On some integral operators on analytic functions

M. Acu, A. Branga, D. Breaz, N. Breaz, E. Constantinescu, A. Totoi

Abstract

2000 Mathematics Subject Classification: Primary 30C45. Key words and phrases: Function with negative coefficients, integral operator, Sălăgean operator.

1 Introduction and Preliminaries

Let $\mathcal{H}(U)$ be the set of functions which are regular in the unit disc U, $A = \{f \in \mathcal{H}(U) : f(0) = f'(0) - 1 = 0\}, \ \mathcal{H}_u(U) = \{f \in \mathcal{H}(U) : f \text{ is univalent in } U\}$ and $S = \{f \in A : f \text{ is univalent in } U\}.$ 206 M. Acu, A. Branga, D. Breaz, N. Breaz, E. Constantinescu, A. Totoi

We denote with T the subset of the functions $f \in S$, which have the form

(1)
$$f(z) = z - \sum_{j=2}^{\infty} a_j z^j, \ a_j \ge 0, \ j \ge 2, \ z \in U$$

and with $T^* = T \bigcap S^*$, $T^*(\alpha) = T \bigcap S^*(\alpha)$, $T^c = T \bigcap S^c$ and $T^c(\alpha) = T \bigcap S^c(\alpha)$, where $0 \le \alpha < 1$.

Theorem 1. [5] For a function f having the form (1) the following assertions are equivalents:

$$(i)\sum_{\substack{j=2\\(ii)}}^{\infty} ja_j \le 1;$$

(ii) $f \in T;$
(iii) $f \in T^*.$

Regarding the classes $T^*(\alpha)$ and $T^c(\alpha)$ with $0 \le \alpha < 1$, we recall here the following result:

Theorem 2. [5] A function f having the form (1) is in the class $T^*(\alpha)$ if and only if:

(2)
$$\sum_{j=2}^{\infty} \frac{j-\alpha}{1-\alpha} a_j \le 1,$$

and is in the class $T^{c}(\alpha)$ if and only if:

(3)
$$\sum_{j=2}^{\infty} \frac{j(j-\alpha)}{1-\alpha} a_j \le 1.$$

Definition 1. [1] Let $S^*(\alpha, \beta)$ denote the class of functions having the form (1) which are starlike and satisfy

(4)
$$\left|\frac{\frac{zf'(z)}{f(z)} - 1}{\frac{zf'(z)}{f(z)} + (1 - 2\alpha)}\right| < \beta$$

for $0 \le \alpha < 1$ and $0 < \beta \le 1$. And let $C^*(\alpha, \beta)$ denote the class of functions such that zf'(z) is in the class $S^*(\alpha, \beta)$.

Theorem 3. [1] A function f having the form (1) is in the class $S^*(\alpha, \beta)$ if and only if:

(5)
$$\sum_{j=2}^{\infty} \left\{ (j-1) + \beta(j+1-2\alpha) \right\} a_j \le 2\beta(1-\alpha) \,,$$

and is in the class $C^*(\alpha, \beta)$ if and only if:

(6)
$$\sum_{j=2}^{\infty} j \left\{ (j-1) + \beta (j+1-2\alpha) \right\} a_j \le 2\beta (1-\alpha) \,.$$

Let D^n be the Sălăgean differential operator (see [2]) defined as:

$$\begin{split} D^n: A \to A \ , \quad n \in \mathbb{N} \ \ \text{and} \ \ D^0 f(z) &= f(z) \\ D^1 f(z) &= D f(z) = z f'(z) \ , \quad D^n f(z) = D (D^{n-1} f(z)). \end{split}$$

In [3] the author define the class $T_n(\alpha, \beta)$, from which by choosing different values for the parameters we obtain variously subclasses of analytic functions with negative coefficients (for example $T_n(\alpha, 1) = T_n(\alpha)$ which is the class of *n*-starlike of order α functions with negative coefficients and $T_0(\alpha, \beta) = S^*(\alpha, \beta) \cap T$, where $S^*(\alpha, \beta)$ is the class defined by (4)).

Definition 2. [3] Let $\alpha \in [0, 1)$, $\beta \in (0, 1]$ and $n \in \mathbb{N}$. We define the class $S_n(\alpha, \beta)$ of the n-starlike of order α and type β through

$$S_n(\alpha,\beta) = \{ f \in A ; |J(f,n,\alpha;z)| < \beta \}$$

208 M. Acu, A. Branga, D. Breaz, N. Breaz, E. Constantinescu, A. Totoi

where $J(f, n, \alpha; z) = \frac{D^{n+1}f(z) - D^n f(z)}{D^{n+1}f(z) + (1 - 2\alpha)D^n f(z)}, z \in U$. Consequently $T_n(\alpha, \beta) = S_n(\alpha, \beta) \bigcap T$.

Theorem 4. [3] Let f be a function having the form (1). Then $f \in T_n(\alpha, \beta)$ if and only if

(7)
$$\sum_{j=2}^{\infty} j^n \left[j - 1 + \beta (j + 1 - 2\alpha) \right] a_j \le 2\beta (1 - \alpha)$$

2 Main results

From [4] we have the following definitions:

Let $f(z) \in T$, $f(z) = z - \sum_{n=2}^{\infty} a_n z^n$, satisfies $V_{\mu}(f)(z) = \int_0^1 \mu(t) \frac{f(tz)}{t} dt$, where μ is a real-valued, non-negative weight function normalized so that $\int_0^1 \mu(t) dt = 1$. If $\mu(t) = \frac{(c+1)^{\delta}}{\mu(\delta)} t^c \left(\log \frac{1}{t} \right)^{\delta-1}$ $(c > -1; \delta > 0)$, which gives the Ko-

matu operator. Then we have

(8)
$$V_{\mu}(f)(z) = z - \sum_{n=2}^{\infty} \left(\frac{c+1}{c+n}\right)^{\delta} a_n z^n.$$

Remark 1. We notice that $0 < \left(\frac{c+1}{c+n}\right)^{\delta} < 1$, where c > -1, $\delta > 0$ and $j \ge 2$.

Remark 2. It is easy to prove, by using Theorem 1 and Remark 1, that for $F(z) \in T$ and $f(z) = V_{\mu}(F)(z)$, we have $f(z) \in T$, where V_{μ} is the integral operator defined by (8).

Theorem 5. Let F(z) be in the class $T^*(\alpha)$, $\alpha \in [0,1)$, $F(z) = z - \sum_{j=2}^{\infty} a_j z^j$, $a_j \ge 0, j \ge 2$. Then $f(z) = V_{\mu}(F)(z) \in T^*(\alpha)$, where V_{μ} is the integral operator defined by (8).

Proof. From Remark 2 we obtain $f(z) = V_{\mu}(F)(z) \in T$. We have $f(z) = z - \sum_{j=2}^{\infty} b_j z^j$, where $b_j = \left(\frac{c+1}{c+j}\right)^{\delta} a_j z^j$. By using Remark 1 we obtain $\frac{j-\alpha}{1-\alpha} b_j < \frac{j-\alpha}{1-\alpha} a_j$, for $j = 2, 3, \ldots, 0 \le \alpha < 1$, and thus $\sum_{j=2}^{\infty} \frac{j-\alpha}{1-\alpha} b_j \le \sum_{j=2}^{\infty} \frac{j-\alpha}{1-\alpha} a_j \le 1$. This mean (see Theorem 2) that $f(z) = V_{\mu}(F)(z) \in T^*(\alpha)$.

Similarly (by using Remark 2 and the Theorems 2, 3 and 4) we obtain:

Theorem 6. Let F(z) be in the class $T^{c}(\alpha)$, $\alpha \in [0,1)$, $F(z) = z - \sum_{j=2}^{\infty} a_{j} z^{j}$, $a_{j} \geq 0, j \geq 2$. Then $f(z) = V_{\mu}(F)(z) \in T^{c}(\alpha)$, where V_{μ} is the integral operator defined by (8).

Theorem 7. Let F(z) be in the class $C^*(\alpha, \beta)$, $\alpha \in [0, 1)$, $\beta \in (0, 1]$, $F(z) = z - \sum_{j=2}^{\infty} a_j z^j$, $a_j \ge 0$, $j \ge 2$. Then $f(z) = V_{\mu}(F)(z) \in C^*(\alpha, \beta)$, where V_{μ} is the integral operator defined by (8).

Theorem 8. Let F(z) be in the class $T_n(\alpha, \beta)$, $\alpha \in [0, 1)$, $\beta \in (0, 1]$, $n \in \mathbb{N}$, $F(z) = z - \sum_{j=2}^{\infty} a_j z^j$, $a_j \ge 0$, $j \ge 2$. Then $f(z) = V_{\mu}(F)(z) \in T_n(\alpha, \beta)$, where V_{μ} is the integral operator defined by (8).

Remark 3. By choosing $\beta = 1$, respectively n = 0, in the above theorem, we obtain the similarly results for the classes $T_n(\alpha)$ and $S^*(\alpha, \beta)$.

References

- V.P. Gupta, P.K. Jain, Certain classes of univalent functions with negative coefficients, Bull. Austral. Math. Soc., 14(1976), 409-416.
- G.S. Sălăgean, Subclasses of univalent functions, Complex Analysis.
 Fifth Roumanian-Finnish Seminar, Lectures Notes in Mathematics, 1013, Springer-Verlag, 1983, 362-372.
- [3] G.S. Sălăgean, Analytic functions with negative coefficients, Mathematica, 36(59), 2(1994), 219-224.
- [4] S. Shams et. al., Classes of Ruscheweyh-type analytic univalent functions, Southwest J. Pure Appl. Math., 2(2003), 105-110.
- [5] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51(1975), 109-116.

M. Acu, A. Branga, E. Constantinescu, A. Totoi Department of Mathematics, "Lucian Blaga" University from Sibiu 550012 Sibiu, Romania Corresponding e-mail: acu_mugur@yahoo.com Daniel Breaz, Nicoleta Breaz Department of Mathematics, "1 Decembrie 1918" University of Alba Iulia 510009 Alba, Romania E-mails: dbreaz@uab.ro, nbreaz@uab.ro