General Mathematics Vol. 18, No. 1 (2010), 81-88

On the unbounded divergence of some projections operators in the discrete best approximation ¹

A. I. Mitrea, P. Mitrea

Abstract

The main results of this paper establish the superdense unbounded divergence of some discrete best approximation operators.

2000 Mathematics Subject Classification: 41A10.

Key words and phrases: polynomial projection, discrete best approximation operators, superdense set.

1 Introduction

Denote by C the Banach space of all continuous real functions defined on the interval [-1, 1], endowed with the uniform norm $\|\cdot\|$ and let C^0 be the

¹Received 10 October, 2009

Accepted for publication (in revised form) 22 December, 2009

subspace of all even functions of C; more generally, if B is a set of real functions defined on an interval $I \subseteq \mathbb{R}$, which is symmetric with respect to the origin, we put B^0 for the subset of all even functions in B. Let us consider, too, a sequence $(E_n)_{n\geq 0}$ of finite subsets of [-1, 1] so that each E_n contains at least n + 1 points.

Given an integer $n \ge 0$, denote by \mathcal{P}_n the space of all polynomials of real coefficients having the degree at most n and let us introduce the operator $U_n : C \to \mathcal{P}_n$, which associates to each f in C the unique polynomial $U_n f \in \mathcal{P}_n$ for which the infimum of the set

$$\{\max\{|f(x) - P(x)| : x \in E_n\} : P \in \mathcal{P}_n\}$$

is attained. The polynomial $U_n f$ is said to be the E_n -projection of $f \in C$ on the space \mathcal{P}_n and the operators U_n , $n \geq 0$, will be referred to as E_n -polynomial projections. Remark that $U_n f$ is the best approximation polynomial in \mathcal{P}_n of a function $f \in C$, with respect to the discrete set E_n .

It is known that, in the case when each E_n contains n + 1 points or each E_n contains n + 2 points, the corresponding operators U_n , $n \ge 0$, are linear and continuous polynomial projections and there exists $g \in C$ so that the sequence $(U_ng)_{n\ge 0}$ is not uniformly convergent to g, [4]. Our aim is to prove the unboundedness of the set $\{||U_n||: n \ge 0\}$, if each E_n contains at most n + 3 points, then to describe the topological structure of the set of unbounded divergence of E_n -polynomial projections, namely $\{f \in C : \lim_{n\to\infty} \sup ||U_nf|| = \infty\}$. To this purpose, we need the following principle of condensation of the singularities, established by I. Muntean and S. Cobzaş. **Theorem 1** [2], [3]. If X is a Banach space, Y is a normed space and $A_n : X \to Y, n \ge 1$, are linear continuous operators so that the set $\{||A_n|| : n \ge 1\}$ is unbounded, then the set of singularities of the family $\{A_n : n \ge 1\}$, i.e.

$$\{x \in X : \limsup \|A_n x\| = \infty\}$$

is superdense in X.

We recall that a subset S of a topological space T is named *superdense* in X if it is residual (i.e. its complement is of first Baire category), uncountable and dense in X.

In this paper, we use the following notations. Given a positive integer m and a subset A of the interval [-1,1] which has m+1 points t_k , $1 \le k \le m+1$, let $L_m(A; f)$, $f \in C$, be the Lagrange polynomial of degree at most m which interpolates f at the points of A and let $a_m(f)$ be the leading coefficient of $L_n(A; f)$. Particularly, denoting by σ_m a function of C which satisfies the equalities $\sigma_m(t_k) = (-1)^k$, $1 \le k \le m+1$, it is easily seen that $a_m(\sigma_m) \ne 0$.

2 The unboundedness of the norms of E_n -polynomial projections

Firstly, remark that if the sets E_n , $n \ge 1$, have n + 1 or n + 2 points, then the corresponding operator U_n are linear and continuous polynomial projection of C into \mathcal{P}_n , [4], [6]; more exactly, if E_n has n + 1 points, then $U_n f = L_n(E_n; f)$. Consequently, in these situations, according to [7], the following inequalities

(1)
$$||U_n|| \ge \frac{4}{\pi^2} \ln n + O(1), \quad n \ge 1$$

are satisfied.

In what follows, we assume in this section that the sets E_n have n + 3 points which are symmetric with respect to the origin. Let us examine the operators $U_{2n}: C \to \mathcal{P}_{2n}$, associated to the corresponding sets $E_{2n} = \{x_{2n}^k: 1 \leq k \leq 2n+3\}, n \geq 1$.

Let us prove the equality

(2)
$$U_{2n}f = L_{2n+2}(E_{2n};f) - \frac{a_{2n+2}(f)}{a_{2n+2}(\sigma_{2n+2})}L_{2n+2}(E_n;\sigma_{2n+2}),$$

for each function f in C^0 .

Denoting by $P_{2n}f$ the polynomial of the right member in (1) and remarking that $L_{2n+2}(E_{2n}; f)$ and $L_{2n+2}(E_{2n}; \sigma_{2n+2})$ are even polynomials in \mathcal{P}_{2n+2} , it is obvious that $P_{2n}f$ is an even polynomial in \mathcal{P}_{2n} . Moreover,

(3)
$$(P_{2n}f)(x_{2n}^k) - f(x_{2n}^k) = (-1)^{k+1} \frac{a_{2n+2}(f)}{a_{2n+2}(\sigma_{2n+2})}, \quad 1 \le k \le 2n+3$$

The relations (3), together with Theorem of Charles de la Vallée-Poussin [1], [5], [8], lead to the equality $P_{2n}f = U_{2n}f$, so that (2) is true.

Further, let us point out a lower bound for the norms of the operators $U_{2n}^0: C^0 \to \mathcal{P}_{2n}^0, n \geq 1$, where each U_{2n}^0 is the restriction of U_{2n} to C^0 .

Theorem 2 The inequalities $||U_{2n}^0|| \ge \frac{2}{\pi^2} \ln(2n)$ hold for all integers $n \ge 1$.

Proof. Given T > 0, denote by C_T the set of all continuous functions $g : \mathbb{R} \to \mathbb{R}$ satisfying $g(x+T) = g(x), \forall x \in \mathbb{R}$. If $f \in C$, define $\tilde{f} \in C_{2\pi}$ by $\tilde{f}(x) = f(\cos x), \forall x \in \mathbb{R}$. It is clear that $\tilde{f} \in C_{\pi}^0$ for each $f \in C^0$.

The operator $F : C^0 \to C^0_{\pi}$, $Ff = \tilde{f}$, is an isomorphism and $\|\tilde{f}\| = \|Ff\| = \|f\|, \forall f \in C^0$. For each integer $n \ge 0$, denote by \mathcal{E}_n the space of all trigonometric polynomials of degree $n \ge 0$ and introduce the operator $\tilde{U}^0_{2n} : C^0_{\pi} \to \mathcal{E}_{2n}$ by the equality

(4)
$$(\widetilde{U}_{2n}^0 \widetilde{f})(x) = (U_{2n}f)(\cos x) = (U_{2n}(F^{-1}\widetilde{f}))(\cos x), \ \forall \ x \in [0,\pi].$$

In order to establish a lower bound for the norm of \widetilde{U}_{2n}^0 , let τ be a given real number and define the translation-operator $T_{\tau}: C_{2\pi} \to C_{2\pi}$ as

$$(T_{\tau}\widetilde{f})(x) = \widetilde{f}(x+\tau), \quad \widetilde{f} \in C_{2\pi}, \ x \in \mathbb{R}.$$

Setting $S_{\tau} = T_{\tau} + T_{-\tau}, \ \tau \in \mathbb{R}$ and noticing that $S_{\tau} \widetilde{f} \in C^0_{\pi}$ for each $\widetilde{f} \in C^0_{\pi}$, we obtain:

(5)
$$\frac{1}{2\pi} \int_0^{\pi} S_{\tau}(\widetilde{U}_{2n}^0(S_{\tau}\widetilde{f}))(x)d\tau = (\phi_{2n}^0 + \phi_0)(\widetilde{f})(x)$$

for each $\widetilde{f} \in C^0_{\pi}$ and $x \in [0, \pi]$, where $\phi_n : C_{2\pi} \to C_{2\pi}, n \ge 0$ are the Fourier projections

(6)
$$(\phi_n \widetilde{f})(x) = \frac{1}{2\pi} \int_0^{2\pi} \widetilde{f}(t) D_n(x-t) dt, \quad \widetilde{f} \in C_{2\pi}, \ x \in \mathbb{R}$$

with $D_0(t) = 1$, $D_n(t) = 1 + 2\sum_{k=1}^n \cos(kt)$, $t \in \mathbb{R}$, $n \ge 1$ and ϕ_{2n}^0 is the restriction of ϕ_{2n} to the space C_{π}^0 .

The validity of (5) follows from standard arguments: firstly, it is true from $\tilde{f} \in \tilde{P}_{2n}^0 = span\{c_{2k} : 0 \le k \le n\}$, with $c_k(x) = \cos(kx), x \in \mathbb{R}$, then we use the relation $\overline{\mathcal{P}^0} = C^0$ and the properties of F, which lead to the equality $\overline{\widetilde{\mathcal{P}^0}} = C^0_{\pi}$.

Noticing that $||T_{\tau}|| = 1$ and $||S_{\tau}|| \le 2$, it follows from (5):

$$\|\phi_{2n}^{0} + \phi_{0}\| = \sup\{\|\phi_{2n}^{0}\widetilde{f} + \phi_{0}\widetilde{f}\|: \ \widetilde{f} \in C_{\pi}^{0}, \ \|\widetilde{f}\| \le 1\}$$
$$\leq \frac{1}{2\pi} \sup\left\{\|S_{\tau}\| \cdot \|\widetilde{U}_{2n}^{0}\| \cdot \|S_{\tau}\| \cdot \|\widetilde{f}\| \cdot \int_{0}^{\pi} d_{\tau}: \ \widetilde{f} \in C_{\pi}^{0}, \ \|\widetilde{f} \le 1\right\},$$

i.e.

(7)
$$\|\phi_{2n}^0 + \phi_0\| \le 2\|\widetilde{U}_{2n}^0\|.$$

On the other hand, according to (5), we obtain:

$$\|\phi_{2n}^{0} + \phi_{0}\| = \frac{1}{2\pi} \max\left\{\int_{0}^{2\pi} |1 + D_{2n}(x - t)| dt: 0 \le x \le 2\pi\right\}$$
$$\ge \frac{1}{2\pi} \int_{0}^{2\pi} |D_{0}(t) + D_{2n}(t)| dt = \frac{1}{\pi} \int_{0}^{\pi} |D_{2n}(t) + D_{0}(t)| dt$$

which, combined with (7) and the inequality [8]:

$$\frac{1}{\pi} \int_0^\pi |D_{2n}(t) + D_0(t)| dt \ge \frac{4}{\pi^2} \ln 2n,$$

gives:

(8)
$$\|\widetilde{U}_{2n}^0\| \ge \frac{2}{\pi^2} \ln(2n)$$

Now, the relations $||U_{2n}^0|| = ||\widetilde{U}_{2n}^0||$, obtained from (4) and (8), complete the proof.

3 Superdense Unbounded Divergence of E_n -polynomial Projections

In this section we describe the topological structure of the set of unbounded divergence of E_n -polynomial projections.

Theorem 3 If each set E_{2n} , $n \ge 1$, contains 2n + 3 points which are symmetric with respect to the origin, then the set of unbounded divergence of the discrete best approximation operators (i.e. E_n -polynomial projections) U_n , namely $\left\{ f \in C : \limsup_{n \to \infty} \|U_n f\| = \infty \right\}$, is superdense in the Banach space $(C, \|\cdot\|)$.

Proof. Indeed, according to Theorem 2, we get:

 $\sup\{\|U_n\|: n \ge 1\} \ge \sup\{\|U_{2n}\|: n \ge 1\} \ge \sup\left\{\frac{2}{\pi^2}\ln(2n): n \ge 1\right\} = \infty,$ which proves the unboundedness of the set $\{\|U_n\|: n \ge 1\}$. Now, let us apply Theorem 1 and remark that the set of singularities of the family $\{U_n: n \ge 1\}$ represents the set of the unbounded divergence of this family.

Theorem 4 Denote $I_s = \{n \ge 1 : cardE_n = n + s\}$, $s \in \{1, 2, 3\}$ and let I_3^0 be the subset of all $n \in I_3$ with the property that the nodes of E_{2n} are symmetric with respect to the origin. If at least one of the sets I_1 , I_2 and I_3^0 is unbounded, then the set of unbounded divergence of the discrete best approximation operators U_n is superdense in the Banach space $(C, \|\cdot\|)$.

Proof. Take into account the inequalities (1) and Theorem 2.

Acknowledgement. These researches are supported by the Romanian Project PNII 11018.

References

- [1] E.W. Cheney, *Introduction to Approximation Theory*, Mc-Graw-Hill Book Company, New-York, 1966.
- [2] S. Cobzaş and I. Muntean, Condensation of Singularities and Divergence Results in Approximation Theory, J. Approx. Theory, 31, 1981, 138-153.
- [3] S. Cobzaş and I. Muntean, Superdense A.E. Unbounded Divergence of some Approximation Processes of Analysis, Real Analysis Exchange, 25, 1999/2000, 501-512.
- [4] P.C. Curtis Jr., Convergence of Approximating Polynomials, Proc. Amer. Math. Soc., 13, 1962, 385-387.
- [5] G.G. Lorentz, *Approximation of Functions*, Chelsea Publ. Comp., New York, 1966.
- [6] A.I. Mitrea, Convergence and Superdense Unbounded Divergence in Approximation Theory, Transilvania Press Publ., 1998.
- [7] N.A. Sapogov, On the norm of the polynomial linear operators (Russian), Dokl. Akad. Nauk, 143, 1962, No. 6, 1286-1288.
- [8] A. Schönhage, *Approximationstheorie*, Walter de Gruyter, Berlin, 1971.

A. I. Mitrea

Technical University of Cluj-Napoca Department of Mathematics 400020 C. Daicoviciu str., No. 15 e-mail: alexandru.ioan.mitrea@math.utcluj.ro

P. Mitrea

Technical University of Cluj-Napoca Department of Computer Science 400020 C. Daicoviciu str., No. 15 e-mail: paulina.mitrea@cs.utcluj.ro