Coefficient bounds for some families of starlike and convex functions of complex order

Sevtap Sümer Eker, Bilal Şeker, Mugur Acu

Abstract

2000 Mathematics Subject Classification: Primary 30C45, 30C50. Key words and phrases: Dziok-Srivastava Operator; Coefficient bounds; Starlike functions of complex order; Convex functions of complex order; Nonhomogeneous Cauchy-Euler differential equations.

1 Introduction and preliminaries

Let \mathcal{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$.

Given two functions $f, g \in \mathcal{A}$, where $f(z)$ is given by (1.1) and $g(z)$ is given by

$$
g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k}
$$

the Hadamard product (or convolution) $f * g$ is defined (as usual) by

$$
(f * g)(z)=z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k}=(g * f)(z), z \in \mathbb{U}
$$

For $\alpha_{j} \in \mathbb{C} \quad(j=1,2, \ldots q)$ and $\beta_{j} \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-} ; \mathbb{Z}_{0}^{-}=\{0,-1,-2, \ldots\}(j=$ $1,2, \ldots s)$ the generalized hypergeometric function ${ }_{q} F_{s}\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right)$ is defined by

$$
\begin{aligned}
& { }_{q} F_{s}\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right)=\sum_{k=0}^{\infty} \frac{\left(\alpha_{1}\right)_{k} \ldots\left(\alpha_{q}\right)_{k}}{\left(\beta_{1}\right)_{k} \ldots\left(\beta_{s}\right)_{k}} \frac{z^{k}}{k!} \\
& \left(q \leq s+1, q, s \in \mathbb{N}_{0}=\{0,1,2, \ldots\}=\mathbb{N} \cup\{0\}\right) .
\end{aligned}
$$

Here, and in what follows, $(\kappa)_{n}$ denotes the Pochhammer symbol (or shifted factorial) defined, in terms of the Gamma function Γ, by

$$
(\kappa)_{n}=\frac{\Gamma(\kappa+n)}{\Gamma(\kappa)}= \begin{cases}1 & n=0, \kappa \neq 0 \\ \kappa(\kappa+1) \ldots(\kappa+n-1) & n \in \mathbb{N}\end{cases}
$$

For the function

$$
h\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right)=z_{q} F_{s}\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right)
$$

the Dziok-Srivastava linear operator [2] (see also [3]) $H_{s}^{q}\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right)$ is defined by the following Hadamard product (or convolution) :

$$
\begin{gathered}
H_{s}^{q}\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right) f(z)=h\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right) * f(z) \\
=z+\sum_{k=2}^{\infty} \frac{\left(\alpha_{1}\right)_{k-1} \ldots\left(\alpha_{q}\right)_{k-1}}{\left(\beta_{1}\right)_{k-1} \ldots\left(\beta_{s}\right)_{k-1}} \frac{1}{(k-1)!} a_{k} z^{k} .
\end{gathered}
$$

For notational simplicity, we write

$$
H_{s}^{q}\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right) f(z)=\left(H_{s}^{q}\left[\alpha_{1}\right] f\right)(z)
$$

A function $f(z) \in \mathcal{A}$ is said to be in the class $\mathcal{S}^{*}(b)$ if it satisfies the following inequality:

$$
\operatorname{Re}\left[1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)\right]>0 \quad\left(z \in \mathbb{U}, b \in \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}\right)
$$

Furthermore, a function $f(z) \in \mathcal{A}$ is said to be in the class $\mathcal{C}(b)$ if it also satisfies the following inequality:

$$
R e\left[1+\frac{1}{b}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]>0 \quad\left(z \in \mathbb{U}, b \in \mathbb{C}^{*}\right)
$$

The function classes $\mathcal{S}^{*}(b)$ and $\mathcal{C}(b)$ were considered earlier by Nasr and Aouf [4-6] and Wiatrowski [7], respectively.

Furthermore, a function $f(z) \in \mathcal{A}$ is said to be in the class $\mathcal{S C}(b, \lambda, \gamma)$

$$
\begin{gather*}
\operatorname{Re}\left[1+\frac{1}{b}\left(\frac{z\left[\lambda z f^{\prime}(z)+(1-\lambda) f(z)\right]^{\prime}}{\lambda z f^{\prime}(z)+(1-\lambda) f(z)}-1\right)\right]>\gamma \tag{1.2}\\
\left(f(z) \in \mathcal{A} ; 0 \leq \lambda \leq 1 ; 0 \leq \gamma<1 ; b \in \mathcal{C}^{*} ; \quad z \in \mathbb{U}\right)
\end{gather*}
$$

The function class satisfying the inequality (1.2) was considered by Altıntaş et al. [1].

Let $\mathcal{S C}_{\alpha, \beta}^{q, s}(b, \lambda, \gamma)$ denote the subclass of \mathcal{A} consisting of functions $f(z)$ which satisfy the following condition:

$$
\begin{align*}
& \operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{z\left[\lambda z\left(H_{s}^{q}\left[\alpha_{1}\right] f\right)^{\prime}(z)+(1-\lambda)\left(H_{s}^{q}\left[\alpha_{1}\right] f\right)(z)\right]^{\prime}}{\lambda z\left(H_{s}^{q}\left[\alpha_{1}\right] f\right)^{\prime}(z)+(1-\lambda)\left(H_{s}^{q}\left[\alpha_{1}\right] f\right)(z)}-1\right)\right\}>\gamma, \tag{1.3}\\
& \left(f(z) \in \mathcal{A}, 0 \leq \lambda \leq 1, \quad 0 \leq \gamma<1, \quad b \in \mathbb{C}^{*}, q \leq s+1, \quad q, s \in \mathbb{N}_{0}, \quad z \in \mathbb{U}\right) .
\end{align*}
$$

For $q=2, s=1, \alpha_{1}=\beta_{1}, \alpha_{2}=1$, we obtain the class of $\mathcal{S C}(b, \lambda, \gamma)$. Furthermore, for $q=2, s=1, \alpha_{1}=\beta_{1}, \alpha_{2}=1, \gamma=0$ and $\lambda=0$ the class $\mathcal{S C}_{\alpha, \beta}^{q, s}(b, \lambda, \gamma)$ is coincide the class $\mathcal{S}^{*}(b)$ and for $q=2, s=1, \alpha_{1}=\beta_{1}$, $\alpha_{2}=1, \gamma=0$ and $\lambda=1$ we obtain the class $\mathcal{C}(b)$.

The main object of the present investigation is to derive some coefficient bounds for functions in the subclass $\mathcal{T}_{\alpha, \beta}^{q, s}(b, \lambda, \gamma ; \mu)$ of \mathcal{A} which consists of functions $f(z) \in \mathcal{A}$ satisfying the following nonhomogeneous Cauchy-Euler differential equation:

$$
\begin{align*}
& z^{2} \frac{d^{2} w}{d z^{2}}+2(1+\mu) z \frac{d w}{d z}+\mu(1+\mu) w=(1+\mu)(2+\mu) g(z) \tag{1.4}\\
& \quad\left(w=f(z) \in \mathcal{A}, g(z) \in \mathcal{S C}_{\alpha, \beta}^{q, s}(b, \lambda, \gamma), \mu \in \mathbb{R} \backslash(-\infty,-1]\right)
\end{align*}
$$

2 Main results

Theorem 1. Let the function $f(z) \in \mathcal{A}$ be defined by (1.1). If the function $f(z)$ is in the class $\mathcal{S C}_{\alpha, \beta}^{q, s}(b, \lambda, \gamma)$, then
$\left|a_{k}\right| \leq \frac{\prod_{j=0}^{k-2}[j+2|b|(1-\gamma)]}{[1+\lambda(k-1)] \frac{\left(\alpha_{1}\right)_{k-1} \ldots\left(\alpha_{q}\right)_{k-1}}{\left(\beta_{1}\right)_{k-1} \cdots\left(\beta_{s}\right)_{k-1}}} \quad\left(k \in \mathbb{N}^{*}=\mathbb{N} \backslash\{1\}=\{2,3,4, \ldots\}\right)$

Proof. Let the function $f(z) \in \mathcal{A}$ be given by (1.1) and let the function $F(z)$ be defined by
$F(z)=\lambda z\left(H_{s}^{q}\left[\alpha_{1}\right] f\right)^{\prime}(z)+(1-\lambda)\left(H_{s}^{q}\left[\alpha_{1}\right] f\right)(z), \quad(f(z) \in \mathcal{A}, 0 \leq \lambda \leq 1)$.

Then from (1.3) and the definition of $F(z)$ above, it is easily seen that

$$
\operatorname{Re}\left[1+\frac{1}{b}\left(\frac{z F^{\prime}(z)}{F(z)}-1\right)\right]>\gamma
$$

with

$$
\begin{gathered}
F(z)=z+\sum_{k=2}^{\infty} A_{k} z^{k} \in \mathcal{A} \\
\left(A_{k}=[1+\lambda(k-1)] \frac{\left(\alpha_{1}\right)_{k-1} \cdots\left(\alpha_{q}\right)_{k-1}}{\left(\beta_{1}\right)_{k-1} \cdots\left(\beta_{s}\right)_{k-1}} \frac{1}{(k-1)!} a_{k}, \quad k \in \mathbb{N}^{*}\right)
\end{gathered}
$$

Thus, by setting

$$
\frac{1+\frac{1}{b}\left(\frac{z F^{\prime}(z)}{F(z)}-1\right)-\gamma}{1-\gamma}=p(z)
$$

or, equivalently,

$$
\begin{equation*}
z F^{\prime}(z)=[1+b(1-\gamma)(p(z)-1)] F(z) \tag{2.2}
\end{equation*}
$$

we get

$$
\begin{equation*}
p(z)=1+p_{1} z+p_{2} z^{2}+\cdots \quad(z \in \mathbb{U}) \tag{2.3}
\end{equation*}
$$

Since

$$
\operatorname{Re}(p(z))>0, \quad 0 \leq \gamma<1 ; b \in \mathbb{C}^{*}
$$

we conclude that

$$
\left|p_{k}\right| \leq 2 \quad(k \in \mathbb{N})
$$

We also find from (2.2) and (2.3) that

$$
(k-1) A_{k}=b(1-\gamma)\left(p_{1} A_{k-1}+p_{2} A_{k-2}+\cdots+p_{k-1}\right) .
$$

In particular, for $k=2,3,4$, we have

$$
\begin{aligned}
& A_{2}=b(1-\gamma) p_{1} \text { implies }\left|A_{2}\right| \leq 2|b|(1-\gamma) \\
& 2 A_{3}=b(1-\gamma)\left(p_{1} A_{2}+p_{2}\right) \text { implies }\left|A_{3}\right| \leq \frac{2|b|(1-\gamma)[1+2|b|(1-\gamma)]}{2!} \\
& \text { and }
\end{aligned}
$$

$$
3 A_{4}=b(1-\gamma)\left(p_{1} A_{3}+p_{2} A_{2}+p_{3}\right)
$$

implies

$$
\left|A_{4}\right| \leq \frac{2|b|(1-\gamma)[1+2|b|(1-\gamma)][2+2|b|(1-\gamma)]}{3!}
$$

respectively. Using the principle of mathematical induction, we obtain,

$$
\left|A_{k}\right| \leq \frac{\prod_{j=0}^{k-2}[j+2|b|(1-\gamma)]}{(k-1)!} \quad\left(k \in \mathbb{N}^{*}\right)
$$

Moreover, by the relationship between the functions $f(z)$ and $F(z)$, it is clear that

$$
A_{k}=[1+\lambda(k-1)] \frac{\left(\alpha_{1}\right)_{k-1} \cdots\left(\alpha_{q}\right)_{k-1}}{\left(\beta_{1}\right)_{k-1} \cdots\left(\beta_{s}\right)_{k-1}} \frac{1}{(k-1)!} a_{k} \quad\left(k \in \mathbb{N}^{*}\right)
$$

and then we get

$$
\left|a_{k}\right| \leq \frac{\prod_{j=0}^{k-2}[j+2|b|(1-\gamma)]}{[1+\lambda(k-1)] \frac{\left(\alpha_{1}\right)_{k-1} \cdots\left(\alpha_{q}\right)_{k-1}}{\left(\beta_{1}\right)_{k-1} \cdots\left(\beta_{s}\right)_{k-1}}} .
$$

By choosing suitable values of the admissible parameters $b, \lambda, \gamma, \alpha$ and β in Theorem 1 above, we deduce the following corollaries.

Corollary 1. (Altintas et al. [1]) If a function $f(z) \in \mathcal{A}$ is in the class $\mathcal{S C}(b, \lambda, \gamma)$, then

$$
\left|a_{k}\right| \leq \frac{\prod_{j=0}^{k-2}[j+2|b|(1-\gamma)]}{(k-1)![1+\lambda(k-1)]} \quad\left(k \in \mathbb{N}^{*}\right)
$$

Corollary 2. (Nasr and Aouf [4]) If a function $f(z) \in \mathcal{A}$ is in the class $\mathcal{S}^{*}(b)$, then

$$
\left|a_{k}\right| \leq \frac{\prod_{j=0}^{k-2}[j+2|b|]}{(k-1)!} \quad\left(k \in \mathbb{N}^{*}\right)
$$

Corollary 3. (Nasr and Aouf [4]) If a function $f(z) \in \mathcal{A}$ is in the class $\mathcal{C}(b)$, then

$$
\left|a_{k}\right| \leq \frac{\prod_{j=0}^{k-2}[j+2|b|]}{k!} \quad\left(k \in \mathbb{N}^{*}\right)
$$

Theorem 2. Let the function $f(z) \in \mathcal{A}$ be defined by (1.1). If the function $f(z)$ is in the class $\mathcal{T}_{\alpha, \beta}^{q, s}(b, \lambda, \gamma ; \mu)$, then

$$
\begin{equation*}
\left|a_{k}\right| \leq \frac{(1+\mu)(2+\mu) \prod_{j=0}^{k-2}[j+2|b|(1-\gamma)]}{[1+\lambda(k-1)] \frac{\left(\alpha_{1}\right)_{k-1} \cdots\left(\alpha_{q}\right)_{k-1}}{\left(\beta_{1}\right)_{k-1} \cdots\left(\beta_{s}\right)_{k-1}}(k+\mu)(k+1+\mu)}, \quad\left(k \in \mathbb{N}^{*}\right) \tag{3.1}
\end{equation*}
$$

Proof. Let $f(z) \in \mathcal{A}$ be given by (1.1). Also let

$$
\begin{equation*}
g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k} \in \mathcal{S C}_{\alpha, \beta}^{q, s}(b, \lambda, \gamma), \tag{3.2}
\end{equation*}
$$

SO

$$
\begin{equation*}
a_{k}=\frac{(1+\mu)(2+\mu)}{(k+\mu)(k+1+\mu)} b_{k}, \quad\left(k \in \mathbb{N}^{*}, \mu \in \mathbb{R} \backslash(-\infty,-1]\right) \tag{3.3}
\end{equation*}
$$

Thus, by using Theorem 1, we readily obtain

$$
\left|a_{k}\right| \leq \frac{(1+\mu)(2+\mu) \prod_{j=0}^{k-2}[j+2|b|(1-\gamma)]}{[1+\lambda(k-1)] \frac{\left(\alpha_{1}\right)_{k-1} \cdots\left(\alpha_{q}\right)_{k-1}}{\left(\beta_{1}\right)_{k-1} \cdots\left(\beta_{s}\right)_{k-1}}(k+\mu)(k+1+\mu)}, \quad\left(k \in \mathbb{N}^{*}\right)
$$

which is precisely the assertion (3.1) of Theorem 2.

References

[1] O. Altintas, H.Irmak, S. Owa, H.M. Srivastava, Coefficient bounds for some families of starlike and convex functions of complex order, Applied Mathematics Letters 20(2007) 1218-1222
[2] J. Dziok, H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103(1999), no. 1, 1-13.
[3] J. Dziok, H.M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transform. Spec. Funct. 14(2003) 7-18.
[4] M.A. Nasr, M.K. Aouf, Radius of convexity for the class of starlike functions of complex order, Bull. Fac. Sci. Assiut Univ. Sect. A 12(1983), 153-159.
[5] M.A. Nasr, M.K. Aouf, Bounded starlike functions of complex order, Proc. Indian Acad. Sci. Math. Sci. 92(1983) 97-102.
[6] M.A. Nasr, M.K. Aouf, Starlike function of complex order, J. Natur. Sci. Math. 25(1985) 1-12.
[7] P. Wiatrowski, On the coefficients of some family of holomorphic functions, Zeszyty Nauk. Uniw. odz Nauk. Mat.-Przyrod Ser. 39(2) (1970), 75-85.

Sevtap Sümer Eker
Dicle University
Department of Mathematics
21280 - Diyarbakır, Turkey
E-mail: sevtaps@dicle.edu.tr Bilal Şeker

Batman University
Department of Mathematics
72060 - Batman, Turkey
E-mail: bilalseker1980@gmail.com Mugur Alexandru Acu
"Lucian Blaga" University
Department of Mathematics
550012 - Sibiu, Romania
E-mails: acu_mugur@yahoo.com

