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A common fixed point theorem for weakly
compatible mappings in fuzzy metric spaces !
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Abstract

In this paper, we prove a common fixed point theorem for weakly
compatible mappings in fuzzy metric spaces using the property (E.A).
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1 Introduction and Preliminaries

The concept of fuzzy sets was introduced initially by Zadeh [15] in 1965. To
use this concept in topology and analysis, many authors have expansively
developed the theory of fuzzy sets and applications. George and Veeramani
[7] modified the concept of fuzzy metric space introduced by Kramosil and
Michalek [10] and defined the Hausdorff topology of fuzzy metric spaces which
have very important applications in quantum particle physics particularly in
connections with both string and F—infinity theory which were given and
studied by El- Naschie [2, 3, 4, 5, 6] and [13]. They showed also that every
metric induces a fuzzy metric. Vasuki [14] obtained the fuzzy version of com-
mon fixed point theorem which had extra conditions, in fact, he proved a fuzzy
common fixed point theorem by a strong definition of Cauchy sequence, see
[7]. First, we give some definitions.
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Definition 1 ([12]) A binary operation * : [0,1]> — [0,1] is called a con-
tinuous t-norm if ([0,1],*) is an abelian topological monoid; i.e.,

(1) = is associative and commutative,

(2) * is continuous,

(3) ax1=a forall a € [0,1],

(4) a*xb < cxd whenever a < c and b < d, for each a,b,c,d € [0,1].

Two typical examples of a continuous t—norm are a xb = ab and a x b =
min{a, b}.

Definition 2 ([7]) The 3-tuple (X, M,x) is called a fuzzy metric space if X
is an arbitrary non-empty set, x is a continuous t-norm and M is a fuzzy set
on X2 x [0,00) satisfying the following conditions for each z,y,z € X and
t,s >0,

(FM-1) M(z,y,t) > 0,

(FM-2) M(z,y,t) =1 if and only if z =y,
(FM-3) M (x,y,t) = M(y,z,t),

(FM-4) M(z,y,t) %« M(y,z,s) < M(x,z,t+s),
(FM-5) M(z,y,.): (0,00) — [0, 1] is continuous.

Let (X, M, ) be a fuzzy metric space. For ¢t > 0, the open ball B(z,r,1)
with a center z € X and a radius 0 < r < 1 is defined by

Bla,r,t) = {y € X : M(z,y,1) > 1 - r}.

A subset A C X is called open if for each x € A, there exist ¢ > 0 and
0 < r < 1 such that B(z,r,t) C A. Let 7 denote the family of all open subsets
of X. Then 7 is called the topology on X induced by the fuzzy metric M.
This topology is Hausdorftf and first countable.

Example 1 Let X = R. Denote a xb = a.b for all a,b € [0,1]. For each

€ (0,00), define
t

M -
(2,9,1) = P p—

forall x,y € X.

Example 2 Let X be an arbitrary non-empty set and 1 be an increasing and
a continuous function of Ry into (0,1) such that limy_ oo 9(t) = 1. Three
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x ) T
o710 V) = sin(m)

and ¥(z) = 1—e~*. Denote axb = a.b for all a,b € [0,1]. For eacht € (0, 00),
define

typical examples of these functions are (x) =

M(a,y,t) = ()" ™Y

for all z,y € X, where d(x,y) is an ordinary metric. It is easy to see that
(X, M, %) is a fuzzy metric space.

Definition 3 ([7]) Let (X, M,*) be a fuzzy metric space.

(i) A sequence {x,} in X is said to be convergent to x € X if for each
e >0 and each t > 0, there exists ng € N such that M (x,,x,t) > 1 — € for all
n > ng; i.e., M(xy,z,t) — 1 asn — oo for all t > 0.

(ii) A sequence {x,} in X is said to be Cauchy if for each € > 0 and each
t > 0, there exists ng € N such that M(xp, Tm,t) > 1 — € for all n,m > ng;
i.e., M(xp,Tm,t) — 1 as n,m — oo for all t > 0.

(11i) A fuzzy metric space in which every Cauchy sequence is convergent is
said to be complete.

Lemma 1 ([8]) For all z,y € X, M(x,y,.) is a non-decreasing function.

Definition 4 Let (X, M, ) be a fuzzy metric space. M is said to be continu-
ous on X2 x (0,00) if

lim M(xnaynatn) = M(‘rayvt)a

n—oo

whenever {(xn, yn, tn)} is a sequence in X2 x (0, 00) which converges to a point
(z,y,t) € X% x (0,00); i.e.,

lim M(zp,z,t) = lim M(yn,y,t) =1 and lim M(x,y,t,) = M(x,y,t)

n—o0 n—o0 n—o0
Lemma 2 ([8]) M is a continuous function on X2 x (0, 00).

Let A and S be self-mappings of a fuzzy metric space (X, M, ).
Definition 5 ([9]) A and S are said to be weakly compatible if they commute

at their coincidence points; i.e, Axr = Sx for some x € X implies that ASx =

SAzx.
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Definition 6 ([1]) The pair (A, S) satisfies the property (E.A) if there exists
a sequence {xy,} in X such that

lim M(Azy,u,t) = lim M(Szy,,u,t) =1

n—oo n—oo

for some u € X and all t > 0.

t
Example 3 Let X =R and M(x,y,t) = ﬁ for every x,y € X and
r—y
t > 0. Define A and S by Ax =2x+ 1, Sz =z +2 and the sequence {x,} by
1
Tpn=14+—, n=12 ... We have
n
lim M(Az,,3,t) = lim M(Sz,,3,t) =1

n—oo n—oo

for every t > 0. Then, the pair (A, S) satisfies the property (E.A). However,
A and S are not weakly compatible.

The following example shows that there are some pairs of mappings which
do not satisfy the property (E.A).

t
Example 4 Let X =R and M(x,y,t) = ﬁ for every x,y € X and
r—y

t > 0. Define A and B by Ax =z + 1 and Sz = x + 2. Assume that there
exists a sequence {x,} in X such that

lim M(Az,,u,t) = lim M(Szy,,u,t) =1

n—oo n—oo

for some uw € X and allt > 0. Therefore

lim M(z, + 1,u,t) = im M(z, + 2,u,t) = 1.

n—oo n—oo
We conclude that x,, — u—1 and x,, — uw— 2 which is a contradiction. Hence,
the pair (A, S) do not satisfy property (E.A).

It is our purpose in this paper to prove a common fixed point theorem for
weakly compatible mappings satisfying a contractive condition in fuzzy metric
spaces using the property (E.A).
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2 Main Results

Let ® be the set of all increasing and continuous functions ¢ : (0,1] — (0, 1],
such that ¢(t) >t for every ¢t € (0,1).

Example 5 Let ¢ : (0,1] — (0,1] defined by ¢(t) = t*/2.

Theorem 1 Let (X, M, ) be a fuzzy metric space and S and T be self-mappings
of X satisfying the following conditions:
(i) T(X) C S(X) and T(X) or S(X) is a closed subset of X,
(i)
( M (Sz, Sy,t),
) M(Sz,Tx,ty),

Supt1+t2=%t min { M(Sy, Ty, tg) }
M(Sx,Ty,t3),
M(Sy, Tz, t4)

M(Tz,Ty,t) > ¢(min

SUPy, 14,2, AX

Y

for all z,y € X, t > 0 and for some 1 < k < 2. Suppose that the pair (T, S)
satisfies the property (E.A) and (T,S) is weakly compatible. Then S and T
have a unique common fized point in X.

Proof. Since the pair (7, 5) satisfies the property (E.A), there exists a se-
quence {x,} in X such that

lim M (Txy, z,t) = lim M(Szy,z,t) =1

n—o0 n—oo

for some z € X and every ¢ > 0. Suppose that S(X) is a closed subset of X.
Then, there exists v € X such that Sv = z and so

lim Tz, = lim Sz, = Sv = z. ()

Assume that T'(X) is a closed subset of X. Therefore, there exists v € X
such that Sv = z. Hence (x) still holds. Now, we show that Tv = Sv. Suppose
that Tv # Sv. It is not difficult to prove that there exists g > 0 such that

M(Tv, Sv, %to) > M(Tv, Sv, tp). (%)
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If not, we have M (T, Sv,t) = M(Tv, Sv, %t) for all ¢ > 0. Repeatedly using
this equality, we obtain

2 2
M(Tv, Sv,t) = M(Tv, Sv, Et) =---=M(Tv,Sv, (E)”t) — 1 (n— 00).
This shows that M (Twv, Sv,t) = 1 for all ¢ > 0 which contradicts Tv # Sv and
so (%) is proved.

Using (i) we get

( M (Szy, Sv,to),
| M(Szn, Tn, 1),
SUDy 4pp=2, TN M(Sv,Tv,t9) ’
M(Sll/‘naTv’tS)’ } )

M (T, Tv, tg) > ¢(min
Supt3+t4=%t0 max { M(va T:I"n’ t4)

M(Sxzy,, Sv, ty),
min{ M(Sxy, Txyn,€), M(Sv, T, %to —€) } ,

> ¢(min
max{ M (S, Tv, 2ty — €), M(Sv, T2y, €) }

Ve € (0, £to). As n — oo, it follows that

(M (Sv, Sv,tp),

M(Sv, Sv,e),
M(Sv, T, 2ty — €) } ’
M(S’U,T’U,%to—e), } )

M(Sv,Tv,ty) > ¢(min
max{ M(Sv, Sv,€)

= ¢(M(Sv,Tv, %to —€))

2
> M(Sv,Tv, Eto —€)

as € — 0, we have

2
M(Sv,Tv,ty) > M(Sv,Tv, Eto)
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which is a contradiction. Therefore, z = Sv = Tw. Since S and T are weakly
compatible, we have Tz = Sz.

Now, we show that z is a common fixed point of S and T'. If Tz # 2 using
(74) we obtain

( M (2,Tz,t), )

' M(z,Tz,t1),
TP = 2t T (82, Ta 1) [

M(z,Tz,t3), } )

M(2,Tzt) > ¢(min
SUPy541,=2¢ INAX { M(T'z, z,t4)

M(z,Tz,t),
M(z,Tz, 2t — ¢

min ( b ) k; )7 ,

_ M(Sz,Tz,e)
> (min 2 )

M(z,Tz, 7t —¢),

max
M(Tz, z,€)

for all € € (0, 2t). As e — 0, we have

M(z,Tot) > gb(min{M(z,Tz,t),M(z,Tz,%t)})
= ¢(M(z,Tz,t)) > M(z,Tz,t)

which is a contradiction. Hence Tz = Sz = z. Thus z is a common fixed point
of S and T. The uniqueness of z follows from the inequality (i7).

Example 6 Let (X, M,x) be a fuzzy metric space, where X = [0,1] with a

t-norm defined a x b = a.b for all a,b € [0,1] and 1 is an increasing and

a continuous function of Ry into (0,1) such lim; ¢ (t) = 1. For each
€ (0,00), define

M{(w,y,t) = ()"
for all x,y € X, see example 2. Define self-maps T and S on X as follows:

2
Tx = x—SF , Sx:tan(%)
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It is easy to see that
) 2
) T(X) = [5,1 € [0,1] = 5(X),

(ii) For a sequence x, =1 — —, we have
n

1—1/n+2
lim M(Tzn, 1,8)= o) 5 !
n—oo
7(1—1/n)
lim M(San,1,t)= ()71 =
n—oo

for every t > 0. Hence the pair (T,S) satisfies the property (E.A). It is easy
to see that the pair (T, S) is weakly compatible. Let ¢ : (0,1] — (0, 1] defined
by p(t) = t1/2. As
T TY T
il 29y > Dp —
tan(™) — tan("2)| 2 Tle —y|

we get

O
Y(t) 51 = (M (Sz, Sy, 1)).

M(Tx,Ty,t)

v

Thus for ¢(t) = t'/2 we have

M(S:'B? Sy’ t)’ )

_ M(Sxz, Tz, t1),
SUDPy, 14,=2, MIN M(Sy,Ty,t2) |’

M(Sz, Ty, ts), } )

M(Tz,Ty,t) > ¢(min
SUPyg4,=2¢ INAX { M(Sy,Tx,ty)

for all z,y € X, t > 0 and for some 1 < k < 2. All conditions of Theorem 1
hold and z =1 is a unique common fized point of S and T.

Corollary 1 Let T and S be self-mappings of a fuzzy metric space (X, M, *)
satisfying the following conditions:

(1) T™(X) CS™(X), T™(X) or S™(X) is a closed subset of X and T™S =
ST, TS™ =85"T,
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(i)

M(T"z, T"y,t) > ¢(min

M(S™x, S™y,t), )
Sup;. 44 —ztmin{ M(S™z, Tz, b, } )
TR M(S™y, T"y, t2)
M(S™x, Ty, t3),

Supt3+t4:%t max M(Smy,Tnxy t4)

\

for all x,y € X, for some n,m = 2,3,---, t > 0 and for some 1 < k < 2.
Suppose that the pair (T™,S™) satisfies the property (E.A) and (T",S™) is
weakly compatible. Then S and T have a unique common fized point in X.
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