a starlike

function of complex order b, then the starlike log-harmonic mapping

f = zh(z)g(z) will be called a perturbated starlike log-harmonic

mapping of complex order b, and the family of such mappings will

be denoted by S∗LH(p)(1− b).

The aim of this paper is to obtain the growth theorems for the

perturbated starlike log-harmonic mappings of complex order.

2000 Mathematical Subject Classification: 30C45, 30C55.

1 Introduction

Let Ω be the family of functions φ(z) which are regular in D and satisfying

the conditions φ(0) = 0, |φ(z)| < 1 for all z ∈ D.

Next, denote by P the family of functions p(z) = 1 + p1z + p2z
2 + · · ·

regular in D, such that p(z) in P if and only if

(1) p(z) =
1 + φ(z)

1− φ(z)

for some functions φ(z) ∈ Ω and every z ∈ D. Therefore we have p(0) = 1

and Rep(z) > 0 whenever p(z) ∈ P .

Moreover, let S∗(1−b) denote the family of functions s(z) = z+a2z
2+· · ·

regular in D, and such that s(z) in S∗(1− b) if and only if

(2)

Re

{
1 +

1

b

(
z
s′(z)

s(z)
− 1

)}
> 0

(
or 1 +

1

b

(
z
s′(z)

s(z)
− 1

)
= p(z), p(z) ∈ P

)
.
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Let s1(z) and s2(z) be analytic functions in D with s1(0) = s2(0). We

say that s1(z) subordinate to s2(z) and denote by s1(z) ≺ s2(z) if s1(z) =

s2(φ(z)) for some function φ(z) ∈ Ω and every z ∈ D. If s1(z) ≺ s2(z) then

s1(D) ⊂ s2(D) (see [5]).

Finally, let H(D) be the linear space of all analytic functions defined

on the open unit disc D. A sense-preserving log-harmonic mapping is the

solution of the non-linear elliptic partial differential equation

fz = w
f

f
fz,

where w(z) ∈ H(D) is the second dilatation of f such that |w(z)| < 1 for

every z ∈ D. It has been shown that if f is a non-vanishing log-harmonic

mapping, then f can be expressed as

f = h(z)g(z),

where h(z) and g(z) are analytic in D, with h(0) 6= 0, and g(0) = 1.

On the other hand, if f vanishes at z = 0 and at no other point, then f

admits the representation

f = z|z|2βh(z)g(z),

where Reβ > −1/2, h(z) and g(z) are analytic in D and h(0) 6= 0, g(0) = 1.

We note that the class of log-harmonic function is denoted by SLH.

Let f = zh(z)g(z) be an element of SLH. We say that f is a starlike

log-harmonic mapping of complex order b, if

Re

{
1 +

1

b

(
zfz − z̄fz̄

f
− 1

)}
> 0, z ∈ D.
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and denote by S∗LH(1 − b) the set of all starlike log-harmonic mappings of

complex order b. Also we denote by S∗LH(p)(1− b) the class of all functions

in SLH for which zh(z) ∈ S∗(1− b) and f(z) ∈ S∗LH(1− b) for all z ∈ D.

2 Main Results

Lemma 1 Let f = zh(z)g(z) be an element of SLH. Then

f ∈ S∗LH iff

(
z
h′(z)

h(z)
− z

g′(z)

g(z)

)
≺ 2z

1− z
.

Proof. If f ∈ S∗LH, then we have

0 < Re

(
zfz − z̄fz̄

f

)
= Re

(
1 + z

h′(z)

h(z)
− z̄

g′(z)

g(z)

)
= Re

(
1 + z

h′(z)

h(z)
− z

g′(z)

g(z)

)

iff

1+z
h′(z)

h(z)
−z

g′(z)

g(z)
= p(z) =

1 + φ(z)

1− φ(z)
iff z

h′(z)

h(z)
−z

g′(z)

g(z)
=

2φ(z)

1− φ(z)
iff

z
h′(z)

h(z)
− z

g′(z)

g(z)
≺ 2z

1− z
.

Theorem 1 Let f = zh(z)g(z) be an element of S∗LH(1− b). Then

(6)
(1− r)|b|−Reb

(1 + r)|b|+Reb
≤

∣∣∣∣
h(z)

g(z)

∣∣∣∣ ≤
(1 + r)|b|−Reb

(1− r)|b|+Reb
(|z| = r < 1).

Proof. The function 2z
1−z

maps |z| = r onto the circle with center C(r) =(
2r2

1−r2 , 0
)

and radius ρ(r) = 2r
1−r2 . Therefore using the definition of the

subordination and Lemma 1, we get

(7)

∣∣∣∣
(

z
h′(z)

h(z)
− z̄

g′(z)

g(z)

)
− 2{(Reb) + (Imb)}r2

1− r2

∣∣∣∣ ≤
2|b|r
1− r2

.
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The inequality (7) can be written in the form

(8)
2{(Reb)r − |b|}r

1− r2
≤ Re

{
z
h′(z)

h(z)
− z

g′(z)

g(z)

}
≤ 2{(Reb)r + |b|}r

1− r2
.

On the other hand, we have

Re

{
z
h′(z)

h(z)
− z

g′(z)

g(z)

}
= r

∂

∂r
(log |h(z)| − log |g(z)|) .

Thus the inequality (8) can be written in the form

(9)
2{(Reb)r − |b|}
(1− r)(1 + r)

≤ ∂

∂r
(log |h(z)| − log |g(z)|) ≤ 2{(Reb)r + |b|}

(1− r)(1 + r)
.

Integrating both sides of (9) from 0 to r we get (6).

Theorem 2 Let h(z) = 1 + a1z + a2z
2 + · · · be an analytic function in the

open unit disc D. If zh(z) is starlike of complex order b, then

(10)
(1− r)|b|−Reb

(1 + r)|b|+Reb
≤ |h(z)| ≤ (1 + r)|b|−Reb

(1− r)|b|+Reb
(|z| = r < 1).

Proof. If zh(z) is a starlike function of complex order b, then we have

Re

{
1 +

1

b

(
z
(zh(z))′

zh(z)
− 1

)}
> 0 implies 1 +

1

b

(
z
(zh(z))′

zh(z)
− 1

)
= p(z),

where p(z) ∈ P . Then we have

∣∣∣∣
{

1 +
1

b

(
z
(zh(z))′

zh(z)
− 1

)}
− 1 + r2

1− r2

∣∣∣∣ ≤
2r

1− r2

implies

(11)
1− 2|b|r + (2(Reb)− 1)r2

1− r2
≤ Re

(
z
(zh(z))′

zh(z)

)
≤ 1 + 2|b|r + (2(Reb)− 1)r2

1− r2
.
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On the other hand we have

Re

(
z
(zh(z))′

zh(z)

)
= r

∂

∂r
log |zh(z)|.

Therefore the inequality (11) can be written in the form

(12)
1− 2|b|r + (2(Reb)− 1)r2

r(1− r)(1 + r)
≤ ∂

∂r
log |zh(z)| ≤ 1 + 2|b|r + (2(Reb)− 1)r2

r(1− r)(1 + r)
,

and upon integration of both sides of (14) from 0 to r, we get (10) (see [4]).

Corollary 1 Let f = zh(z)g(z) ∈ S∗LH(p)(1− b). Then

F (|b|,Reb,−r) ≤ |h(z) + zh′(z)| ≤ F (|b|,Reb, r) (|z| = r < 1),

where

F (|b|,Reb, r) =
(1 + r)|b|−Reb

(1− r)|b|+Reb

|1 + (2b− 1)r2|+ 2|b|r
1− r2

.

Proof. Since ϕ(z) ∈ S∗(1−b), then using the definition of the subordination

we can write
∣∣∣∣
{

1 +
1

b

(
z
ϕ′(z)

ϕ(z)
− 1

)}
− 1 + r2

1− r2

∣∣∣∣ ≤
2r

1− r2

implies ∣∣∣∣z
ϕ′(z)

ϕ(z)
− 1 + (2b− 1)r2

1− r2

∣∣∣∣ ≤
2|b|r
1− r2

.

After simple calculations from above inequality, then we have

|1 + (2b− 1)r2| − 2|b|r
1− r2

≤
∣∣∣∣z

ϕ′(z)

ϕ(z)

∣∣∣∣ ≤
|1 + (2b− 1)r2|+ 2|b|r

1− r2
.

The last inequality can be written in the form

|h(z)| |1 + (2b− 1)r2| − 2|b|r
1− r2

≤ |(zh(z))′| ≤ |h(z)| |1 + (2b− 1)r2|+ 2|b|r
1− r2

.

Using the Theorem 2 we obtain the result.
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Corollary 2 Let f = zh(z)g(z) ∈ S∗LH(p)(1− b). Then

(13)

(
1− r

1 + r

)2|b|
≤ |g(z)| ≤

(
1 + r

1− r

)2|b|
.

Proof. The result is a consequence of Theorem 1 and Theorem 2.

Theorem 3 Let f = zh(z)g(z) be an element of S∗LH(p)(1− b). Then

(14) F (|b|,−r) ≤ |g′(z)| ≤ F (|b|, r),

where

F (|b|, r) =

(
1 + r

1− r

)2|b| |1 + (2b− 1)r2|+ 2|b|r
(1− r)2

for all |z| = r < 1.

Proof. Let f = z|z|2βh(z)g(z) be an element of SLH. Then f is the solution

of the non-linear elliptic partial differential equation

w(z) =
fz̄

f

f

fz

,

from which it follows that

w(z) =
fz̄

f

f

fz

=
β + z g′(z)

g(z)

β + z ϕ′(z)
ϕ(z)

, w(0) =
β

β + 1
,

where w(z) is the second dilatation of f and ϕ(z) ∈ S∗(1 − b), and we are

studying on the Riemann branch which is 12β = 1, Reβ > −1/2. If we take

β = 0, then w(z) satisfy the conditions of Schwarz lemma. Therefore we

have

−r ≤ |w(z)| =
∣∣∣∣
g′(z)/g(z)

ϕ′(z)/ϕ(z)

∣∣∣∣ ≤ r.

Using Theorem 2, Corollary 1 and Corollary 2 we obtain (14).
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Corollary 3 If f = zh(z)g(z) is an element of S∗LH(p)(1− b), then

r
(1− r)3|b|−Reb

(1 + r)3|b|+Reb
≤ |f | ≤ r

(1 + r)3|b|−Reb

(1− r)3|b|+Reb
.

Proof. Follows immediately from Theorem 2 and Corollary 2.

Corollary 4 Let f = zh(z)g(z) ∈ S∗LH(p)(1− b). Then

(16) G(|b|,−r)− r2G(|b|, r) ≤ Jf ≤ G(|b|,−r) (|z| = r < 1),

where

G(|b|,−r) =
(1 + r)6|b|−2Reb

(1− r)6|b|+2Reb

|1 + (2b− 1)r2|+ 2|b|r
|1 + (2b− 1)r2| − 2|b|r .

Proof. Using Theorem 3 and

Jf = |f |2
(∣∣∣∣

ϕ′(z)

ϕ(z)

∣∣∣∣
2

−
∣∣∣∣
g′(z)

g(z)

∣∣∣∣
2
)

we obtain (16) after simple calculations.
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