
General Mathematics Vol. 18, No. 4 (2010), 43–51

A generalized family of quadrature based iterative
methods 1

Fiza Zafar, Nazir Ahmad Mir

Abstract

In this paper, we present a family of iterative methods for solving
non-linear equations as an application of integral inequalities. Thus,
we give a new application of such inequalities other than their natural
applications in Numerical integration and Special means. The family
of two-step iterative methods presented in this paper recaptures many
previous quadrature based iterative methods.
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1 Introduction

Let us consider the equation

(1) f (x) = 0,

where f is a real valued univariate non-linear function.
Locating zeros of such functions has been given much attention from sev-

eral decades due to its importance in applied sciences. Newton’s method is
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the most widely used quadratically convergent iterative method in solving
such problems; yet in the recent past many other efficient iterative methods
for solving non-linear equations have appeared in the literature by the use
of Taylor’s series, interpolating polynomials, decomposition techniques and
quadrature formulae.

The connection of quadrature formulae and iterative methods has already
been established by Weerakoon and Fernando in [17] by using the indefinite
integral representation of Newton’s method [5] to obtain quadrature based it-
erative methods. The trend continued with the publication of the papers by
Nedzhibov [10], Hasanov et al. [9] and Frontini and Sormani [8]. However,
this domain is addressed only for classical quadrature rules e.g., trapezoid,
mid-point, Simpson’s, etc. Ujević in [15, 16], however, adopted a quite differ-
ent approach by using specially derived quadrature rule, infact the equivalence
of two quadrature rules to re-establish this connection and to obtain quadra-
ture based iterative predictor-corrector type methods for solving non-linear
equations.

The applications of mathematical inequalities, particularly inequalities of
Ostrowski, Grüss and Čebyšev type have already been explored by S. S.
Dragomir, N.S. Barnett, P. Cerone, Th. M. Rassias and S. Wang, etc., in Nu-
merical integration, Special means and Probability theory, see e.g., [2, 4, 6, 7].
We, however, by using the approach of Weerakoon and Fernando [17] give some
new applications of such inequalities to obtain iterative methods for solving
non-linear equations. We, in this paper, thus establish the fact that the spe-
cially derived quadrature rules developed in the sense of inequalities may be
applied to develop many other iterative methods.

Moreover, it is shown that the family of two-step iterative methods thus
established has third-order convergence and it recaptures many previously
presented quadrature based iterative methods.

2 A generalized family of two-step iterative meth-

ods

Consider the following family of quadrature rules derived in the sense of in-
equalities [1]:
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Theorem 1 Let f : I → R, where I ⊂ R is an interval, be mapping differ-
entiable in the interior Int I of I, and let a, b ∈ Int I , a < b. If there
exists some constants γ, Γ ∈ R, such that γ ≤ f ′ (t) ≤ Γ, ∀ t ∈ [a, b] and
f
′ ∈ L1 (a, b) , then we have:

(2)

∣∣∣∣∣∣
(1− h)

[
f(x)−

(
x− a + b

2

)
f ′(x)

]
+ h

f (a) + f (b)
2

− 1
b− a

b∫

a

f(t)dt

∣∣∣∣∣∣

≤ 1
2

(
1− h2

)
(b− a)(S − γ)

and

(3)

∣∣∣∣∣∣
(1− h)

[
f(x)−

(
x− a + b

2

)
f ′(x)

]
+ h

f (a) + f (b)
2

− 1
b− a

b∫

a

f(t)dt

∣∣∣∣∣∣

≤ 1
2

(
1− h2

)
(b− a)(Γ− S)

where S = f(b)−f(a)
b−a , x ∈ [

a + h b−a
2 , b− h b−a

2

]
and h ∈ [0, 1] .

Moreover, in [18], we have derived the following inequality:

Theorem 2 Let f : [a, b] → R be an absolutely continuous function whose
first derivative f ′ ∈ L2 [a, b] and γ ≤ f ′ (t) ≤ Γ almost everywhere t on (a, b).
Then, we have the inequality:

∣∣∣∣∣∣
(1−h)

[
f (x)− f (b)−f (a)

b−a

(
x− a+b

2

)]
+h

f (a)+f (b)
2

− 1
b−a

b∫

a

f (t) dt

∣∣∣∣∣∣
(4)

≤
[

(b− a)2

12
(
3h2 − 3h + 1

)
+ h (1− h)

(
x− a + b

2

)2
] 1

2

×
[

1
b− a

∥∥f ′
∥∥2

2
−

(
f (b)− f (a)

b− a

)2
] 1

2

≤ 1
2

(Γ− γ)

[
(b− a)2

12
(
3h2 − 3h + 1

)
+ h (1− h)

(
x− a + b

2

)2
] 1

2

for all x ∈ [
a + h b−a

2 , b− h b−a
2

]
and h ∈ [0, 1] .
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Remark 1 It may be noted that for x = a+b
2 and for h ∈ [0, 1] the left hand

sides of (1), (3) and (4) give the following family of quadrature rule:

(5)

b∫

a

f (t) dt = (b− a)
[
(1− h) f

(
a + b

2

)
+ h

f (a) + f (b)
2

]
+ R (f) ,

which is a combination of mid-point and trapezoid rule.

We proceed with the indefinite integral representation of Newton’s method [5]:

(6) f (x) = f (xn) +

x∫

xn

f
′
(t) dt.

Now approximating the integral in (6) with the quadrature rule (5), we obtain:

(7)

x∫

xn

f
′
(t) dt = (x− xn)

[
(1− h) f

′
(

xn + x

2

)
+ h

f
′
(xn) + f

′
(x)

2

]
.

Using the approximation (7) in (6) implies

−2f (xn) = (x− xn)
[
2 (1− h) f

′
(

xn + x

2

)
+ h

(
f
′
(xn) + f

′
(x)

)]

which finally results into the following implicit method:

x = xn − 2f (xn)
2 (1− h) f ′

(
xn+x

2

)
+ h (f ′ (xn) + f ′ (x))

.

This implies

(8) xn+1 = xn − 2f (xn)
2 (1− h) f ′

(xn+yn

2

)
+ h (f ′ (xn) + f ′ (yn))

,

where yn is some explicit method.
If we choose yn as Newton’s method in (8), then we have the following

two-step method:

xn+1 = xn − 2f (xn)
2 (1− h) f ′

(xn+yn

2

)
+ h (f ′ (xn) + f ′ (yn))

,

yn = xn − f (xn)
f ′ (xn)

,(9)
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or

yn = xn − f (xn)
f ′ (xn)

,(10)

zn = xn − f (xn)
2f ′ (xn)

,(11)

xn+1 = xn − 2f (xn)
2 (1− h) f ′ (zn) + h (f ′ (xn) + f ′ (yn))

.(12)

We, now, compute the order of convergence of algorithm (9) using Maple
7.0 and is given in the form of the following theorem:

Theorem 3 Let w ∈ I be a simple zero of sufficiently differentiable function
f : I v R→ R for an open interval I. If x0 is sufficiently close to w, then the
algorithm (9) is cubically convergent for all h ∈ [0, 1].

Proof. Let w be a simple zero of f and xn = w + en with an error en. By
Taylor’s expansion, we have:

(13) f(xn) = f
′
(w)

(
en + c2e

2
n + c3e

3
n + c4e

4
n + c5e

5
n + c6e

6
n

)
+ O(e7

n)

(14) f
′
(xn) = f

′
(w)

(
1 + 2c2en + 3c3e

2
n + 4c4e

3
n + 5c5e

4
n + 6c6e

5
n

)
+ O(e6

n),

where

(15) ck =
(

1
k!

)
f (k)(w)
f ′(w)

, k = 2, 3, ...and en = xn − w.

Using (13) and (14), we have

(16)
f(xn)
f ′(xn)

= en − c2e
2
n + 2

(
c2
2 − c3

)
e3
n +

(
7c2c3 − 3c4 − 4c3

2

)
e4
n + O(e5

n).

Using (16) in (10), we obtain

(17) yn = w + c2e
2
n +

(−2c2
2 + 2c3

)
e3
n −

(
7c2c3 − 4c3

2 − 3c4

)
e4
n + O

(
e5
n

)
.

Expanding f(yn) and f
′
(yn) by Taylor’s series about w, we have:

f (yn) = f (w) + (yn − w) f
′
(w) +

(yn − w)2

2!
f
′′
(w) +

(yn − w)3

3!
f
′′′

(w) + ...
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(18) f(yn) = f
′
(w)

(
c2e

2
n + 2(c3 − c2

2)e
3
n + (−7c2c3 + 3c4 + 5c3

2)e
4
n

)
+O

(
e5
n

)
.

f
′
(yn) = f

′
(w) + (yn − w) f

′′
(w) +

(yn − w)2

2!
f
′′′

(w) + ...

f
′
(yn) = f

′
(w) (1 + 2c2

2e
2
n +

(−4c3
2 + 4c2c3

)
e3
n(19)

+(−11c3c
2
2
+ 8c4

2 + 6c2c4)e4
n) + O(e5

n).

Also by using (16) in (11), we have

zn = w +
1
2
en +

1
2
c2e

2
n +

(−c2
2 + c3

)
e3
n(20)

+
(

3
2
c4 − 7

2
c2c3 + 2c3

2

)
e4
n + O

(
e5
n

)
.

In the similar manner, expanding f(zn) and f
′
(zn) by Taylor’s series about w,

we have:

f(zn) = f
′
(w)

(
1
2
en +

3
4
c2e

2
n +

(
−1

2
c2
2 +

9
8
c3

)
e3
n(21)

+
(

5
4
c3
2 −

17
8

c2c3 +
25
16

c4

)
e4
n

+
(
−3c4

2 +
57
8

c3c
2
2 −

9
4
c2
3 −

13
4

c2c4 +
65
32

c5

)
e5
n

)
+ O(e6

n).

f
′
(zn) = f

′
(w)(1+c2en+

(
c2
2+

3
4
c3

)
e2
n+(−2c3

2+
7
2
c2c3+

1
2
c4)e3

n(22)

+
(

9
2
c2c4+c4

2−
37
4

c2
2c3+3c2

3+
5
16

c5

)
e4
n)+O

(
e5
n

)
.

Using (14), (19) and (22) in

2f(xn)
2 (1− h) f ′ (zn) + h (f ′ (xn) + f ′ (yn))

= en + (
1
4

(1− 3h) c3 − c2
2)e

3
n(23)

+(3c3
2 +

3
4

(3h− 5) c2c3 +
1
2

(1− 3h) c4)e4
n + O

(
e5
n

)
.

Therefore, by using (23) in (12), we have:

xn+1 = w + (c2
2 −

1
4

(1− 3h) c3)e3
n + O

(
e4
n

)
.
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Hence, we obtain:

en+1 = (c2
2 −

1
4

(1− 3h) c3)e3
n + O

(
e4
n

)
.

Thus, we observe that the method is cubically convergent for all h ∈ [0, 1] .

Remark 2 It is clear from Theorem 3 that algorithm (9) is cubically conver-
gent and

1. For h = 1, it recaptures the trapezoid Newton’s method given by Weer-
akoon and Fernando in [17].

2. For h = 0, it recaptures the midpoint Newton’s method given by Özban
in [13] and by Frontini et. al. in [8].

3. For h = 1
3 , it recaptures the Simpson Newton’s method given by Hasanov

et. al. in [9].

4. For h = 1
2 , it recaptures the averaged trapezoid mid-point Newton’s

method given by Nedzhibov in [10] and latter by Noor in [11].

Remark 3 The computational efficiency of the algorithm (9) is less than the
computational efficiency of the Newton’s method except for the cases for which
h = 0 and h = 1. However, the implicit method (8) can be used in combi-
nation with the other known methods to increase the convergence order and
computational efficiency.

References

[1] A. Rafiq, F. Zafar, New bounds for the first inequality of Ostrowski-Grüss
type and applications in numerical integration, Nonlinear Funct. Anal.
Appl., 12 (1), 2007, 75-85.

[2] N. S. Barnett, P. Cerone, S. S. Dragomir, Inequalities for random variables
over a finite interval, Nova Science Publishers, in press, Preprint.

[3] R. L. Burden and J. D. Faires, Numerical Analysis, PWS publishing com-
pany, Boston USA, 2001.



50 F. Zafar, N. A. Mir

[4] S. S. Dragomir, Th. M. Rassias, Ostrowski type inequalities and ap-
plications in numerical integration, Kluwer Academic Publishers, Dor-
drecht/Boston/London, 2002.

[5] J. E. Dennis, R. B. Schnable, Numerical methods of unconstrained opti-
mization and non-linear equations, Prentice Hall, 1983.

[6] S. S. Dragomir, S. Wang, Applications of Ostrowski inequality to the es-
timation of error bounds for some special means and some numerical
quadrature rules, Appl. Math. Lett. 11, 1998, 105–109.

[7] S. S. Dragomir, S. Wang, An inequality of Ostrowski-Grüss type and its
applications to the estimation of error bounds for some special means
and for some numerical quadrature rules, Comput. Math. Appl. 33, 1997,
16–20.

[8] M. Frontini, E. Sormani, Some variants of Newton’s method with third-
order convergence, Appl. Math. Comput. 140, 2003, 419-426.

[9] V. I. Hasanov, I. G. Ivanov, G. Nedzhibov, A new modification of New-
ton’s method, Applications of Mathematics in Engineering, 27, 2002, 278-
286.

[10] G. Nedzhibov, On a few iterative methods for solving nonlinear equations,
Application of Mathematics in Engineering and Economics, in: Proceed-
ings of the XXVIII Summer School Sozopol 2002, Heron Press, Sofia,
2002.

[11] M. A. Noor, New iterative methods for nonlinear equations, Appl. Math.
Comput., 2006, in press.

[12] A.M. Ostrowski, Solution of equations in Euclidean and Banach space,
Academic Press, New York, 1973.
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