On the unbounded divergence of some projections operators in the discrete best approximation ${ }^{1}$

A. I. Mitrea, P. Mitrea

Abstract

The main results of this paper establish the superdense unbounded divergence of some discrete best approximation operators.

2000 Mathematics Subject Classification: 41A10.
Key words and phrases: polynomial projection, discrete best approximation operators, superdense set.

1 Introduction

Denote by C the Banach space of all continuous real functions defined on the interval $[-1,1]$, endowed with the uniform norm $\|\cdot\|$ and let C^{0} be the

[^0]subspace of all even functions of C; more generally, if B is a set of real functions defined on an interval $I \subseteq \mathbb{R}$, which is symmetric with respect to the origin, we put B^{0} for the subset of all even functions in B. Let us consider, too, a sequence $\left(E_{n}\right)_{n \geq 0}$ of finite subsets of $[-1,1]$ so that each E_{n} contains at least $n+1$ points.

Given an integer $n \geq 0$, denote by \mathcal{P}_{n} the space of all polynomials of real coefficients having the degree at most n and let us introduce the operator $U_{n}: C \rightarrow \mathcal{P}_{n}$, which associates to each f in C the unique polynomial $U_{n} f \in \mathcal{P}_{n}$ for which the infimum of the set

$$
\left\{\max \left\{|f(x)-P(x)|: x \in E_{n}\right\}: P \in \mathcal{P}_{n}\right\}
$$

is attained. The polynomial $U_{n} f$ is said to be the E_{n}-projection of $f \in$ C on the space \mathcal{P}_{n} and the operators $U_{n}, n \geq 0$, will be referred to as E_{n}-polynomial projections. Remark that $U_{n} f$ is the best approximation polynomial in \mathcal{P}_{n} of a function $f \in C$, with respect to the discrete set E_{n}.

It is known that, in the case when each E_{n} contains $n+1$ points or each E_{n} contains $n+2$ points, the corresponding operators $U_{n}, n \geq 0$, are linear and continuous polynomial projections and there exists $g \in C$ so that the sequence $\left(U_{n} g\right)_{n \geq 0}$ is not uniformly convergent to g, [4]. Our aim is to prove the unboundedness of the set $\left\{\left\|U_{n}\right\|: n \geq 0\right\}$, if each E_{n} contains at most $n+3$ points, then to describe the topological structure of the set of unbounded divergence of E_{n}-polynomial projections, namely $\left\{f \in C: \limsup _{n \rightarrow \infty}\left\|U_{n} f\right\|=\infty\right\}$. To this purpose, we need the following principle of condensation of the singularities, established by I. Muntean and S. Cobzaş.

Theorem 1 [2], [3]. If X is a Banach space, Y is a normed space and $A_{n}: X \rightarrow Y, n \geq 1$, are linear continuous operators so that the set $\left\{\left\|A_{n}\right\|: n \geq 1\right\}$ is unbounded, then the set of singularities of the family $\left\{A_{n}: n \geq 1\right\}$, i.e.

$$
\left\{x \in X: \limsup \left\|A_{n} x\right\|=\infty\right\}
$$

is superdense in X.

We recall that a subset S of a topological space T is named superdense in X if it is residual (i.e. its complement is of first Baire category), uncountable and dense in X.

In this paper, we use the following notations. Given a positive integer m and a subset A of the interval $[-1,1]$ which has $m+1$ points $t_{k}, 1 \leq$ $k \leq m+1$, let $L_{m}(A ; f), f \in C$, be the Lagrange polynomial of degree at most m which interpolates f at the points of A and let $a_{m}(f)$ be the leading coefficient of $L_{n}(A ; f)$. Particularly, denoting by σ_{m} a function of C which satisfies the equalities $\sigma_{m}\left(t_{k}\right)=(-1)^{k}, 1 \leq k \leq m+1$, it is easily seen that $a_{m}\left(\sigma_{m}\right) \neq 0$.

2 The unboundedness of the norms of E_{n}-polynomial projections

Firstly, remark that if the sets $E_{n}, n \geq 1$, have $n+1$ or $n+2$ points, then the corresponding operator U_{n} are linear and continuous polynomial projection of C into \mathcal{P}_{n}, [4], [6]; more exactly, if E_{n} has $n+1$ points, then
$U_{n} f=L_{n}\left(E_{n} ; f\right)$. Consequently, in these situations, according to [7], the following inequalities

$$
\begin{equation*}
\left\|U_{n}\right\| \geq \frac{4}{\pi^{2}} \ln n+O(1), \quad n \geq 1 \tag{1}
\end{equation*}
$$

are satisfied.
In what follows, we assume in this section that the sets E_{n} have $n+3$ points which are symmetric with respect to the origin. Let us examine the operators $U_{2 n}: C \rightarrow \mathcal{P}_{2 n}$, associated to the corresponding sets $E_{2 n}=\left\{x_{2 n}^{k}\right.$: $1 \leq k \leq 2 n+3\}, n \geq 1$.

Let us prove the equality

$$
\begin{equation*}
U_{2 n} f=L_{2 n+2}\left(E_{2 n} ; f\right)-\frac{a_{2 n+2}(f)}{a_{2 n+2}\left(\sigma_{2 n+2}\right)} L_{2 n+2}\left(E_{n} ; \sigma_{2 n+2}\right) \tag{2}
\end{equation*}
$$

for each function f in C^{0}.
Denoting by $P_{2 n} f$ the polynomial of the right member in (1) and remarking that $L_{2 n+2}\left(E_{2 n} ; f\right)$ and $L_{2 n+2}\left(E_{2 n} ; \sigma_{2 n+2}\right)$ are even polynomials in $\mathcal{P}_{2 n+2}$, it is obvious that $P_{2 n} f$ is an even polynomial in $\mathcal{P}_{2 n}$. Moreover,

$$
\begin{equation*}
\left(P_{2 n} f\right)\left(x_{2 n}^{k}\right)-f\left(x_{2 n}^{k}\right)=(-1)^{k+1} \frac{a_{2 n+2}(f)}{a_{2 n+2}\left(\sigma_{2 n+2}\right)}, \quad 1 \leq k \leq 2 n+3 \tag{3}
\end{equation*}
$$

The relations (3), together with Theorem of Charles de la Vallée-Poussin [1], [5], [8], lead to the equality $P_{2 n} f=U_{2 n} f$, so that (2) is true.

Further, let us point out a lower bound for the norms of the operators $U_{2 n}^{0}: C^{0} \rightarrow \mathcal{P}_{2 n}^{0}, n \geq 1$, where each $U_{2 n}^{0}$ is the restriction of $U_{2 n}$ to C^{0}.

Theorem 2 The inequalities $\left\|U_{2 n}^{0}\right\| \geq \frac{2}{\pi^{2}} \ln (2 n)$ hold for all integers $n \geq 1$.

Proof. Given $T>0$, denote by C_{T} the set of all continuous functions $g: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $g(x+T)=g(x), \forall x \in \mathbb{R}$. If $f \in C$, define $\tilde{f} \in C_{2 \pi}$ by $\widetilde{f}(x)=f(\cos x), \forall x \in \mathbb{R}$. It is clear that $\tilde{f} \in C_{\pi}^{0}$ for each $f \in C^{0}$.

The operator $F: C^{0} \rightarrow C_{\pi}^{0}, F f=\widetilde{f}$, is an isomorphism and $\|\widetilde{f}\|=$ $\|F f\|=\|f\|, \forall f \in C^{0}$. For each integer $n \geq 0$, denote by \mathcal{E}_{n} the space of all trigonometric polynomials of degree $n \geq 0$ and introduce the operator $\widetilde{U}_{2 n}^{0}: C_{\pi}^{0} \rightarrow \mathcal{E}_{2 n}$ by the equality

$$
\begin{equation*}
\left(\widetilde{U}_{2 n}^{0} \widetilde{f}\right)(x)=\left(U_{2 n} f\right)(\cos x)=\left(U_{2 n}\left(F^{-1} \widetilde{f}\right)\right)(\cos x), \forall x \in[0, \pi] . \tag{4}
\end{equation*}
$$

In order to establish a lower bound for the norm of $\widetilde{U}_{2 n}^{0}$, let τ be a given real number and define the translation-operator $T_{\tau}: C_{2 \pi} \rightarrow C_{2 \pi}$ as

$$
\left(T_{\tau} \widetilde{f}\right)(x)=\widetilde{f}(x+\tau), \quad \widetilde{f} \in C_{2 \pi}, \quad x \in \mathbb{R}
$$

Setting $S_{\tau}=T_{\tau}+T_{-\tau}, \tau \in \mathbb{R}$ and noticing that $S_{\tau} \widetilde{f} \in C_{\pi}^{0}$ for each $\tilde{f} \in C_{\pi}^{0}$, we obtain:

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{\pi} S_{\tau}\left(\widetilde{U}_{2 n}^{0}\left(S_{\tau} \widetilde{f}\right)\right)(x) d \tau=\left(\phi_{2 n}^{0}+\phi_{0}\right)(\widetilde{f})(x) \tag{5}
\end{equation*}
$$

for each $\tilde{f} \in C_{\pi}^{0}$ and $x \in[0, \pi]$, where $\phi_{n}: C_{2 \pi} \rightarrow C_{2 \pi}, n \geq 0$ are the Fourier projections

$$
\begin{equation*}
\left(\phi_{n} \widetilde{f}\right)(x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \widetilde{f}(t) D_{n}(x-t) d t, \quad \widetilde{f} \in C_{2 \pi}, x \in \mathbb{R} \tag{6}
\end{equation*}
$$

with $D_{0}(t)=1, D_{n}(t)=1+2 \sum_{k=1}^{n} \cos (k t), t \in \mathbb{R}, n \geq 1$ and $\phi_{2 n}^{0}$ is the restriction of $\phi_{2 n}$ to the space C_{π}^{0}.

The validity of (5) follows from standard arguments: firstly, it is true from $\tilde{f} \in \widetilde{P}_{2 n}^{0}=\operatorname{span}\left\{c_{2 k}: 0 \leq k \leq n\right\}$, with $c_{k}(x)=\cos (k x), x \in \mathbb{R}$,
then we use the relation $\overline{\mathcal{P}^{0}}=C^{0}$ and the properties of F, which lead to the equality $\overline{\widetilde{\mathcal{P}}^{0}}=C_{\pi}^{0}$.

Noticing that $\left\|T_{\tau}\right\|=1$ and $\left\|S_{\tau}\right\| \leq 2$, it follows from (5):

$$
\begin{gathered}
\left\|\phi_{2 n}^{0}+\phi_{0}\right\|=\sup \left\{\left\|\phi_{2 n}^{0} \tilde{f}+\phi_{0} \widetilde{f}\right\|: \widetilde{f} \in C_{\pi}^{0},\|\widetilde{f}\| \leq 1\right\} \\
\leq \frac{1}{2 \pi} \sup \left\{\left\|S_{\tau}\right\| \cdot\left\|\widetilde{U}_{2 n}^{0}\right\| \cdot\left\|S_{\tau}\right\| \cdot\|\widetilde{f}\| \cdot \int_{0}^{\pi} d_{\tau}: \widetilde{f} \in C_{\pi}^{0}, \| \widetilde{f} \leq 1\right\}
\end{gathered}
$$

i.e.

$$
\begin{equation*}
\left\|\phi_{2 n}^{0}+\phi_{0}\right\| \leq 2\left\|\widetilde{U}_{2 n}^{0}\right\| \tag{7}
\end{equation*}
$$

On the other hand, according to (5), we obtain:

$$
\begin{aligned}
& \left\|\phi_{2 n}^{0}+\phi_{0}\right\|=\frac{1}{2 \pi} \max \left\{\int_{0}^{2 \pi}\left|1+D_{2 n}(x-t)\right| d t: 0 \leq x \leq 2 \pi\right\} \\
& \quad \geq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|D_{0}(t)+D_{2 n}(t)\right| d t=\frac{1}{\pi} \int_{0}^{\pi}\left|D_{2 n}(t)+D_{0}(t)\right| d t
\end{aligned}
$$

which, combined with (7) and the inequality [8]:

$$
\frac{1}{\pi} \int_{0}^{\pi}\left|D_{2 n}(t)+D_{0}(t)\right| d t \geq \frac{4}{\pi^{2}} \ln 2 n
$$

gives:

$$
\begin{equation*}
\left\|\widetilde{U}_{2 n}^{0}\right\| \geq \frac{2}{\pi^{2}} \ln (2 n) \tag{8}
\end{equation*}
$$

Now, the relations $\left\|U_{2 n}^{0}\right\|=\left\|\widetilde{U}_{2 n}^{0}\right\|$, obtained from (4) and (8), complete the proof.

3 Superdense Unbounded Divergence of E_{n}-polynomial Projections

In this section we describe the topological structure of the set of unbounded divergence of E_{n}-polynomial projections.

Theorem 3 If each set $E_{2 n}, n \geq 1$, contains $2 n+3$ points which are symmetric with respect to the origin, then the set of unbounded divergence of the discrete best approximation operators (i.e. E_{n}-polynomial projections) U_{n}, namely $\left\{f \in C: \limsup _{n \rightarrow \infty}\left\|U_{n} f\right\|=\infty\right\}$, is superdense in the Banach space $(C,\|\cdot\|)$.

Proof. Indeed, according to Theorem 2, we get:
$\sup \left\{\left\|U_{n}\right\|: n \geq 1\right\} \geq \sup \left\{\left\|U_{2 n}\right\|: n \geq 1\right\} \geq \sup \left\{\frac{2}{\pi^{2}} \ln (2 n): n \geq 1\right\}=\infty$, which proves the unboundedness of the set $\left\{\left\|U_{n}\right\|: n \geq 1\right\}$. Now, let us apply Theorem 1 and remark that the set of singularities of the family $\left\{U_{n}: n \geq 1\right\}$ represents the set of the unbounded divergence of this family.

Theorem 4 Denote $I_{s}=\left\{n \geq 1: \operatorname{card} E_{n}=n+s\right\}, s \in\{1,2,3\}$ and let I_{3}^{0} be the subset of all $n \in I_{3}$ with the property that the nodes of $E_{2 n}$ are symmetric with respect to the origin. If at least one of the sets I_{1}, I_{2} and I_{3}^{0} is unbounded, then the set of unbounded divergence of the discrete best approximation operators U_{n} is superdense in the Banach space $(C,\|\cdot\|)$.

Proof. Take into account the inequalities (1) and Theorem 2.

Acknowledgement. These researches are supported by the Romanian Project PNII 11018.

References

[1] E.W. Cheney, Introduction to Approximation Theory, Mc-Graw-Hill Book Company, New-York, 1966.
[2] S. Cobzaş and I. Muntean, Condensation of Singularities and Divergence Results in Approximation Theory, J. Approx. Theory, 31, 1981, 138-153.
[3] S. Cobzaş and I. Muntean, Superdense A.E. Unbounded Divergence of some Approximation Processes of Analysis, Real Analysis Exchange, 25, 1999/2000, 501-512.
[4] P.C. Curtis Jr., Convergence of Approximating Polynomials, Proc. Amer. Math. Soc., 13, 1962, 385-387.
[5] G.G. Lorentz, Approximation of Functions, Chelsea Publ. Comp., New York, 1966.
[6] A.I. Mitrea, Convergence and Superdense Unbounded Divergence in Approximation Theory, Transilvania Press Publ., 1998.
[7] N.A. Sapogov, On the norm of the polynomial linear operators (Russian), Dokl. Akad. Nauk, 143, 1962, No. 6, 1286-1288.
[8] A. Schönhage, Approximationstheorie, Walter de Gruyter, Berlin, 1971.

A. I. Mitrea

Technical University of Cluj-Napoca
Department of Mathematics
400020 C. Daicoviciu str., No. 15
e-mail: alexandru.ioan.mitrea@math.utcluj.ro

P. Mitrea

Technical University of Cluj-Napoca
Department of Computer Science
400020 C. Daicoviciu str., No. 15
e-mail: paulina.mitrea@cs.utcluj.ro

[^0]: ${ }^{1}$ Received 10 October, 2009
 Accepted for publication (in revised form) 22 December, 2009

