On some Ostrowski type inequalities ${ }^{1}$

Bogdan Gavrea, Ioan Gavrea

Abstract

In this paper we study Ostrowski type inequalities. We generalize some of the results presented in [1].

2000 Mathematical Subject Classification: 26D15

1 Introduction

Let I be a bounded interval of the real axis and $\mathcal{B}(I)$ be the set of all functions which are bounded on $[a, b]$. Let A be a positive linear functional $A: \mathcal{B} \rightarrow \mathbb{R}$ such that $A\left(e_{0}\right)=1, e_{i}(x)=x^{i}, \forall x \in I, i \in \mathbb{N}$.

The following inequality is known as the Grüss inequality for the functional A.

[^0]Theorem 1. Let $f, g: I \rightarrow \mathbb{R}$ be two bounded functions such that $m_{1} \leq$ $f(x) \leq M_{1}$ and $m_{2} \leq g(x) \leq M_{2}$, for all $x \in I$ with m_{1}, M_{1}, m_{2} and M_{2} constants. Then the inequality

$$
\begin{equation*}
|A(f g)-A(f) A(g)| \leq \frac{1}{4}\left(M_{1}-m_{1}\right)\left(M_{2}-m_{2}\right) \tag{1}
\end{equation*}
$$

holds.

In 1928 Ostrowski proved the following result

Theorem 2. Let $f: I \rightarrow \mathbb{R}$ be continuous on (a, b), whose derivative $f^{\prime}:(a, b) \rightarrow \mathbb{R}$ is bounded on (a, b), i.e.,

$$
\left\|f^{\prime}\right\|_{\infty}:=\sup _{t \in(a, b)}\left|f^{\prime}(t)\right|<\infty
$$

Then

$$
\begin{equation*}
\left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right| \leq\left[\frac{1}{4}+\frac{\left(x-\frac{a+b}{2}\right)^{2}}{(b-a)^{2}}\right](b-a)\left\|f^{\prime}\right\|_{\infty} \tag{2}
\end{equation*}
$$

for all $x \in(a, b)$. The constant $\frac{1}{4}$ is the best.
S. S. Dragomir and S. Wang, [4], proved the following version of Ostrowski's inequality.

Theorem 3. Let $f: I \rightarrow \mathbb{R}$ be a differentiable mapping in the interior of I and $a, b \in \operatorname{Int}(I)$ with $a<b$. If $f^{\prime} \in L_{1}[a, b]$ and $\gamma \leq f^{\prime}(x) \leq \Gamma$ for all $x \in[a, b]$, then the following inequality holds
(3) $\left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d t-\frac{f(b)-f(a)}{b-a}\left(x-\frac{a+b}{2}\right)\right| \leq \frac{1}{4}(b-a)(\Gamma-\gamma)$
for all $x \in[a, b]$.

In [3], S. S. Dragomir proved the following inequality for mappings with bounded variation.

Theorem 4. Let $f: I \rightarrow \mathbb{R}$ be a mapping of bounded variation. Then, for all $x \in[a, b]$, we have the inequality

$$
\begin{equation*}
\left|\int_{a}^{b} f(t) d t-f(x)(b-a)\right| \leq\left[\frac{1}{2}(b-a)+\left|x-\frac{a+b}{2}\right|\right] \bigvee_{a}^{b} f \tag{4}
\end{equation*}
$$

where $\bigvee_{a}^{b} f$ denotes the total variation of f.
In 2005 , B. G. Pachpatte, [8], established the following inequality
Theorem 5. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be continuous functions on $[a, b]$ and differentiable on (a, b) whose derivatives $f^{\prime}, g^{\prime}:(a, b) \rightarrow \mathbb{R}$ are bounded on (a, b). Then

$$
\begin{array}{r}
\left|f(x) g(x)-\frac{1}{2(b-a)}\left[g(x) \int_{a}^{b} f(t) d t+f(x) \int_{a}^{b} g(t) d t\right]\right| \\
(5) \leq \frac{1}{2}\left[|g(x)|\left\|f^{\prime}\right\|_{\infty}+|f(x)|\left\|g^{\prime} \mid\right\|_{\infty}\right] \frac{(x-a)^{2}+(b-x)^{2}}{2(b-a)}, \forall x \in[a, b] .
\end{array}
$$

Remark. Inequality (5) follows from (2), since

$$
\begin{aligned}
& \left|f(x) g(x)-\frac{1}{2(b-a)}\left[g(x) \int_{a}^{b} f(t) d t+f(x) \int_{a}^{b} g(t) d t\right]\right| \\
= & \frac{1}{2}\left|g(x)\left(f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right)+f(x)\left(g(x)-\frac{1}{b-a} \int_{a}^{b} g(t) d t\right)\right| \\
\leq & \frac{1}{2}\left[|g(x)|\left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right|+|f(x)|\left|g(x)-\frac{1}{b-a} \int_{a}^{b} g(t) d t\right|\right] .
\end{aligned}
$$

In approximation theory it is very useful the so-called least concave majorant of the modulus of continuity. More precisely, we have the following definition.

Definition 1. Let $f \in C[a, b]$. If for $t \in[0, \infty)$, the quantity

$$
\omega(f ; t)=\sup \{|f(x)-f(y)|,|x-y| \leq t\}
$$

is the usual modulus of continuity, its least concave majorant is given by

$$
\widetilde{\omega}(f ; t)=\sup \left\{\frac{(t-x) \omega(f ; y)+(y-t) \omega(f ; x)}{y-x}, 0 \leq x \leq t \leq y \leq b-a\right\}
$$

The following equality is well known

$$
\inf _{g \in C(I)}\left(\|f-g\|_{\infty}+\frac{t}{2}\left\|g^{\prime}\right\|_{\infty}\right)=\frac{1}{2} \widetilde{\omega}(f ; t), t \geq 0
$$

In 2000, the authors proved the following result, [6].

Theorem 6. Let f be a continuously differentiable function on $[a, b]$, such that $f(a)=f(b)=0$. Then the inequality

$$
\begin{array}{r}
\left|\frac{f(x)}{2}-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right| \\
\leq \frac{(x-a)^{2}+(b-x)^{2}}{8(b-a)} \widetilde{\omega}\left(f^{\prime} ; \frac{2}{3} \cdot \frac{(x-a)^{3}+(b-x)^{3}}{(x-a)^{2}+(b-x)^{2}}\right) \tag{6}
\end{array}
$$

holds, where x is an arbitrary (but fixed) point in (a, b).
In 2001, Cheng, [2], modified Ostrowski's inequality by introducing the functional

$$
B_{x}(f):=\frac{1}{2}[(x-a) f(a)+(b-a) f(x)+(b-x) f(b)]-\int_{a}^{b} f(t) d t
$$

He proved the following result

Theorem 7. Let $f: I \rightarrow \mathbb{R}$, where $I \subset \mathbb{R}$ is an interval, be a mapping differentiable in the interior of I and let $a, b \in \operatorname{Int}(I), a<b$. If f^{\prime} is
integrable and $\gamma \leq f^{\prime}(t) \leq \Gamma$ for all $t \in[a, b]$ and some constants $\gamma, \Gamma \in \mathbb{R}$ then

$$
\left|B_{x}(f)\right| \leq \frac{1}{8}\left[(x-a)^{2}+(b-x)^{2}\right](\Gamma-\gamma)
$$

for all $x \in[a, b]$.
Ana Maria Acu and Heiner Gonska, [1], proved the following result:
Theorem 8. If $f \in C^{1}[a, b]$, then

$$
\begin{equation*}
\left|B_{x}(f)\right| \leq \frac{(x-a)^{2}+(b-x)^{2}}{8} \widetilde{\omega}\left(f^{\prime}, \frac{2}{3} \cdot \frac{(x-a)^{3}+(b-x)^{3}}{(x-a)^{2}+(b-x)^{2}}\right) . \tag{7}
\end{equation*}
$$

Remark. The results from Theorems 7 and 8 follow from (6), if we put instead of f the function

$$
f-L(f ; a, b) \quad(a, b \in I, \quad a<b)
$$

where $L(f ; a, b)$ is the Lagrange interpolation polynomial of degree one associated with the function f on the points a and b.

In [5], we proved the following result of Ostrowski type
Theorem 9. Let f be a continuous function on $[a, b]$ and $w:[a, b] \rightarrow \mathbb{R}$ be an integrable function on (a, b) such that $\int_{a}^{b} w(s) d s=1$. Then for any continuous function f, the following inequality

$$
\begin{array}{r}
\left|f(x)-\int_{a}^{b} w(s) f(s) d s\right| \\
\leq\left(\int_{a}^{x} w(t) d t\right) \widetilde{\omega}_{[a, x]}\left(f ; \frac{\int_{a}^{x} w(t)(x-t) d t}{\int_{a}^{x} w(t) d t}\right) \\
+\left(\int_{x}^{b} w(t) d t\right) \widetilde{\omega}_{[x, b]}\left(f ; \frac{\int_{x}^{b} w(t)(t-x) d t}{\int_{x}^{b} w(t) d t}\right) \tag{8}
\end{array}
$$

holds, where x is a fixed point in (a, b).

The following generalization of Ostrowski's inequality for arbitrary $f \in$ $C[a, b]$ was given in [1].

Theorem 10. Let $L: C[a, b] \rightarrow C[a, b]$ be non-zero, linear and bounded, such that $L: C^{1}[a, b] \rightarrow C^{1}[a, b]$ with $\left\|(L g)^{\prime}\right\| \leq C_{L}\left\|g^{\prime}\right\|$ for all $g \in C^{1}[a, b]$.
Then for all $f \in C[a, b]$ and $x \in[a, b]$, we have
(9) $\left|L f(x)-\frac{1}{b-a} \int_{a}^{b} L f(t) d t\right| \leq\|L\| \widetilde{\omega}\left(f ; \frac{C_{L}}{\|L\|} \cdot \frac{(x-a)^{2}+(b-x)^{2}}{2(b-a)}\right)$.

In this paper we will generalize the result of Theorem 10.

2 Auxiliary results

Let S be a subspace of $C(I), I=[a, b]$ and A a linear functional defined on S. The following definition was given by T. Popoviciu, [9].

Definition 2 (2.1). The linear functional A defined on the subspace S which contains all polynomials, is P_{n} simple $(n \geq-1)$ if
(i) $A\left(e_{n+1}\right) \neq 0$
(ii) For every $f \in S$, there exist distinct points $t_{1}, t_{2}, \ldots, t_{n+2}$ in $[a, b]$ such that

$$
\begin{equation*}
A(f)=A\left(e_{n+1}\right)\left[t_{1}, t_{2}, \ldots, t_{n+2} ; f\right] \tag{10}
\end{equation*}
$$

where $\left[t_{1}, t_{2}, \ldots ., t_{n+2} ; f\right]$ is the divided difference of the function f on the points $t_{1}, t_{2}, \ldots ., t_{n+2}$.

In what follows we assume that $\Pi \subset S$. The following result was proved in [6].

Theorem 11. Let A be a linear functional $A: S \rightarrow \mathbb{R}$. If A is bounded, then

$$
\begin{equation*}
|A(f)|=\inf _{g \in C^{k}(I)}(\|A|\|| | f-g\|+|A(g)|) \tag{11}
\end{equation*}
$$

Corollary 1. Let A be a linear bounded functional $A: C[a, b] \rightarrow \mathbb{R}$ with $\mid A\left(g^{(k)} \mid \leq C\left\|g^{(k)}\right\|\right.$ for all $g \in C^{(k)}[a, b]$. Then for all $f \in C[a, b]$, we have

$$
|A(f)| \leq\|A\| K\left(f, \frac{C}{\|A\|}, C(I), C^{(k)}(I)\right)
$$

For $k=1$, we obtain

$$
\begin{equation*}
|A(f)| \leq\|A\| K\left(f, \frac{2 C}{\|A\|} \frac{1}{2}, C(I), C^{1}(I)\right)=\frac{\|A\|}{2} \widetilde{\omega}\left(f ; \frac{2 C}{\|A\|}\right) \tag{12}
\end{equation*}
$$

Let us consider the following functional

$$
A(f)=L f(x)-\frac{1}{b-a} \int_{a}^{b} L f(t) d t
$$

where $L: C[a, b] \rightarrow C[a, b]$ is a non-zero linear and bounded operator, $L: C^{1}[a, b] \rightarrow C^{1}[a, b]$ with $\left\|(L g)^{\prime}\right\| \leq C_{L}\left\|g^{\prime}\right\|$ for all $g \in C^{1}[a, b]$. We have

$$
\|A\| \leq 2\|L\| .
$$

Using Ostrowski's inequality, for all $g \in C^{1}[a, b]$, we get

$$
\begin{equation*}
|A(g)| \leq \frac{(x-a)^{2}+(b-x)^{2}}{2(b-a)} \leq \frac{(x-a)^{2}+(b-x)^{2}}{2(b-a)} C_{l}\left\|g^{\prime}\right\| . \tag{13}
\end{equation*}
$$

From (12) and (13) we obtain the result from Theorem 1.10. The following result was proved by H. Gonska and R. Kovacheva in [7].

Theorem 12. For $f \in C[0,1]$ and $0<h \leq \frac{1}{2}$ fixed, for any $\epsilon>0$, there are polynomials $p=p(f ; h)$ such that

$$
\begin{aligned}
\|f-p\|_{\infty} & \leq \frac{3}{4} \omega_{2}(f ; h)+\epsilon \\
\|\left. p^{\prime \prime}\right|_{\infty} & \leq \frac{3}{2 h^{2}} \omega_{2}(f ; h)
\end{aligned}
$$

3 Main results

Let V be a linear set of real functions defined on $[a, b]$. We assume that $C[a, b] \subset V$ and that every step function defined on $[a, b]$ belongs to V. Let A be a linear bounded functional, $A: V \rightarrow \mathbb{R}$, such that $A\left(e_{0}\right)=0$.

Lemma 1. For all $f \in C^{1}[a, b]$, we have

$$
\begin{equation*}
|A(f)| \leq\left(\int_{a}^{b}|A(\sigma(a-x))| d x\right)\left\|f^{\prime}\right\| \tag{14}
\end{equation*}
$$

where $\sigma(t)=\left\{\begin{array}{ll}0, & t<0 \\ 1, & t \geq 0\end{array}\right.$.
Proof. Inequality (14) follows from the identity

$$
f(t)=f(a)+\int_{a}^{b} \sigma(t-x) f^{\prime}(x) d x
$$

Remark. For

$$
A(f)=f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d t
$$

where x is fixed, (14) is Ostrowski's inequality.
Theorem 13. For all $f \in C[a, b]$, we have

$$
\begin{equation*}
|A(f)| \leq \frac{\|A\|}{2} \widetilde{\omega}\left(f ; \frac{2 C}{\|A\|}\right) \tag{15}
\end{equation*}
$$

where $C=\int_{a}^{b} \mid A(\sigma(\cdot-x) \mid d x$.
Proof. The proof follows from (12) and (14).
Corollary 2. Let f be a continuous function and x be a fixed number, $x \in(a, b)$. Then

$$
\begin{equation*}
\left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right| \leq \widetilde{\omega}\left(f ; \frac{(x-a)^{2}+(b-x)^{2}}{2(b-a)}\right) . \tag{16}
\end{equation*}
$$

Proof. Inequality (16) follows from (15) for the functional

$$
A(f)=f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d t
$$

Corollary 3. Let $L: C[a, b] \rightarrow C[a, b]$ be a non-zero linear and bounded operator. Then for all $f \in C[a, b]$ and $x \in[a, b]$ we have

$$
\begin{equation*}
\left|L f(x)-\frac{1}{b-a} \int_{a}^{b} L f(t) d t\right| \leq \widetilde{\omega}\left(L f ; \frac{(x-a)^{2}+(b-x)^{2}}{2(b-a)}\right) . \tag{17}
\end{equation*}
$$

Remark. If $L: C^{1}[a, b] \rightarrow C^{1}[a, b]$ with $\left\|(L g)^{\prime}\right\| \leq C_{l}\left\|g^{\prime}\right\|$ for all $g \in$ $C^{1}[a, b]$, then from (17) and from the representation theorem

$$
|A(f)|=\inf _{g \in C^{1}[a, b]}(| | f-g| |+|A(g)|)
$$

we obtain Acu and Gonska's result, [1].
Corollary 4. Let L_{n} be a discretely defined linear operator, $L_{n}: C[a, b] \rightarrow$ $C[a, b]$,

$$
L_{n} f(x)=\sum_{k=0}^{n} \phi_{n, k}(x) f\left(x_{k, n}\right)
$$

where $\phi_{n, k} \in C[a, b], k=\overline{0, n}, x_{n, k} \in[a, b]$ are distinct points. If $L_{n} e_{0}=e_{0}$, then

$$
\begin{equation*}
\left|L_{n} f(x)-f(x)\right| \leq \frac{\|L\|+1}{2} \widetilde{\omega}\left(f ; \frac{2 C_{n}(x)}{\|L\|+1}\right) \tag{18}
\end{equation*}
$$

where $C_{n}(x)=\int_{a}^{b}\left|\sum_{k=0}^{n} \phi_{n, k}(x) \sigma\left(x_{k, n}-t\right)-\sigma(x-t)\right| d t$.
Lemma 2. Let A be a linear bounded functional, $A: C[a, b] \rightarrow \mathbb{R}$, which has the degree of exactness $k, k \geq 1$. Then for all $g \in C^{k+1}[a, b]$ the following inequality holds

$$
\begin{equation*}
|A(f)| \leq \frac{1}{k!} C_{k}(A)\left\|f^{(k+1)}\right\| \tag{19}
\end{equation*}
$$

where

$$
C_{k}(A)=\int_{a}^{b}\left|A(\cdot-u)_{+}^{k}\right| d u, \quad(x-a)_{+}^{k}= \begin{cases}0, & x<a \\ (x-a)^{k}, & x \geq a\end{cases}
$$

Proof. The inequality (19) follows from the identity

$$
f(x)=\sum_{i=0}^{k} \frac{(x-a)^{i}}{i!} f^{(i)}(a)+\frac{1}{k!} \int_{a}^{b}(x-u)_{+}^{k} f^{(k+1)}(u) d u .
$$

Using Lemma 2, we obtain the following result.

Theorem 14. Let A be a linear bounded functional, $A: C[a, b] \rightarrow \mathbb{R}$, having its degree of exactness $k, k \geq 1$. Then for every continuous function f, we have

$$
\begin{equation*}
|A(f)| \leq\|A\| K\left(f ; \frac{C_{k}(A)}{k!\|A\|}, C(I), C^{k+1}(I)\right) \tag{20}
\end{equation*}
$$

Remark. In the case when A is a P_{n}-simple functional, inequality (20) becomes

$$
\begin{equation*}
|A(f)| \leq\|A\| K\left(f ; \frac{\mid A\left(e_{n+1} \mid\right.}{(n+1)!| | A \mid \|}, C(I), C^{n+1}(I)\right) \tag{21}
\end{equation*}
$$

(see [6]). The reverse is also true, i.e., if inequality (21) holds for all continuous functions f, then A is a P_{n} simple functional.

Corollary 5. Let A be a linear bounded functional, $A: C[a, b] \rightarrow \mathbb{R}$ with the degree of exactness 1. Then,

$$
\begin{equation*}
|A(f)| \leq\|A\| K\left(f ; \frac{C_{1}(A)}{\|A\|}, C(I), C^{2}(I)\right) \tag{22}
\end{equation*}
$$

Using the result of Gonska and Kovacheva as well as inequality (22), we obtain

Theorem 15. Let A be a linear bounded functional $A: C[0,1] \rightarrow \mathbb{R}$ having its degree of exactness 1. Then

$$
\begin{equation*}
|A(f)| \leq\|A\| \omega_{2}\left(f ; \sqrt{\frac{6 C_{1}(A)}{\|A\|}}\right) \tag{23}
\end{equation*}
$$

Remark. If $A=B_{x},[a, b]=[0,1]$, we get

$$
\left|B_{x}(f)\right| \leq 2 \omega_{2}\left(f ; \frac{1}{2} \sqrt{x^{3}+(1-x)^{3}}\right), \quad[1]
$$

References

[1] A. M. Acu, H. Gonska, Ostrowski inequalities and moduli of smoothness, Result. Math. 53, 2009, pp. 217-228.
[2] X. L. Cheng, Improvement of some Ostrowski-Grüss type inequalities, Comput. Math. Appl. 42, 2001, 109-114.
[3] S. S. Dragomir, On the Ostrowski's integral inequality for Lipshitzian mappings and applications, Comput. Math. Appl., 38, 1999, 33-37.
[4] S. S. Dragomir, S. Wang, An inequality of Ostrowski-Grüss type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Comput. Math. Appl. 33(11), 1997, pp.15-20.
[5] B. Gavrea, I. Gavrea, Ostrowski type inequalities from a functional point of view, JIPAM 1, 2000, article 11.
[6] I. Gavrea, Preservation of Lipschitz constants by linear transformations and global smoothness preservation, in "Functions, Series, Operators" (Proc. Alexis Memorial Conf., Budapest, 1999-J. Szabodos et al. eds.), Janos Bolyai Math. Soc., Budapest, 2002, 261-275.
[7] H. Gonska, R. Kovacheva, The second order modulus revisited; remarks, applications, problems, Confer. Sem. Math. Univ. Bari, No. 257, 1994.
[8] B. G. Pachpatte, A note on Ostrowski like inequalities, JIPAM, 6, 2005, article 114.
[9] T. Popoviciu, Sur le reste dans certains formules lineaires d'approximation de l'analyse, Mathematica Cluj, 1 (24), 95-142.

Bogdan Gavrea

Technical University of Cluj-Napoca
Department of Mathematics,Faculty of Automation and Computer Science Str. G. Baritiu nr. 26-28, 400027 Cluj-Napoca, Romania
e-mail: Bogdan.Gavrea@math.utcluj.ro

Ioan Gavrea

Technical University of Cluj-Napoca
Department of Mathematics,Faculty of Automation and Computer Science
Str. G. Baritiu nr. 26-28, 400027 Cluj-Napoca, Romania
e-mail: Ioan.Gavrea@math.utcluj.ro

[^0]: ${ }^{1}$ Received 10 October, 2009
 Accepted for publication (in revised form) 18 November, 2009

