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Abstract

In this paper, we present three-step quadrature based iterative method
for solving non-linear equations. The convergence analysis of the method
is discussed. It is established that the new method has convergence or-
der eight. Numerical tests show that the new method is comparable with
the well known existing methods and in many cases gives better results.
Our results can be considered as an improvement and refinement of the
previously known results in the literature.
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1 Introduction
Let us consider a single variable non-linear equation
(1) fz) = 0.

Finding zeros of a single variable nonlinear equation (1) efficiently, is an inter-
esting and very old problem in numerical analysis and has many applications
in applied sciences.
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In recent years, researchers have developed many iterative methods for
solving equation (1). These methods can be classified as one-step, two-step
and three-step methods, see[l —14]. These methods have been proposed using
Taylor series, decomposition techniques, error analysis and quadrature rules,
etc. Abbasbandy[2], Chun[4] and Grau[8] have proposed many two-step and
three-step methods.

In this paper, we present three-step quadrature based iterative method
for solving non-linear equations. We prove that the new method has order of
convergence eight. The method and its algorithm is described in section 2.
The convergence analysis of the method is discussed in section 3. Finally, in
section 4, the method is tested on numerical examples given in the literature.
It was noted that the new method is comparable with the well known existing
methods and in many cases gives better results. Our results can be considered
as an improvement and refinement of the previously known results in the
literature.

2 The Iterative Method

Weerakoon and Fernando [13] ,Gyurhan Nedzhibov [12] and M. Frontini and
E. Sormani [6 — 7] have proposed various methods by the approximation of
the indefinite integral

(2) F(2) = flan) + / £ (b,

using Newton Cotes formulae of order zero and one. We approximate, here
x4+ 2y .
with

however the integral (2) by rectangular rule at a generic point

the end-points z and z, . We thus have:

/ f(tydt = (@~ z)f (””;) ,

this gives

1T+ 2y

(3) *f(zn) = (m - Zn)f (

).
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From (3), we have:

f(zn)
(4) T—2n =~ ot
f (=)
Therefore, we have:
(5) $n+1 = Zn — T )
fr (=)
¥+ z

For a generic point w, = " consider the Ostrowski’s method and

the Newton’s method:

o _ (Tn = yn) [ (yn)

©) T T F ) — 27 ()
o f)
() T T

This formulation allows to suggest many one-step, two-step and three-step
methods. We however define the following three-step iterative method:

Algorithm 2.1 For a given initial guess zg, find the approximate solution
by the iterative scheme:

— f(zn)
(®) T )
(9) Wn = Yn=735 f(xn)—Zf( D F )’
(10) Tntl = 2n — f(zn)

where z, is defined by (7).

Algorithm 2.1 can further be modified by using an approximation for f’ (Yn)
with the help of Taylor’s expansion.

Let y,, be defined by (8). If we use Taylor expansion of f (yn):

f/ (Yn) ~ f/ (zn) + f// (Zn)(Yn — Tn),

(where the higher derivatives are neglected) in combination with Taylor ap-
proximation of f(yy):

Fln) = F@n) + 7)o — w0) + 5.7 () — w0)?
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. . . /
we can remove the second derivative and approximate f (y,) as:

f(yn) — f(xn)

Yn — Tn

(11) P 2| |- 7.

then Algorithm 2.1 can be written in the form of the following algorithm:
Algorithm 2.2 For a given initial guess x,,find the approximate solution
by the iterative scheme:

[ (@)’
1 (zn—yn)f(yn) f(yn)
(13)  wa = ya—3 f(:cn)—2f(yn)+2[f(y;2:£imn)}_f/(xn) ;
(14) zo = o ffﬁf;j),

where z, is defined by (7).

We will compare this method with the Ostrowski’s method, Grau’s method
and seventh order method defined in [1] by Jisheng Kou et al. The algorithms
of these methods are given below:

Algorithm 2.3 For a given initial guess xg, find the approximate solution
by the iterative scheme:

)
(15) Un = T oS
(16) P yn_(ﬂfn—yn)f(yn)

f(@n) = 2f(yn)

Algorithm 2.4 For a given initial guess xq, find the approximate solution
by the iterative scheme:

a7) R
(18) po=

(20) Tny1 = 2p — pf(2n)
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Algorithm 2.5 For a given initial guess x(, find the approximate solution
by the iterative scheme:

I N (]
(22) Zn = (@n —yn) S (yn)

" )~ 21(n)

(4 ) ) * ] i

(23) Tptl = 2Zp—

3 Convergence Analysis

Let us now discuss the convergence analysis of the algorithm 2.2 discussed
above.

Theorem 1 Let o € I be a simple zero of sufficiently differentiable function
f:I CR — R for an open interval I. If xg is sufficiently close to «, then the
algorithm 2.2 has eighth order convergence.

Proof.Let a be a simple zero of f and z,, = a + e,. By Taylor’s expansion,

we have:

(24) f(xn) = fl(a)(en + 026721 + 0362 + 046;11 + 0562 + 0662 +
076771 + csei) +0 (e%) ,

(25) f/(l'n) = f/ (@)(1 4 2cqey, + 3636721 + 404673I + 5656% + 66662
+7c7e8 + 8cgel) + O(e).

where

(26) Cr = <]:') m,k:2737~--aﬂd en = Tp — Q.
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Using (24) and (25), we have

(27) = e, —coer+2 (c3—c3) €2+ (Teacs—3ca—4c) en+ (65 —4es

—1—8042l +10cocy — 20030%)62 +(-beg+13coc5— 330263 — 1603
+52¢3¢3 +17cqc3—28¢4¢3)eS + (=325 + 7 —8czes +24c3cs
—8cacg— 560%04 — 900%0% +52c9c4c3 740421 +90§ +1 126303)62
H(33c3cq—B4csco+16¢3co —9cycs +96cics —84czeucs
+32c3coc5—2c7co — 326303 — 8050% —9csce+ 16046%
+Hcgez)ed +0(en).

Using (27) in (12), we thus have:

(28) yn = at+coel + (-2c5+2c3) €3 — (Teacs —4cs —3es) e+
(45— 10cac4+20c3¢5 —8ca —6¢3)ed 4 (28c4c3 +33cac3 +5cg
—52¢3¢5 —17c4c3—13c905+ 166%)62 +(—c7—52¢c4c3+4cC2
~9¢3+56¢3c4+8cace—24ches +90c3cE+32¢5+8cscs —112¢5¢3)el
4—(320363 —|—54c§02 — 330:2;,04 —1—8403040% +9c3c6—32c3¢005
H2¢7co —4cgci+8cscs —16¢4c5 — 163 ca+9cqcs —96cacs)ed

+0 (e%) .
By Taylor’s series, we have:

1

o7 (n = ) (@) + ... .

Fyn) = (yn — @) f'(@) +
Using (28) in the above relation and on simplifying, we have:

(29)f (yn) = f' (@) (caer +2 (c3—c3) €3 + (~Teacs+3es+5c3) ey +(24cses
—12¢34-4cs—10cocy —6¢3)ed +(3Tcach — T3ccs +28¢h +34cyc
+5c6—1Tcqc3—13¢acs)eS +(40cacacs +56c3cs — 34ches +24c5cy
—16c3c5—cr+4ci — 963 +8cocq +8C3C5)€ZL +(—23c3c4¢2 —16¢3¢005
—33C§C4 +42C§CQ — 7cZCQ +9cqc5+ 78036% +2c7co— 2166303

—3dcsc+9c3c6+105¢4¢5+6c6c5+80ch)el ) +0(el).
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Using (24), (25), (28) and (29) in (11), we have:

(30) f'(yn)

= f'(a)(1+(2¢2 —03)ei+(—4c§ —2C4+60263)6§L+(—3C5

—16¢3ca+-4c3+8cacy+8ch)en + (2243 +10cocs

+40¢3¢3 —16¢5410c4¢3—18¢a¢3

4106)62 +(-ber+ 60421 —48cocqc3+ 580%’04 — 2803 Cs
+62¢3c3+32c5412¢9c6 —4cs —96¢c3+12¢3¢5) €S + (64ch — 6y
+108¢4¢5— 320%02 +14cges+14eqcs +244c§cg —46¢5¢3

Hl4ezes —104czc4c3—256¢3¢5 —14c3cq) el + (870c3cs — 14cecs
—H28c¢y C§C4 +2cgco+48cocscqs+ 80%

+768c3¢5+16c6¢4 — 1504c5c3 — 12865 +1050c3¢5 ¢4 — 288cqch —
12604210% — 5()0% + 2c3c7 + 44050% + 88cgcocy — 3480%0503 —

2crcs+16¢5c3+86¢5¢5)ed ) +0(el).

Using (28), (29) and (30) in (7), we have:

(31)z, =

a+ (—cacs + é3)ep + (—2¢3 + 8czch — 2cacq — 4cy) €l + (10c3
+18¢a¢3 — Teges + 12¢4¢3 — 30c3¢3 — 3eacs)eb + (—deace
+8OC§103 — 400304 + 160365 4 52cocqc3 — 10c3c5 — 806%03
+12¢3 — 2065 — 6¢3)el + (252¢2c3 + 37chey + 68cscacs
+5OC§C4 — 17cqc5 — 1780303 — 20903040% + 101040‘21 — 51050%

+20¢6¢3 — Seren — 13c3c6 — 91cien 4 36¢5)ed + O(ed).

By Taylor’s series, we have:

1

o1 (en = ) f"(a) + ... .

f(zn) = (zn — @) f'() +

Using (31) in the above relation and on simplifying, we have:

(32) f(zn)

= f'(a)(co(—c3+c3)et +(8c3c —2¢ocs —4cs —2¢3) el +(=30c3¢d
H18coc3 +10c¢5 —3cacs +12¢4¢5 — Teges) el + (4eacs +80cacs
—40c3cs+16c3c5+52cacqc3—10c3¢5 —80c5c3+12¢3 — 205
—6c3)el +(253cics+37chea+68c3cacs +50cacy —1Tcqcs
—1800303 — 20903046% + 101040‘2l — 510503 +200605 —5Hcrey

—13c3¢6—91cica+37¢h)ed ) +0(e2).
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Using (24), (27), (28) and (29) in (13), we have:

(33) wy, = a+(—cacz+c3)ed —2c34+8c3ck —2cacy —4c3)ed 4 (105 +18¢ac3
—Teqe3+12¢4¢5—30c365 — 30265)6 + (4eace+80c3c3—40c3 ¢y
+166205 +52cocqc3—10c3¢5 — 80c2 c3 + 120% 2002 — 664)€n

3
—|—(462 —|—500304 — 137636462 —|—44c3c2 — 50702 —13c3c6+53c3c005

155 4
5 c3co—21cs5cs+3Tcach—58c3ch+8ceca+29cico—1Tcqcs)ed

+0(eD).

By Taylor’s series, we have:

(34) f'(wp) = f'(a)(14(2c3¢3+2¢3) et +(—Aeac —8c5+16¢3¢3 —deycd)ed
H—4eocqez+24c5 s +20c5+36c3¢2 —60cscs —6cacs)el
—{—(320502 160¢2 cQ 800402—1—246302—1—104030462 4002
20c3coc5 —8cca —12¢ ey +160c3¢5 el +(2820302 34cacsey
H106¢3csc3 —3crci+Theychy —152¢3¢3 +100cyciea +58cics
—113c5c3—274cqc3¢3+8c5+16¢6c5 —42¢hcs —26c6cac3)ed)
+0(e).

Using (31), (32) and (34) in (14), we have:

(35) Tl =+ (ch+ 33 — 2e365)ed + O(e),
or
(36) eni1 = (ch 4+ c3cs — 2e3¢3)ed + O(€2).

Thus, we observe that the algorithm 2.2 has eighth order convergence.

4 Numerical examples

We consider here some numerical examples to demonstrate the performance
of the new developed three-step iterative method, namely algorithm 2.2. We
compare the methods defined in J.Kou et al. ( algorithm 2.3 (G4), algorithm
2.4 (Gg), and algorithm 2.5 (G7) and the new developed three-step method
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algorithm 2.2 (M N) in this paper. All the computations are performed using
Maple 10.0. We take €= 10~' as tolerance.

The following criteria is used for estimating the zero:
(i) §=|Tpt1 —xn| < €
(i) |f (@)l <e

The following examples of J.Kou et al. [1] are used for numerical testing:

Example Exact Zero

f1 =23 + 422 — 15, o = 1.6319808055660636,

fo =ze” —sin®(x) + 3cos(z) + 5, a = —1.207647827130919,
fz =sin(z) - Lz, o = 1.8954942670339809,
f1= 10ze*" — 1, a = 1.67963061042845,

f5 = cos(z) — z, a = 0.73908513321516067,
fo = sin®(z) — 2% + 1, o = 1.4044916482153411,

fr = e *4cos(z), a = 1.74613953040801241765.

For convergence criteria, it was required that §, the distance between two
consecutive iterates was less than 10715, n represents the number of iterations
and f(x,), the absolute value of the function. All the values are computed
with 350 significant digits. The numerical comparison is given in Table 4.1.

J1,00 =2
Gy 3 1.03e-228
Gs 3 4.46e-179
Gy 3 1.06e-274
MN 3 1.00e-348
fa,mo = —1
Gy 3 8.82e-223
Gg 3 2.54e-155
Gy 3 1.20e-264
MN 3 2.79e-259
f3,20 =2
Gy 3 5.12e-313
Gs 3 8.44e-252
Gy 3 3.00e-320
MN 3 3.00e-350
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n f(@n)

fa, 20 =1.8

Gy 3 1.16e-236

Gg 3 9.37e-187

Gr 3 1.34e-281

MN 3 0
fs,w0 =1

Gy 3 7.05e-296

Ge 3 4.12e-237

Gy 3 0

MN 3 0
fe,x0=1.6

Gy 3 3.26e-226

Gg 3 7.54e-178

Gr 3 6.26e-271

MN 3 1.00e-349
fr,w0 =2

Gy 3 1.05e-279

Gg 3 1.58e-223

Gy 3 3.00e-320

MN 3 3.00e-350
Table 4.1.

5 CONCLUSION

From Table 4.1, we observe that our three-step iterative method is comparable
with the methods defined in the paper of Jisheng Kou et al. [1] and in many
cases gives better results in terms of the function evaluation f(z,). Moreover
the computational efficiency of the algorithm 2.2 i.e. 85 ~ 1.515717 is better
than the efficiency of most of the other methods defined in the literature.
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