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Univalence Criterion for Analytic Functions
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Abstract

In this paper, we obtain a new univalence criterion for analytic

functions defined outside of the unit disk. Relevant connections of

the results, which are presented in this paper with various known

results are also considered.
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1 Introduction

We denote by Ur the disk {z ∈ C : |z| < r}, where 0 < r ≤ 1, by U = U1

the open unit disk of the complex plane and by I the interval [0,∞).

Let A denote the class of analytic functions in the open unit disk U

which satisfy the usual normalization condition:

g(0) = g′(0)− 1 = 0.
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We denote by S the subclass of A consisting of functions which are also

univalent in U.

Closely related to S is the class Σ0 of the functions

(1) f(z) = z +
∞∑

k=0

bkz
−k

analytic in the domain U ′ := {ξ ∈ C : |ξ| > 1} exterior to U, except for a

simple pole at the infinity residue 1.

2 Preliminary results

In proving our results, we will need the following theorem due to Ch. Pom-

merenke [6,7].

Theorem 1 Let L(z, t) = a1(t)z + a2(t)z
2 + ..., a1(t) 6= 0 be analytic in

Ur for all t ∈ I, locally absolutely continuous in I, and locally uniform with

respect to Ur. For almost all t ∈ I, suppose that

z
∂L(z, t)

∂z
= p(z, t)

∂L(z, t)

∂t
,∀z ∈ Ur,

where p(z, t) is analytic in U and satisfies the condition < (p(z, t)) > 0 for

all z ∈ U, t ∈ I. If |a1(t)| → ∞ for t → ∞ and {L(z, t)�a1(t)} forms a

normal family in Ur, then for each t ∈ I, the function L(z, t) has an analytic

and univalent extension to the whole disk U.

The following univalence criterion is due to Aksentév [1]. Later, Krzyz

[4] gave quasiconformal extension for the functions.
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Theorem 2 (Aksentév, Krzyz). Let 0 ≤ k ≤ 1. If f ∈ ∑
0 satisfies the

inequality

|f ′(ξ)− 1| ≤ k, ξ ∈ U ′,

then f univalent. Furthermore, if k < 1, then f extends to a k−quasiconformal

mapping of the extended complex plane. The radii 1 and k are best possible.

In this paper we shall consider univalence conditions for functions f ∈ Σ0

analytic in the domain U ′ := {ξ ∈ C : |ξ| > 1}.

3 Main results

Making use of the Theorem 1 we can prove now, our main results.

Theorem 3 Let s = α + iβ and c be complex numbers such that α > 0

and c 6= 1, |c| < 1, respectively. Suppose that f ∈ Σ0, f ′(ξ) 6= 0 and

g(ξ) = 1 + c2ξ
−2 + ... are two analytic in U ′. If the following inequalities

(2)

∣∣∣∣(1− c)(
ξf ′(ξ)
f(ξ)

1

g(ξ)
)− s

α

∣∣∣∣ <
|s|
α

and

(3)

∣∣∣∣∣
(|ξ|2�α − c)2

|ξ|2�α (1− c)

ξf ′(ξ)
f(ξ)

1

g(ξ)

− (|ξ|2�α − c)(|ξ|2�α − 1)

|ξ|2�α (1− c)

[
ξf ′(ξ)
f(ξ)

+ s
ξg′(ξ)
g(ξ)

]
− s

α

∣∣∣∣∣ ≤
|s|
α

are satisfied for all ξ ∈ U ′, then the function f is univalent in U ′.
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Proof. We prove that there exists a real number r ∈ (0, 1] such that the

function L : Ur × I → C, defined formally by

(4) L(z, t) =
1

f(est�z)

{
1− (e2t − 1)

(e2t − c)
g(est�z)

}−s

is analytic in Ur for all t ∈ I.

Let us consider the function ϕ1(z, t) given by

(5) ϕ1(z, t) = g(est�z).

For all t ∈ I and z ∈ U, the function ϕ1(z, t) is analytic in U and ϕ1(0, t) = 1.

Then there exist a disc Ur1 , 0 < r1 < 1, in which ϕ1(z, t) 6= 0 for all t ∈ I

and z ∈ Ur1 .

For the function

(6) ϕ2(z, t) =

{
1− (e2t − 1)

(e2t − c)
ϕ1(z, t)

}−s

it can be easily shown that ϕ2(z, t) is analytic in Ur1 and ϕ2(0, t) = e2st
{

1−ce−2t

1−c

}s

for all t ∈ I. From these considerations it follows that the function

(7) L(z, t) =
1

f(est�z)
ϕ2(z, t)

is analytic in Ur1 for all t ∈ I and has an following form

L(z, t) = a1(t)z + ....

Furthermore |L′(0, t)| =
∣∣∣est

{
1−ce−2t

1−c

}s∣∣∣ = eαt
∣∣∣
{

1−ce−2t

1−c

}s∣∣∣ which is nonva-

nishing in I and tends to infinity for t → ∞ once we have chosen a fixed

branch for these numbers.
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Thus
{

L(z,t)
a1(t)

}
t∈I

forms a normal family of analytic functions in Ur2 ,

0 < r2 < r1. From the analyticity of ∂L(z,t)
∂t

, we obtain that for all fixed

numbers T > 0 and r3, 0 < r3 < r2, there exists a constant K > 0 (that

depends on T and r3) such that

∣∣∣∣
∂L(z, t)

∂t

∣∣∣∣ < K, ∀z ∈ Ur3 , t ∈ [0, T ] .

Therefore, the function L(z, t) is locally absolutely continuous in I, locally

uniform with respect to Ur3 .

The function p(z, t) defined by

p(z, t) = z
∂L(z, t)

∂z
�

∂L(z, t)

∂t

is analytic in a disk Ur, 0 < r < r3, for all t ∈ I.

In order to prove that the function p(z, t) has an analytic extension in U

and <p(z, t) > 0 for all t ∈ I, we will show that the function w(z, t) given

by

(8) w(z, t) =
p(z, t)− 1

p(z, t) + 1

has an analytic extension in U and |w(z, t)| < 1, for all z ∈ U and t ∈ I.

From equality (8) we have

(9) w(z, t) =
(1 + s)Ω(ξ, t)− 2

(1− s)Ω(ξ, t) + 2
,

where ξ = 1
z
and

(10) Ω(ξ, t) =
1

s

(e2t − c)2

e2t(1− c)

estξf ′(estξ)

f(estξ)

1

g(estξ)
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−(e2t − c)(e2t − 1)

e2t(1− c)

(
1

s

estξf ′(estξ)

f(estξ)
+

estξg′(estξ)

g(estξ)

)

for ξ ∈ U ′ and t ∈ I.

The inequality |w(z, t)| < 1 for all z ∈ U and t ∈ I, where w(z, t) is defined

by (9), is equivalent to

(11)

∣∣∣∣Ω(ξ, t)− 1

α

∣∣∣∣ <
1

α
, α = <(s), ∀ξ ∈ U ′, t ∈ I.

Define:

B(ξ, t) = Ω(ξ, t)− 1

α
, ∀ξ ∈ U ′, t ∈ I.

From (2) and (10) we have

(12) |B(ξ, 0)| =
∣∣∣∣(1− c)(

ξf ′(ξ)
f(ξ)

1

g(ξ)
)− s

α

∣∣∣∣ <
|s|
α

.

Inequality (2) from the hypothesis, yields

|w(z, 0)| < 1 (z ∈ U).

Let t > 0. Since
∣∣∣ est

z

∣∣∣ ≥ |est| = eαt > 1 for all z ∈ U = {z ∈ C : |z| ≤ 1}
and t > 0, it follows that B(ξ, t) is an analytic function in U ′. Making use

of the maximum modulus principle we obtain that for each t > 0 arbitrarily

fixed there exists θ = θ(t) ∈ R such that:

(13) |B(ξ, t)| < max
|ξ|=1

|B(ξ, t)| =
∣∣B(eiθ, t)

∣∣ ,

for all ξ ∈ U ′ and t ∈ I.

Denote u = este−iθ. Then |u| = eαt, e2t = |u|2�α and from (10) we have

∣∣B(eiθ, t)
∣∣ =

1

|s|

∣∣∣∣∣
(|u|2�α − c)2

|u|2�α (1− c)

uf ′(u)

f(u)

1

g(u)
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− (|u|2�α − c)(|u|2�α − 1)

|u|2�α (1− c)

[
uf ′(u)

f(u)
+ s

ug′(u)

g(u)

]
− s

α

∣∣∣∣∣
Because u ∈ U ′, the inequality (3) implies that

∣∣B(eiθ, t)
∣∣ ≤ 1

α
,

and from (12) and (13), we conclude that

|B(ξ, t)| =
∣∣∣∣Ω(ξ, t)− 1

α

∣∣∣∣ <
1

α

for all ξ ∈ U ′ and t ∈ I. Therefore |w(z, t)| < 1 for all z ∈ U and t ∈ I.

Since all the conditions of Theorem 1 are satisfied, we obtain that the

function L(z, t) has an analytic and univalent extension to the whole unit

disk U, for all t ∈ I and so is f because L(z, 0) = 1
f(z−1)

is analytic and

univalent in U ′.The proof of Theorem 3 has been completed.

The univalence criteria obtained by Becker and Ruscheweyh are con-

tained in their expressions |ξ|2 , it is important that from Theorem 3 we

obtain new results with |ξ|2 instead of |ξ|2�α . If we set α ≥ 1 in Theorem

3, we obtain following theorem.

Theorem 4 Let s = α + iβ and c be complex numbers such that α ≥ 1

and c 6= 1, |c| < 1, respectively. Suppose that f ∈ Σ0, f ′(ξ) 6= 0 and

g(ξ) = 1 + c2ξ
−2 + ... are two analytic in U ′. If the following inequalities

(14)

∣∣∣∣(1− c)(
ξf ′(ξ)
f(ξ)

1

g(ξ)
)− s

α

∣∣∣∣ <
|s|
α

and

(15)

∣∣∣∣∣
(|ξ|2 − c)2

|ξ|2 (1− c)

ξf ′(ξ)
f(ξ)

1

g(ξ)
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− (|ξ|2 − c)(|ξ|2 − 1)

|ξ|2 (1− c)

[
ξf ′(ξ)
f(ξ)

+ s
ξg′(ξ)
g(ξ)

]
− s

α

∣∣∣∣∣ ≤
|s|
α

are satisfied for all ξ ∈ U ′,then the function f is univalent in U ′.

Next we will give another Theorem which contain some results.

If we take g(ξ) = ξf ′(ξ)
f(ξ)

, in Theorem 4, then we have the following result.

Theorem 5 Let s = α + iβ and c be complex numbers such that α ≥ 1

and c 6= 1, |c| < 1, respectively. Suppose that f ∈ Σ0, f ′(ξ) 6= 0 be analytic

in U ′. If the following inequalities

(16) |cα + iβ| < |s|

and

(17)

∣∣∣∣∣iβ + α

(
1− (|ξ|2 − c)2

|ξ|2 (1− c)

)

+ α
(|ξ|2 − c)(|ξ|2 − 1)

|ξ|2 (1− c)

[
(1− s)

ξf ′(ξ)
f(ξ)

+ s(1 +
ξf ′′(ξ)
f ′(ξ)

)

]∣∣∣∣∣ ≤ |s|

are satisfied for all ξ ∈ U ′,then the function f is univalent in U ′.

Now we will give important results which are obtained by earlier authors.

For c = 0, (f ∈ Σ0, b0 = 0) in Theorem 5, we obtain closely related to

Ruscheweyh’s univalence criterion [5].

Corollary 1 Let s = α + iβ be complex number such that α ≥ 1. Suppose

that f ∈ Σ0 be analytic in U ′. If the following inequality
∣∣∣∣iβ + α(1− |ξ|2)

[
(1− s)(1− ξf ′(ξ)

f(ξ)
)− s(

ξf ′′(ξ)
f ′(ξ)

)

]∣∣∣∣ ≤ |s|

is satisfied for all ξ ∈ U ′,then the function f is univalent in U ′.
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For s = 1 in Theorem 5 we obtain Becker’s univalence criterion [3].

Corollary 2 Suppose that f(ξ) ∈ Σ0 is analytic in U ′ and for some c 6= 1,

|c| < 1, it satisfies the condition∣∣∣∣∣
(|ξ|2 − c)(|ξ|2 − 1)

(1− c)

ξf ′′(ξ)
f ′(ξ)

+ c

∣∣∣∣∣ ≤ |ξ|2

then the function f is univalent in U ′.

For s = 1 and c = 0 in Theorem 5 we obtain Becker’s another univalence

criterion [2].

Corollary 3 Let f(ξ) ∈ Σ0 be analytic in U ′.If the following inequality

(|ξ|2 − 1)

∣∣∣∣
ξf ′′(ξ)
f ′(ξ)

∣∣∣∣ ≤ 1

is satisfied for all ξ ∈ U ′,then the function f is univalent in U ′.

For s = 1, c = 0 and g(ξ) = ξ
f(ξ)

in Theorem 4 we obtain Theorem 2 (for

k = 1)

Corollary 4 Let f ∈ Σ0 be analytic in U ′. If the following inequality

|f ′(ξ)− 1| < 1

is satisfied for all ξ ∈ U ′,then the function f is univalent in U ′.

For c = 0 and g(ξ) = 1 in Theorem 4 then we obtain a simple univalence

condition.

Corollary 5 Let s = α + iβ be a complex number such that α ≥ 1. Let

f ∈ Σ0 be analytic in U ′. If the following inequality∣∣∣∣
ξf ′(ξ)
f(ξ)

− s

α

∣∣∣∣ ≤
|s|
α

is satisfied for all ξ ∈ U ′,then the function f is univalent in U ′.
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