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Asymptotic behaviour of differentiated

Bernstein polynomials revisited 1

Heiner Gonska, Margareta Heilmann, Ioan Raşa

Abstract

We give a refined version of a non-quantitative theorem by Floater

dealing with the asymptotic behaviour of differentiated Bernstein

polynomials. Orderwise we thus improve a previous result by Gonska

and Raşa dealing with the same question. The assertion which we

present here generalizes the classical Voronovskaya theorem and, in

particular, a hardly known quantitative version of this theorem which

can be traced to Sikkema and van der Meer [7] and which is also due

to Videnskǐı [8].
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1 Introduction

In 2005 Floater [1] proved a Voronovskaya-type result for simultaneous ap-

proximation by the classical Bernstein operators Bn.

The latter are given for a function f : [0, 1] → R and x ∈ [0, 1] by

Bnf(x) =

n∑

i=0

f

(
i

n

)
pn,i(x),

where

pn,i(x) =

(
n

i

)
xi(1 − x)n−i, i = 0, . . . , n.

In doing so, Floater was aware of the fact that his Voronovskaya formula

for derivatives had been established earlier and using a completely different

approach by López-Moreno et al. in 2002 (see [6]).

Recently this statement was brought into quantitative form by two of

the present authors (see [4]). Details concerning these theorems are pro-

vided in the text below. In the present note we continue to consider the

quantitative aspect of the matter. While in [4] the least concave majorant

of the first order modulus of the (k+2)nd derivative played a central role in

the estimate, here we use a combination of the first and second order moduli

of the same derivative in the upper bound. This combination explains the

convergence in the ”simultaneous” Voronovskaya theorem even better, as

can be seen from the concluding remark.

For completeness we mention that in a forthcoming article by R. Păltănea

and one of the present authors (see [2]) the problem of simultaneous approx-

imation by certain operators including those of Bernstein was also investi-

gated, but from a somewhat different point of view.
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2 Notation and auxiliary results

For a given integer k ≥ 0 consider the operator Ik : C[0, 1] −→ C[0, 1] given

by Ikf = f , if k = 0, and

(Ikf)(x) =

∫ x

0

(x − t)k−1

(k − 1)!
f(t) dt , if k ≥ 1.

Let Dk := dk

dxk , and Qk
n := DkBnIk, where Bn, n ≥ 1, are the classical

Bernstein operators on C[0, 1]. Then Qk
n is a positive linear operator on

C[0, 1]; more details can be found, e. g., in [4].

For each i ≥ 0 let ei(x) := xi, x ∈ [0, 1]. Consider also the moment of

order i of the operator Qk
n, i. e., the function

Mk
n,i(x) := Qk

n((e1 − x)i; x), x ∈ [0, 1].

Theorem 1 1. For each x ∈ [0, 1] we have

(1)

∣∣Mk
n,3(x)

∣∣
Mk

n,2(x)
≤ 3k + 2

2
· 1

n
.

2. There exists a constant A = A(k) such that

(2)
Mk

n,4(x)

Mk
n,2(x)

≤ A(k) · 1

n
, x ∈ [0, 1].

Assertion (2) was already used in [4], where a sketch of proof was pre-

sented. Here we mention only the following exact representations, with

X := x(1 − x).

Mk
n,2(x) =

n!

nk+2(n − k)!
· 1

12
[k(3k + 1) + 12(n − k(k + 1))X] ,(3)
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Mk
n,3(x) =

n!

nk+3(n − k)!
· X ′

8
(4)

{4 [n(3k + 2) − k(k + 1)(k + 2)]X + k2(k + 1)},

Mk
n,4(x) =

n!

nk+4(n − k)!
· 1

240
(5)

{240
[
n(3n−6−6k2−14k)+k(k+1)(k+2)(k+3)

]
X2

+120
[
n(k + 1)(3k + 2) − k(k + 1)2(k + 2)

]
X

+15k2(k + 1)2 − 2k(5k + 1)}.

Detailed proofs of (1)-(5) will appear elsewhere.

Theorem 1 will be used in conjunction with the following slight extension

of Theorem 3 of [5].

Theorem 2 Suppose L : C[0, 1] −→ C[0, 1] is a positive linear operator. If

f ∈ C2[0, 1], then for any 0 < h ≤ 1
2

the following inequality holds:

∣∣∣∣L(f ; x) − L(e0; x)f(x) − L(e1 − x; x)f ′(x) − 1

2
L((e1 − x)2; x)f ′′(x)

∣∣∣∣(6)

≤ L
(
(e1 − x)2; x

){ |L((e1 − x)3; x)|
L ((e1 − x)2; x)

· 5

6h
ω1(f

′′; h)

+

(
3

4
+

L ((e1 − x)4; x)

L ((e1 − x)2; x)
· 1

16h2

)
ω2(f

′′; h)

}
,

where ω1 and ω2 are the first and second moduli of smoothness, respectively.

3 Main result

M. S. Floater proved the following theorem dealing with the asymptotic

behaviour of differentiated Bernstein polynomials.
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Theorem 3 ([1]) If f ∈ Ck+2[0, 1] for some k ≥ 0, then

lim
n→∞

n
{
(Bnf)(k)(x) − f (k)(x)

}
=

1

2

dk

dxk
{x(1 − x)f ′′(x)} ,

uniformly for x ∈ [0, 1].

A quantitative version of Floater’s convergence result was obtained in

[4, Theorem 4]:

Theorem 4 If f ∈ Ck+2[0, 1] for some k ≥ 0, then
∣∣∣∣n

[
(Bnf)(k)(x) − f (k)(x)

]
− 1

2

dk

dxk
{x(1 − x)f ′′(x)}

∣∣∣∣(7)

≤ O
(

1

n

)
max

k≤i≤k+2

{∣∣f (i)(x)
∣∣} + O (1) ω̃

(
f (k+2);

1√
n

)
.

Here O
(

1
n

)
and O (1) represent sequences of order O

(
1
n

)
and O (1), respec-

tively, which depend on the fixed k, and ω̃ is the least concave majorant of

ω1, satisfying

ω1(f ; ε) ≤ ω̃(f ; ε) ≤ 2ω1(f ; ε), ε ≥ 0.

In this article we shall give another quantitative version of Floater’s

result, involving ω1 and ω2 instead of ω̃. From this new version we shall get

a better order of convergence for functions f ∈ Ck+4[0, 1], for example.

In fact, our main result is:

Theorem 5 For n ≥ 4 and f ∈ Ck+2[0, 1], k ≥ 0 fixed, we have
∣∣∣∣n[(Bnf)(k)(x) − f (k)(x)] − 1

2

dk

dxk
{x(1 − x)f ′′(x)}

∣∣∣∣(8)

≤ O
(

1

n

)
max

k≤i≤k+2

{∣∣f (i)(x)
∣∣}

+O (1)

{
1√
n

ω1

(
f (k+2);

1√
n

)
+ ω2

(
f (k+2);

1√
n

)}
.
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Proof. Let f ∈ Ck+2[0, 1]. Denoting Qk
n by L, we may apply Theorem 2.

As a consequence, we get for any 0 < h ≤ 1
2

the inequality
∣∣∣∣L(f (k); x) − f (k)(x) − 1

2n

dk

dxk
{x(1 − x)f ′′(x)}

−{(L(e0; x) − 1)f (k)(x) + L(e1 − x; x)f (k+1)(x)

+
1

2
L((e1 − x)2; x)f (k+2)(x) − 1

2n

dk

dxk
{x(1 − x)f ′′(x)}

∣∣∣∣

≤ L
(
(e1 − x)2; x

)
{∣∣L((e1 − x)3 ; x)

∣∣
L ((e1 − x)2; x)

· 5

6h
ω1

(
f (k+2); h

)

+

(
3

4
+

L ((e1 − x)4; x)

L ((e1 − x)2; x)
· 1

16h2

)
ω2

(
f (k+2); h

)}
.

Multiplying both sides by n and using the triangular inequality yields
∣∣∣∣n{L(f (k); x) − f (k)(x)} − 1

2

dk

dxk
{x(1 − x)f ′′(x)}

∣∣∣∣ ≤ A + B,(9)

where

A := n
∣∣(L(e0; x) − 1)f (k)(x) + L(e1 − x; x)f (k+1)(x)

+
1

2
L((e1 − x)2; x)f (k+2)(x) − 1

2n

dk

dxk
{x(1 − x)f ′′(x)}

∣∣∣∣

and

B := nL
(
(e1 − x)2; x

)
{∣∣L

(
(e1 − x)3 ; x

)∣∣
L ((e1 − x)2; x)

· 5

6h
ω1

(
f (k+2); h

)

+

(
3

4
+

L ((e1 − x)4; x)

L ((e1 − x)2; x)
· 1

16h2

)
ω2

(
f (k+2); h

)}
.

It was shown in [4, pp.56-57] that

A ≤ Ak
n

∣∣f (k)(x)
∣∣ + Bk

n

∣∣f (k+1)(x)
∣∣ + Ck

n

∣∣f (k+2)(x)
∣∣
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with Ak
n, Bk

n, Ck
n = O

(
1
n

)
, and Ak

n = Bk
n = 0 for k ∈ {0, 1} and Ck

n = 0 for

k = 0.

Hence

(10) A = O
(

1

n

)
max {|f (k)(x)|, |f (k+1)(x)|, |f (k+2)(x)|}.

Moreover, it was proved in [4, p.57] that

(11) nL
(
(e1 − x)2; x

)
= nQk

n

(
(e1 − x)2; x

)
= O(1).

Let n ≥ 4 and h = 1√
n
. From (11), (1) and (2) we get

(12) B = O(1)

{
1√
n

ω1

(
f (k+2);

1√
n

)
+ ω2

(
f (k+2);

1√
n

)}
.

It remains to remark that

(13) L
(
f (k); x

)
= Qk

n

(
f (k); x

)
= (Bnf)(k)(x)

(see also [4, p.55]).

Now (8) is a consequence of (9), (13), (10) and (12).

For k = 0, the O
(

1
n

)
in (8) equals 0. So in this case (8) becomes

∣∣∣∣n[(Bnf)(x) − f(x)] − 1

2
x(1 − x)f ′′(x)

∣∣∣∣

≤ O
({

1√
n

ω1

(
f ′′;

1√
n

)
+ ω2

(
f ′′;

1√
n

)})

=





O

(
1√
n

)
, if f ∈ C3[0, 1]

O
(

1
n

)
, if f ∈ C4[0, 1]

.

In fact, for the special case k = 0 an even more precise inequality was

given in [5, Theorem 4].
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Remark 1 The quantity ω̃
(
f (k+2); 1√

n

)
in (7) is replaced in (8) by

1√
n
ω1

(
f (k+2); 1√

n

)
+ ω2

(
f (k+2); 1√

n

)
. Here f ∈ Ck+2[0, 1]. Let us remark

that

ω̃

(
f (k+2);

1√
n

)
= O

(
1√
n

)
, f ∈ Ck+3[0, 1],

and

1√
n

ω1

(
f (k+2);

1√
n

)
+ω2

(
f (k+2);

1√
n

)
=





O
(

1√
n

)
, if f ∈ Ck+3[0, 1]

O
(

1
n

)
, if f ∈ Ck+4[0, 1]

.

This better order of approximation for f ∈ Ck+4[0, 1] cannot be read off

the inequality in terms of ω̃
(
f (k+2); 1√

n

)
; this follows from the saturation

property of the first order modulus of continuity.
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[6] A. J. López-Moreno, J. Mart́ınez-Moreno, F. J. Muñoz-Delgado,
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