Common fixed point theorems for subcompatible D-maps of integral type 1

H. Bouhadjera, A. Djoudi

Abstract

Some common fixed point theorems for two pairs of subcompatible single and multivalued D-maps in metric spaces are obtained extending some results of single-valued maps of Jungck and Rhoades [9].

2010 Mathematics Subject Classification: 47H10, 54H25.

Key words and phrases: Weakly compatible maps, Subcompatible maps, Occasionally weakly compatible maps, Integral type, *D*-maps, Common fixed point theorems.

1 Introduction

To generalize commuting maps, Sessa [10] introduced the notion of weakly commuting maps.

Later on, Jungck generalized commuting and weakly commuting maps, first to compatible maps [6] and then to weakly compatible maps [7].

And in 1998, the same author with Rhoades [8] extended the concept of weakly compatible maps to the setting of single and multivalued maps by giving the notion of subcompatible maps.

Recently in 2008, Al-Thagafi and Shahzad [2] introduced the concept of occasionally weakly compatible maps (owc) which is a proper generalization of nontrivial weakly compatible maps which do have a coincidence point.

¹Received 23 February, 2009

Accepted for publication (in revised form) 25 March, 2009

2 Preliminaries

Throughout this paper \mathcal{X} stands for a metric with the metric d and $B(\mathcal{X})$ denotes the family of all nonempty, bounded subsets of \mathcal{X} . Define for all A, B in $B(\mathcal{X})$

$$\delta(A, B) = \sup\{d(a, b) : a \in A, b \in B\}.$$

If $A = \{a\}$, we write $\delta(A, B) = \delta(a, B)$ and $\delta(A, B) = d(a, b)$ if $A = \{a\}$ and $B = \{b\}$. For all A, B, C in $B(\mathcal{X})$, the definition of δ yields the following properties:

$$\begin{array}{lcl} \delta(A,B) & = & \delta(B,A) \geq 0, \\ \delta(A,B) & \leq & \delta(A,C) + \delta(C,B), \\ \delta(A,A) & = & diamA, \\ \delta(A,B) & = & 0 \Leftrightarrow A = B = \{a\}. \end{array}$$

Definition 1 ([4]) A sequence $\{A_n\}$ of nonempty subsets of \mathcal{X} is said to be convergent towards a subset A of \mathcal{X} if,

- (i) each point a of A is a limit of a convergent sequence $\{a_n\}$, where $a_n \in A_n$ for $n \in \mathbb{N}$,
- (ii) for arbitrary $\epsilon > 0$, there is an integer m such that n > m, $A_n \subseteq A_{\epsilon}$. $A_{\epsilon} = \{x \in \mathcal{X} : \exists a \in A, a \text{ depending on } x \text{ and } d(x, a) < \epsilon\}$. A is then said to be the limit of the sequence $\{A_n\}$.

Lemma 1 ([4]) Let $\{A_n\}$, $\{B_n\}$ be sequences in $B(\mathcal{X})$ converging respectively to A and B in $B(\mathcal{X})$, then the sequence of numbers $\{\delta(A_n, B_n)\}$ converges to $\delta(A, B)$.

Lemma 2 ([5]) Let $\{A_n\}$ be a sequence in $B(\mathcal{X})$ and y be a point in \mathcal{X} such that $\delta(A_n, y) \to 0$. Then the sequence $\{A_n\}$ converges to the set $\{y\}$ in $B(\mathcal{X})$.

Definition 2 ([10]) Self-maps f and g of a metric space (\mathcal{X}, d) are said to be weakly commuting if, for all $x \in \mathcal{X}$

$$d(fgx, gfx) \le d(gx, fx).$$

Definition 3 ([6]) Self-maps f and g of a metric space (\mathcal{X}, d) are called compatible if

$$\lim_{n \to \infty} d(fgx_n, gfx_n) = 0$$

whenever $\{x_n\}$ is a sequence in \mathcal{X} such that $\lim_{n\to\infty} fx_n = \lim_{n\to\infty} gx_n = t$ for some $t\in\mathcal{X}$.

Definition 4 ([7]) Two maps $f, g: \mathcal{X} \to \mathcal{X}$ are said to be weakly compatible if they commute at their coincidence points.

Definition 5 ([8]) Maps $f: \mathcal{X} \to \mathcal{X}$ and $F: \mathcal{X} \to B(\mathcal{X})$ are said to be subcompatible if they commute at coincidence points; that is,

$$\{t \in \mathcal{X}/Ft = \{ft\}\}\subseteq \{t \in \mathcal{X}/Fft = fFt\}.$$

Definition 6 ([2]) Two self-maps f and g of a set \mathcal{X} are owc if and only if there is a point $t \in \mathcal{X}$ which is a coincidence point of f and g at which f and g commute.

In their paper [3], Djoudi and Khemis gave the notion of D-maps which extended the notion of property (E.A) given by Aamri and El Moutawakil [1].

Definition 7 ([3]) Maps $f: \mathcal{X} \to \mathcal{X}$ and $F: \mathcal{X} \to B(\mathcal{X})$ are said to be D-maps iff there exists a sequence $\{x_n\}$ in \mathcal{X} such that for some $t \in \mathcal{X}$

$$\lim_{n \to \infty} fx_n = t \text{ and } \lim_{n \to \infty} Fx_n = \{t\}.$$

Our objective here is to prove some common fixed point theorems for two pairs of subcompatible single and multivalued *D*-maps satisfying contractive condition of integral type in metric spaces. These results extend the results of Jungck and Rhoades [9].

For our main results we need the following:

Let Ψ be the set of all continuous maps $\psi: \mathbb{R}^+ \to \mathbb{R}$ such that

 (ψ_1) : for all u, v in \mathbb{R}^+ , if

 $(\psi_a): \psi(u, v, v, u, u + v, 0) \le 0$ or

 $(\psi_b): \psi(u, v, u, v, 0, u + v) \le 0$

we have $u \leq v$

 $(\psi_2): \varphi(u, u, 0, 0, u, u) > 0 \text{ for all } u > 0,$

next, let Φ be the set of all maps $\varphi: \mathbb{R}^+ \to \mathbb{R}^+$ such that φ is Lebesgue-integrable which is summable nonnegative and satisfies $\int_0^{\epsilon} \varphi(t)dt > 0$ for each $\epsilon > 0$,

and let \mathcal{F} be the set of all continuous maps $\mathcal{F}: \mathbb{R}^+ \to \mathbb{R}^+$ such that $\mathcal{F}(t) = 0$ iff t = 0.

3 Main results

Theorem 1 Let (\mathcal{X}, d) be a metric space and let $f, g : \mathcal{X} \to \mathcal{X}; F, G : \mathcal{X} \to B(\mathcal{X})$ be single and multivalued maps, respectively. Suppose that (1) f and g are surjective,

(2)
$$\psi\left(\int_{0}^{\delta(Fx,Gy)} \varphi(t)dt, \int_{0}^{d(fx,gy)} \varphi(t)dt, \int_{0}^{\delta(fx,Fx)} \varphi(t)dt, \int_{0}^{\delta(gy,Gy)} \varphi(t)dt, \int_{0}^{\delta(gy,Fx)} \varphi(t)dt, \int_{0}^{\delta(gy,Fx)} \varphi(t)dt\right) \leq 0$$

for all x, y in \mathcal{X} , where $\psi \in \Psi$ and $\varphi \in \Phi$. If either

- (3) f and F are subcompatible D-maps; g and G are subcompatible, or
- (3') g and G are subcompatible D-maps; f and F are subcompatible.

Then, f, g, F and G have a unique common fixed point $t \in \mathcal{X}$ such that $Ft = Gt = \{ft\} = \{gt\} = \{t\}.$

Proof. Suppose that f and F are D-maps, then, there exists a sequence $\{x_n\}$ in \mathcal{X} such that $\lim_{n\to\infty} fx_n = t$ and $\lim_{n\to\infty} Fx_n = \{t\}$ for some $t \in \mathcal{X}$. By vertue of condition (1) there are two points u and v in \mathcal{X} such that t = fu = gv. We show that $Gv = \{gv\}$. Indeed, by inequality (2) we have

$$\psi\left(\int_{0}^{\delta(Fx_{n},Gv)}\varphi(t)dt,\int_{0}^{d(fx_{n},gv)}\varphi(t)dt,\int_{0}^{\delta(fx_{n},Fx_{n})}\varphi(t)dt\right),$$

$$\int_{0}^{\delta(gv,Gv)}\varphi(t)dt,\int_{0}^{\delta(fx_{n},Gv)}\varphi(t)dt,\int_{0}^{\delta(gv,Fx_{n})}\varphi(t)dt\right)\leq0.$$

Since ψ is continuous, we get at infinity

$$\psi\left(\int_0^{\delta(gv,Gv)}\varphi(t)dt,0,0,\int_0^{\delta(gv,Gv)}\varphi(t)dt,\int_0^{\delta(gv,Gv)}\varphi(t)dt,0\right)\leq 0$$

which from (ψ_a) , gives $\int_0^{\delta(gv,Gv)} \varphi(t)dt \leq 0$, and hence $\delta(gv,Gv) = 0$, which implies that $Gv = \{gv\} = \{t\}$. Since the pair (g,G) is subcompatible, then, Ggv = gGv; i.e., $Gt = \{gt\}$.

We claim that $Gt = \{gt\} = \{t\}$. If not, then condition (2) implies that

$$\psi\left(\int_{0}^{\delta(Fx_{n},Gt)}\varphi(t)dt,\int_{0}^{d(fx_{n},gt)}\varphi(t)dt,\int_{0}^{\delta(fx_{n},Fx_{n})}\varphi(t)dt\right),$$

$$\int_{0}^{\delta(gt,Gt)}\varphi(t)dt,\int_{0}^{\delta(fx_{n},Gt)}\varphi(t)dt,\int_{0}^{\delta(gt,Fx_{n})}\varphi(t)dt\right) \leq 0.$$

At infinity we get

$$\psi\left(\int_0^{d(t,gt)}\varphi(t)dt,\int_0^{d(t,gt)}\varphi(t)dt,0,0,\int_0^{d(t,gt)}\varphi(t)dt,\int_0^{d(gt,t)}\varphi(t)dt\right)\leq 0$$

which contradicts (ψ_2) . Thus, $\int_0^{d(t,gt)} \varphi(t)dt = 0$, which implies that $\{gt\} = \{t\} = Gt$.

Next, we show that $Fu = \{fu\} = \{t\}$. Suppose not. Then inequality (2) gives

$$\psi\left(\int_{0}^{\delta(Fu,Gt)}\varphi(t)dt,\int_{0}^{d(fu,gt)}\varphi(t)dt,\int_{0}^{\delta(fu,Fu)}\varphi(t)dt\right),$$

$$\int_{0}^{\delta(gt,Gt)}\varphi(t)dt,\int_{0}^{\delta(fu,Gt)}\varphi(t)dt,\int_{0}^{\delta(gt,Fu)}\varphi(t)dt\right)\leq 0;$$

that is,

$$\psi\left(\int_0^{\delta(Fu,t)} \varphi(t)dt, 0, \int_0^{\delta(t,Fu)} \varphi(t)dt, 0, 0, \int_0^{\delta(t,Fu)} \varphi(t)dt\right) \le 0$$

which implies by (ψ_b) that $\int_0^{\delta(Fu,t)} \varphi(t)dt \leq 0$ and hence $Fu = \{t\} = \{fu\}$. Since f and F are subcompatible, then, Ffu = fFu; i.e., $Ft = \{ft\}$. Then, the use of (2) gives

$$\begin{split} &\psi\left(\int_0^{\delta(Ft,Gt)}\varphi(t)dt,\int_0^{d(ft,gt)}\varphi(t)dt,\int_0^{\delta(ft,Ft)}\varphi(t)dt\;,\\ &\int_0^{\delta(gt,Gt)}\varphi(t)dt,\int_0^{\delta(ft,Gt)}\varphi(t)dt,\int_0^{\delta(gt,Ft)}\varphi(t)dt\right)\leq 0; \end{split}$$

i.e.,

$$\psi\left(\int_0^{d(ft,t)}\varphi(t)dt,\int_0^{d(ft,t)}\varphi(t)dt,0,0,\int_0^{d(ft,t)}\varphi(t)dt,\int_0^{d(t,ft)}\varphi(t)dt\right)\leq 0$$

contradicts (ψ_2) . Hence, $\{ft\} = \{t\} = Ft$. Therefore t is a common fixed point of maps f, g, F and G.

Now, suppose that there exists another common fixed point t' such that $t' \neq t$. Then, using inequality (2) we obtain

$$\begin{split} &\psi\left(\int_{0}^{\delta(Ft,Gt')}\varphi(t)dt,\int_{0}^{d(ft,gt')}\varphi(t)dt,\int_{0}^{\delta(ft,Ft)}\varphi(t)dt\;,\\ &\int_{0}^{\delta(gt',Gt')}\varphi(t)dt,\int_{0}^{\delta(ft,Gt')}\varphi(t)dt,\int_{0}^{\delta(gt',Ft)}\varphi(t)dt\right)\\ &=\psi\left(\int_{0}^{d(t,t')}\varphi(t)dt,\int_{0}^{d(t,t')}\varphi(t)dt,0,0,\int_{0}^{d(t,t')}\varphi(t)dt,\int_{0}^{d(t,t')}\varphi(t)dt\right)\\ &<0 \end{split}$$

which contradicts (ψ_2) . Thus, t'=t.

The proof is similar by replacing (3) with (3').

If we let in Theorem 1, f = g and F = G, then, we get the next corollary.

Corollary 1 Let (\mathcal{X}, d) be a metric space and let $f : \mathcal{X} \to \mathcal{X}$; $F : \mathcal{X} \to B(\mathcal{X})$ be a single and a multivalued map, respectively. If (1) f is surjective,

(2)
$$\psi\left(\int_{0}^{\delta(Fx,Fy)} \varphi(t)dt, \int_{0}^{d(fx,fy)} \varphi(t)dt, \int_{0}^{\delta(fx,Fx)} \varphi(t)dt, \int_{0}^{\delta(fy,Fy)} \varphi(t)dt, \int_{0}^{\delta(fy,Fy)} \varphi(t)dt, \int_{0}^{\delta(fy,Fy)} \varphi(t)dt, \int_{0}^{\delta(fy,Fy)} \varphi(t)dt, \int_{0}^{\delta(fy,Fy)} \varphi(t)dt\right) \leq 0$$

for all x, y in \mathcal{X} , where $\psi \in \Psi$ and $\varphi \in \Phi$,

(3) f and F are subcompatible D-maps.

Then, f and F have a unique common fixed point $t \in \mathcal{X}$ such that $Ft = \{ft\} = \{t\}$.

Now, if we put in Theorem 1, f = g, then, we obtain the following result.

Corollary 2 Let (\mathcal{X}, d) be a metric space and let $f : \mathcal{X} \to \mathcal{X}$; $F, G : \mathcal{X} \to B(\mathcal{X})$ be maps satisfying the conditions

(1) f is surjective,

(2)
$$\psi\left(\int_{0}^{\delta(Fx,Gy)} \varphi(t)dt, \int_{0}^{d(fx,fy)} \varphi(t)dt, \int_{0}^{\delta(fx,Fx)} \varphi(t)dt, \int_{0}^{\delta(fy,Fx)} \varphi(t)dt, \int_{0}^{\delta(fy,Gy)} \varphi(t)dt, \int_{0}^{\delta(fy,Fx)} \varphi(t)dt, \int_{0}^{\delta(fy,Fx)} \varphi(t)dt\right) \leq 0$$

for all x, y in \mathcal{X} , where $\psi \in \Psi$ and $\varphi \in \Phi$. If either

(3) f and F are subcompatible D-maps; f and G are subcompatible, or

(3') f and G are subcompatible D-maps; f and F are subcompatible.

Then, f, F and G have a unique common fixed point $t \in \mathcal{X}$ such that $Ft = Gt = \{ft\} = \{t\}$.

Using recurrence on n, we obtain the following result.

Theorem 2 Let (\mathcal{X}, d) be a metric space and let $f, g : \mathcal{X} \to \mathcal{X}$; $F_n : \mathcal{X} \to B(\mathcal{X})$, n = 1, 2, ... be maps such that

(1) f and q are surjective,

(2)
$$\psi\left(\int_{0}^{\delta(F_{n}x,F_{n+1}y)} \varphi(t)dt, \int_{0}^{d(fx,gy)} \varphi(t)dt, \int_{0}^{\delta(fx,F_{n}x)} \varphi(t)dt, \int_{0}^{\delta(gy,F_{n+1}y)} \varphi(t)dt, \int_{0}^{\delta(gy,F_{n+1}y)} \varphi(t)dt, \int_{0}^{\delta(gy,F_{n}x)} \varphi(t)dt\right) \leq 0$$

for all x, y in \mathcal{X} , where $\psi \in \Psi$ and $\varphi \in \Phi$. If either

(3) f and F_n are subcompatible D-maps; g and F_{n+1} are subcompatible, or

(3') g and F_{n+1} are subcompatible D-maps; f and F_n are subcompatible.

Then, there exists a unique point $t \in \mathcal{X}$ such that $F_n t = \{ft\} = \{gt\} = \{t\}$.

Now, we prove our second main theorem.

Theorem 3 Let (\mathcal{X}, d) be a metric space and let $f, g: \mathcal{X} \to \mathcal{X}$; $F, G: \mathcal{X} \to B(\mathcal{X})$ be single and multivalued maps, respectively. Suppose that (a) $F(\mathcal{X}) \subseteq g(\mathcal{X})$ and $G(\mathcal{X}) \subseteq f(\mathcal{X})$,

$$(b) \qquad \psi\left(\int_{0}^{F(\delta(Fx,Gy))}\varphi(t)dt,\int_{0}^{F(d(fx,gy))}\varphi(t)dt,\int_{0}^{F(\delta(fx,Fx))}\varphi(t)dt\right.,\\ \left.\int_{0}^{F(\delta(gy,Gy))}\varphi(t)dt,\int_{0}^{F(\delta(fx,Gy))}\varphi(t)dt,\int_{0}^{F(\delta(gy,Fx))}\varphi(t)dt\right)\leq 0$$

for all x, y in \mathcal{X} , where $\psi \in \Psi$, $\varphi \in \Phi$ and $F \in \mathcal{F}$. If either

- (c) f and F are subcompatible D-maps; g and G are subcompatible and $F(\mathcal{X})$ is closed, or
- (c') g and G are subcompatible D-maps; f and F are subcompatible and $G(\mathcal{X})$ is closed.

Then, f, g, F and G have a unique common fixed point $t \in \mathcal{X}$ such that $Ft = Gt = \{ft\} = \{gt\} = \{t\}.$

Proof. Suppose that g and G are D-maps, then, there is a sequence $\{y_n\}$ in \mathcal{X} such that $\lim_{n\to\infty} gy_n = t$ and $\lim_{n\to\infty} Gy_n = \{t\}$ for some $t\in\mathcal{X}$. Since $G(\mathcal{X})$ is closed and $G(\mathcal{X})\subseteq f(\mathcal{X})$, then, there exists a point $u\in\mathcal{X}$ such that fu=t. First, we claim that $Fu=\{fu\}=\{t\}$. If not, then, from (b),

$$\psi\left(\int_{0}^{F(\delta(Fu,Gy_n))} \varphi(t)dt, \int_{0}^{F(d(fu,gy_n))} \varphi(t)dt, \int_{0}^{F(\delta(fu,Fu))} \varphi(t)dt, \int_{0}^{F(\delta(gy_n,Gy_n))} \varphi(t)dt, \int_{0}^{F(\delta(gy_n,Fu))} \varphi(t)dt, \int_{0}^{F(\delta(gy_n,Fu))} \varphi(t)dt\right) \leq 0.$$

Since ψ and \digamma are continuous, at infinity we get

$$\psi\left(\int_0^{F(\delta(Fu,fu))} \varphi(t)dt, 0, \int_0^{F(\delta(fu,Fu))} \varphi(t)dt, 0, 0, \int_0^{F(\delta(fu,Fu))} \varphi(t)dt\right) \le 0$$

which from (ψ_b) gives $\int_0^{F(\delta(Fu,fu))} \varphi(t)dt \leq 0$ and therefore $F(\delta(Fu,fu)) = 0$ which implies that $Fu = \{fu\} = \{t\}$. Since f and F are subcompatible, then, Ffu = fFu; i.e., $Ft = \{ft\}$.

Suppose that $ft \neq t$, then, from inequality (b),

$$\psi\left(\int_{0}^{F(\delta(Ft,Gy_n))} \varphi(t)dt, \int_{0}^{F(d(ft,gy_n))} \varphi(t)dt, \int_{0}^{F(\delta(ft,Ft))} \varphi(t)dt, \int_{0}^{F(\delta(gy_n,Gy_n))} \varphi(t)dt, \int_{0}^{F(\delta(gy_n,Ft))} \varphi(t)dt, \int_{0}^{F(\delta(gy_n,Ft))} \varphi(t)dt\right) \leq 0.$$

At infinity we obtain

$$\psi\left(\int_{0}^{F(d(ft,t))} \varphi(t)dt, \int_{0}^{F(d(ft,t))} \varphi(t)dt, 0, 0, \right.$$
$$\int_{0}^{F(d(ft,t))} \varphi(t)dt, \int_{0}^{F(d(t,ft))} \varphi(t)dt\right) \leq 0$$

which contradicts (ψ_2) . Therefore $\int_0^{F(d(ft,t))} \varphi(t)dt = 0$ which implies that F(d(ft,t)) = 0; i.e., $\{ft\} = \{t\} = Ft$.

Since $F(\mathcal{X}) \subseteq g(\mathcal{X})$, there exists an element $v \in \mathcal{X}$ such that gv = t. We claim that $Gv = \{gv\} = \{t\}$. If not, then, using condition (b) we have

$$\begin{split} &\psi\left(\int_{0}^{F(\delta(Ft,Gv))}\varphi(t)dt,\int_{0}^{F(d(ft,gv))}\varphi(t)dt,\int_{0}^{F(\delta(ft,Ft))}\varphi(t)dt\right.,\\ &\int_{0}^{F(\delta(gv,Gv))}\varphi(t)dt,\int_{0}^{F(\delta(ft,Gv))}\varphi(t)dt,\int_{0}^{F(\delta(gv,Ft))}\varphi(t)dt\right)\\ &=\psi\left(\int_{0}^{F(\delta(t,Gv))}\varphi(t)dt,0,0,\int_{0}^{F(\delta(t,Gv))}\varphi(t)dt,\int_{0}^{F(\delta(t,Gv))}\varphi(t)dt,0\right)\leq0 \end{split}$$

which from (ψ_a) gives $\int_0^{F(\delta(t,Gv))} \varphi(t)dt = 0$ and hence $F(\delta(t,Gv)) = 0$ which implies that $Gv = \{t\} = \{gv\}$. Since the pair (G,g) is subcompatible, then, Ggv = gGv; i.e., $Gt = \{gt\}$.

Suppose that $gt \neq t$. Then, by (b) we have

$$\begin{split} &\psi\left(\int_{0}^{F(\delta(Ft,Gt))}\varphi(t)dt,\int_{0}^{F(d(ft,gt))}\varphi(t)dt,\int_{0}^{F(\delta(ft,Ft))}\varphi(t)dt\right),\\ &\int_{0}^{F(\delta(gt,Gt))}\varphi(t)dt,\int_{0}^{F(\delta(ft,Gt))}\varphi(t)dt,\int_{0}^{F(\delta(gt,Ft))}\varphi(t)dt\\ &=\psi\left(\int_{0}^{F(d(t,gt))}\varphi(t)dt,\int_{0}^{F(d(t,gt))}\varphi(t)dt,0,0,\right.\\ &\int_{0}^{F(d(t,gt))}\varphi(t)dt,\int_{0}^{F(d(gt,t))}\varphi(t)dt\right)\leq0 \end{split}$$

contradicts (ψ_2) . Therefore $\int_0^{F(d(t,gt))} \varphi(t)dt = 0$ which implies that F(d(t,gt)) = 0; i.e., $\{gt\} = \{t\} = Gt$, and t is a common fixed point of f, g, F and G. The uniqueness of the common fixed point follows easily from condition (b).

The proof is thus completed.

The proof is similar by replacing (c') with (c).

Corollary 3 Let (\mathcal{X}, d) be a metric space and let $f : \mathcal{X} \to \mathcal{X}$; $F : \mathcal{X} \to B(\mathcal{X})$ be a single and a multivalued map, respectively. Suppose that $(a) \ F(\mathcal{X}) \subseteq f(\mathcal{X})$,

$$(b) \qquad \psi\left(\int_{0}^{F(\delta(Fx,Fy))} \varphi(t)dt, \int_{0}^{F(d(fx,fy))} \varphi(t)dt, \int_{0}^{F(\delta(fx,Fx))} \varphi(t)dt, \int_{0}^{F(\delta(fy,Fy))} \varphi(t)dt, \int_{0}^{F(\delta(fy,Fy))} \varphi(t)dt, \int_{0}^{F(\delta(fy,Fy))} \varphi(t)dt, \int_{0}^{F(\delta(fy,Fx))} \varphi(t)dt\right) \leq 0$$

for all x, y in \mathcal{X} , where $\psi \in \Psi$, $\varphi \in \Phi$ and $F \in \mathcal{F}$. If f and F are subcompatible D-maps and $F(\mathcal{X})$ is closed, then, f and F have a unique common fixed point $t \in \mathcal{X}$ such that $Ft = \{ft\} = \{t\}$.

Corollary 4 Let (\mathcal{X}, d) be a metric space and let $f : \mathcal{X} \to \mathcal{X}$; $F, G : \mathcal{X} \to B(\mathcal{X})$ be maps. If

(a) $F(\mathcal{X}) \subseteq f(\mathcal{X})$ and $G(\mathcal{X}) \subseteq f(\mathcal{X})$,

(b)
$$\psi\left(\int_{0}^{F(\delta(Fx,Gy))} \varphi(t)dt, \int_{0}^{F(d(fx,fy))} \varphi(t)dt, \int_{0}^{F(\delta(fx,Fx))} \varphi(t)dt, \int_{0}^{F(\delta(fy,Fx))} \varphi(t)dt, \int_{0}^{F(\delta(fy,Gy))} \varphi(t)dt, \int_{0}^{F(\delta(fy,Fx))} \varphi(t)dt, \int_{0}^{F(\delta(fy,Fx))} \varphi(t)dt\right) \leq 0$$

for all x, y in \mathcal{X} , where $\psi \in \Psi$, $\varphi \in \Phi$ and $F \in \mathcal{F}$. If either

- (c) f and F are subcompatible D-maps; f and G are subcompatible and $F(\mathcal{X})$ is closed, or
- (c') f and G are subcompatible D-maps; f and F are subcompatible and $G(\mathcal{X})$ is closed.

Then, there is a unique point $t \in \mathcal{X}$ such that $Ft = Gt = \{ft\} = \{t\}$.

By recurrence on n, we get the next result.

Theorem 4 Let (\mathcal{X}, d) be a metric space and let $f, g : \mathcal{X} \to \mathcal{X}$; $F_n : \mathcal{X} \to B(\mathcal{X})$ be single and multivalued maps, respectively. Suppose that (a) $F_n(\mathcal{X}) \subseteq g(\mathcal{X})$ and $F_{n+1}(\mathcal{X}) \subseteq f(\mathcal{X})$,

$$(b) \qquad \psi\left(\int_{0}^{F(\delta(F_{n}x,F_{n+1}y))} \varphi(t)dt, \int_{0}^{F(d(fx,gy))} \varphi(t)dt, \int_{0}^{F(\delta(fx,F_{n}x))} \varphi(t)dt, \int_{0}^{F(\delta(gy,F_{n+1}y))} \varphi(t)dt, \int_{0}^{F(\delta(gy,F_{n+1}y))} \varphi(t)dt, \int_{0}^{F(\delta(gy,F_{n}x))} \varphi(t)dt\right) \leq 0$$

for all x, y in \mathcal{X} , where $\psi \in \Psi$, $\varphi \in \Phi$, $F \in \mathcal{F}$ and $n \in \mathbb{N}^* = \{1, 2, \ldots\}$. If either

- (c) f and F_n are subcompatible D-maps; g and F_{n+1} are subcompatible and $F_n(\mathcal{X})$ is closed, or
- (c') g and F_{n+1} are subcompatible D-maps; f and F_n are subcompatible and $F_{n+1}(\mathcal{X})$ is closed.

Then, there exists a unique point t in \mathcal{X} such that $F_n t = \{ft\} = \{gt\} = \{t\}$.

References

- [1] M. Aamri and D. El Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl., **270**(1), 2002, 181-188.
- [2] M.A. Al-Thagafi and N. Shahzad, Generalized I-nonexpansive selfmaps and invariant approximations, Acta Math. Sin. (Engl. Ser.), 24(5), 2008, 867-876.
- [3] A. Djoudi and R. Khemis, Fixed points for set and single valued maps without continuity, Demonstratio Mathematica Vol., XXXVIII, no. 3, 2005, 739-751.
- [4] B. Fisher, Common fixed points of mappings and set-valued mappings, Rostock. Math. Kolloq., no. 18, 1981, 69-77.
- [5] B. Fisher and S. Sessa, Two common fixed point theorems for weakly commuting mappings, Period. Math. Hungar., 20(3), 207-218.
- [6] G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci., 9(4), 1986, 771-779.
- [7] G. Jungck, Common fixed points for noncontinuous nonself maps on nonmetric spaces, Far East J. Math. Sci., 4(2), 1996, 199-215.
- [8] G. Jungck and B.E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math., 29(3), 1998, 227-238.
- [9] G. Jungck and B.E. Rhoades, Fixed point theorems for occasionally weakly compatible mappings, Fixed Point Theory, 7(2), 2006, 287-296.

[10] S. Sessa, On a weak commutativity condition in fixed point considerations, Publ. Inst. Math. (Beograd) (N.S.), **32**(46), 1982, 149-153.

Hakima Bouhadjera

Laboratoire de Mathématiques Appliquées Faculté des Sciences Université Badji Mokhtar d'Annaba, B.P. 12, 23000, Annaba, Algérie e-mail: b_hakima2000@yahoo.fr

Ahcène Djoudi

Laboratoire de Mathématiques Appliquées Faculté des Sciences Université Badji Mokhtar d'Annaba, B.P. 12, 23000, Annaba, Algérie e-mail: adjoudi@yahoo.com