Georgian Mathematical Journal

Volume 10 (2003), Number 1, 193-200

ON SOME CONVEXITY PROPERTIES OF GENERALIZED CESÁRO SEQUENCE SPACES

SUTHEP SUANTAI

Abstract

We define a generalized Cesáro sequence space and consider it equipped with the Luxemburg norm under which it is a Banach space, and we show that it is locally uniformly rotund.

2000 Mathematics Subject Classification: 46E30, 46E40, 46B20. Key words and phrases: Generalized Cesáro sequence spaces, Luxemburg norm, extreme point, locally uniformly rotund point, property (H), convex modular.

1. Preliminaries

For a Banach space X, we denote by $S(X)$ and $B(X)$ the unit sphere and unit ball of X, respectively. A point $x_{0} \in S(X)$ is called
a) an extreme point if for every $x, y \in S(X)$ the equality $2 x_{0}=x+y$ implies $x=y$;
b) a locally uniformly rotund point (LUR-point for short) if for any sequence $\left(x_{n}\right)$ in $B(X)$ such that $\left\|x_{n}+x\right\| \rightarrow 2$ as $n \rightarrow \infty$ there holds $\left\|x_{n}-x\right\| \rightarrow 0$ as $n \rightarrow \infty$;
c) an H-point if for any sequence $\left(x_{n}\right)$ in X such that $\left\|x_{n}\right\| \rightarrow 1$ as $n \rightarrow \infty$, the weak convergence of $\left(x_{n}\right)$ to x_{0} (write $x_{n} \xrightarrow{w} x_{0}$) implies that $\left\|x_{n}-x\right\| \rightarrow 0$ as $n \rightarrow \infty$.

A Banach space X is said to be rotund (R) if every point of $S(X)$ is an extreme point.

If every $x \in S(X)$ is a LUR-point, then X is said to be locally uniformly rotund (LUR).
X is said to possess property (H) provided every point of $S(X)$ is an H-point.
For these geometric notions and their role in Mathematics we refer to the monographs [1], [6], [12] and [13]. Some of them were studied for Orlicz spaces in [1], [7], [8], [12] and [14].

Let X be a real vector space. A functional $\varrho: X \rightarrow[0, \infty]$ is called a modular if it satisfies the conditions
(i) $\varrho(x)=0$ if and only if $x=0$;
(ii) $\varrho(\alpha x)=\varrho(x)$ for all scalar α with $|\alpha|=1$;
(iii) $\varrho(\alpha x+\beta y) \leq \varrho(x)+\varrho(y)$ for all $x, y \in X$ and all $\alpha, \beta \geq 0$ with $\alpha+\beta=1$. The modular ϱ is called convex if
(iv) $\varrho(\alpha x+\beta y) \leq \alpha \varrho(x)+\beta \varrho(y)$ for all $x, y \in X$ and all $\alpha, \beta \geq 0$ with $\alpha+\beta=1$.

If ϱ is a modular in X, we define

$$
X_{\varrho}=\left\{x \in X: \lim _{\lambda \rightarrow 0^{+}} \varrho(\lambda x)=0\right\}
$$

$$
\text { and } \quad X_{\varrho}^{*}=\{x \in X: \varrho(\lambda x)<\infty \text { for some } \lambda>0\}
$$

It is clear that $X_{\varrho} \subseteq X_{\varrho}^{*}$. If ϱ is a convex modular, for $x \in X_{\varrho}$ we define

$$
\begin{equation*}
\|x\|=\inf \left\{\lambda>0: \varrho\left(\frac{x}{\lambda}\right) \leq 1\right\} . \tag{1.1}
\end{equation*}
$$

Orlicz [13] proved that if ϱ is a convex modular in X, then $X_{\varrho}=X_{\varrho}^{*}$ and $\|$.$\| is$ a norm on X_{ϱ} for which it is a Banach space. The norm $\|$.$\| defined as in (1.1)$ is called the Luxemburg norm.

A modular ϱ on X is called
(a) right-continuous if $\lim _{\lambda \rightarrow 1^{+}} \varrho(\lambda x)=\varrho(x)$ for all $x \in X_{\varrho}$;
(b) left-continuous if $\lim _{\lambda \rightarrow 1^{-}} \varrho(\lambda x)=\varrho(x)$ for all $x \in X_{\varrho}$;
(c) continuous if it is both left-continuous and right-continuous.

The following known results gave some relationships between the modular ϱ and the Luxemburg norm $\|$.$\| on X_{\varrho}$.

Theorem 1.1. Let ϱ be a convex modular on X and let $x \in X_{\varrho}$ and $\left(x_{n}\right)$ a sequence in X_{ϱ}. Then $\left\|x_{n}-x\right\| \rightarrow 0$ as $n \rightarrow \infty$ if and only if $\varrho\left(\lambda\left(x_{n}-x\right)\right) \rightarrow 0$ as $n \rightarrow \infty$ for every $\lambda>0$.

Proof. See [11, Theorem 1.3].
Theorem 1.2. Let @ be a convex modular on X and $x \in X_{\varrho}$.
(i) If ϱ is right-continuous, then $\|x\|<1$ if and only if $\varrho(x)<1$.
(ii) If ϱ is left-continuous, then $\|x\| \leq 1$ if and only if $\varrho(x) \leq 1$.
(iii) If ϱ is continuous, then $\|x\|=1$ if and only if $\varrho(x)=1$.

Proof. See [11, Theorem 1.4].
Let us denote by l^{0} the space of all real sequences. For $1 \leq p<\infty$, the Cesáro sequence space (cesp $_{p}$, for short) is defined by

$$
\operatorname{ces}_{p}=\left\{x \in l^{0}: \sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{i=1}^{n}|x(i)|\right)^{p}<\infty\right\}
$$

equipped with the norm

$$
\|x\|=\left(\sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{i=1}^{n}|x(i)|\right)^{p}\right)^{\frac{1}{p}}
$$

This space was introduced by J.S. Shue [16]. It is useful in the theory of matrix operators and others (see [9] and [10]). Some geometric properties of the Cesáro sequence space $c e s_{p}$ were studied by many mathematicians. It is known that ces $_{p}$ is LUR and possesses property (H) (see [10]). Y. A. Cui and H. Hudzik [2] proved that cesp $_{p}$ has the Banach-Saks property, and it was shown in [5] that $c e s_{p}$ has property (β).

Now let $p=\left(p_{k}\right)$ be a sequence of positive real numbers with $p_{k} \geq 1$ for all $k \in \mathbb{N}$. The Nakano sequence space $l(p)$ is defined by

$$
l(p)=\left\{x \in l^{0}: \sigma(\lambda x)<\infty \quad \text { for some } \quad \lambda>0\right\},
$$

where $\sigma(x)=\sum_{i=1}^{\infty}|x(i)|^{p_{i}}$. We consider the space $l(p)$ equipped with the norm

$$
\|x\|=\inf \left\{\lambda>0: \sigma\left(\frac{x}{\lambda}\right) \leq 1\right\}
$$

under which it is a Banach space. If $p=\left(p_{k}\right)$ is bounded, we have

$$
l(p)=\left\{x \in l^{0}: \sum_{i=1}^{\infty}|x(i)|^{p_{i}}<\infty\right\}
$$

Several geometric properties of $l(p)$ were studied in [1] and [4].
The generalized Cesáro sequence space $\operatorname{ces}(p)$ is defined by

$$
\operatorname{ces}(p)=\left\{x \in l^{0}: \varrho(\lambda x)<\infty \text { for some } \lambda>0\right\}
$$

where $\varrho(x)=\sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{i=1}^{n}|x(i)|\right)^{p_{n}}$. We consider this space equipped with the so-called Luxemburg norm

$$
\|x\|=\inf \left\{\lambda>0: \varrho\left(\frac{x}{\lambda}\right) \leq 1\right\}
$$

under which it is a Banach space. If $p=\left(p_{k}\right)$ is bounded, we have

$$
\operatorname{ces}(p)=\left\{x=x(i): \sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{i=1}^{n}|x(i)|\right)^{p_{n}}<\infty\right\} .
$$

W. Sanhan [15] proved that $\operatorname{ces}(p)$ is nonsquare when $p_{k}>1$ for all $k \in \mathbb{N}$. In this paper, we show that the Cesáro sequence space $\operatorname{ces}(p)$ equipped with the Luxemburg norm is $L U R$ and has property (H) when $p=\left(p_{k}\right)$ is bounded with $p_{k}>1$ for all $k \in \mathbb{N}$.

Throughout this paper we assume that $p=\left(p_{k}\right)$ is bounded with $p_{k}>1$ for all $k \in \mathbb{N}$, and $M=\sup _{k} p_{k}$.

2. Main Results

We begin by giving some basic properties of the modular ϱ on the space $\operatorname{ces}(p)$. By the convexity of the function $t \rightarrow|t|^{p_{k}}$, for every $k \in \mathbb{N}$ we have that ϱ is a convex modular. So we have the following proposition.

Proposition 2.1. The functional ϱ on the Cesáro sequence space ces (p) is a convex modular.

Proposition 2.2. For $x \in \operatorname{ces}(p)$, the modular ϱ on $\operatorname{ces}(p)$ satisfies the following properties:
(i) if $0<a<1$, then $a^{M} \varrho\left(\frac{x}{a}\right) \leq \varrho(x)$ and $\varrho(a x) \leq a \varrho(x)$,
(ii) if $a \geq 1$, then $\varrho(x) \leq a^{M} \varrho\left(\frac{x}{a}\right)$,
(iii) if $a \geq 1$, then $\varrho(x) \leq a \varrho(x) \leq \varrho(a x)$.

Proof. All assertions are clearly obtained by the definition of ϱ.
Proposition 2.3. The modular ϱ on $\operatorname{ces}(p)$ is continuous.
Proof. For $\lambda>1$, by Proposition 2.2 (ii) and (iii), we have

$$
\begin{equation*}
\varrho(x) \leq \lambda \varrho(x) \leq \varrho(\lambda x) \leq \lambda^{M} \varrho(x) . \tag{2.1}
\end{equation*}
$$

By taking $\lambda \rightarrow 1^{+}$in (2.1), we have $\lim _{\lambda \rightarrow 1^{+}} \varrho(\lambda x)=\varrho(x)$. Thus ϱ is rightcontinuous. If $0<\lambda<1$, by Proposition 2.2 (i), we have

$$
\begin{equation*}
\lambda^{M} \varrho(x) \leq \varrho(\lambda x) \leq \lambda \varrho(x) \tag{2.2}
\end{equation*}
$$

By taking $\lambda \rightarrow 1^{-}$in (2.2), we have that $\lim _{\lambda \rightarrow 1^{-}} \varrho(\lambda x)=\varrho(x)$, hence ϱ is left-continuous. Thus ϱ is continuous.

Next, we give some relationships between the modular ϱ and the Luxemburg norm on $\operatorname{ces}(p)$.

Proposition 2.4. For any $x \in \operatorname{ces}(p)$, we have
(i) if $\|x\|<1$, then $\varrho(x) \leq\|x\|$,
(ii) if $\|x\|>1$, then $\varrho(x) \geq\|x\|$,
(iii) $\|x\|=1$ if and only if $\varrho(x)=1$,
(iv) $\|x\|<1$ if and only if $\varrho(x)<1$,
(v) $\|x\|>1$ if and only if $\varrho(x)>1$,
(vi) if $0<a<1$ and $\|x\|>a$, then $\varrho(x)>a^{M}$, and
(vii) if $a \geq 1$ and $\|x\|<a$, then $\varrho(x)<a^{M}$.

Proof. If $\|x\| \leq 1$, it follows by the convexity and continuity of ϱ that $\varrho(x)=$ $\varrho\left(\|x\| \frac{x}{\|x\|}\right) \leq\|x\| \varrho\left(\frac{x}{\|x\|}\right) \leq\|x\|$. So (i) is obtained. If $\|x\|>1$, then there is $\varepsilon_{0}>0$ such that $\|x\|-\varepsilon>1$ for all $\varepsilon \in\left(0, \varepsilon_{0}\right)$. Consequently, $\varrho(x)=$ $\varrho\left((\|x\|-\varepsilon) \frac{x}{\|x\|-\varepsilon}\right) \geq(\|x\|-\varepsilon) \varrho\left(\frac{x}{\|x\|-\varepsilon}\right)>\|x\|-\varepsilon$, so (ii) is satisfied. It is clear that (iii), (iv) and (v) follow by Theorem 1.2, and properties (vi) and (vii) follow by Proposition 2.2.

Proposition 2.5. Let $\left(x_{n}\right)$ be a sequence in $\operatorname{ces}(p)$.
(i) If $\left\|x_{n}\right\| \rightarrow 1$ as $n \rightarrow \infty$, then $\varrho\left(x_{n}\right) \rightarrow 1$ as $n \rightarrow \infty$.
(ii) $\left\|x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$ if and only if $\varrho\left(x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.

Proof. (i) Suppose $\left\|x_{n}\right\| \rightarrow 1$ as $n \rightarrow \infty$. Let $\epsilon \in(0,1)$. Then there exists $N \in \mathbb{N}$ such that $1-\epsilon<\left\|x_{n}\right\|<1+\epsilon$ for all $n \geq N$. By Proposition 2.4 (vi) and (vii), we have $(1-\epsilon)^{M}<\varrho\left(x_{n}\right)<(1+\epsilon)^{M}$ for all $n \geq N$, which implies that $\varrho\left(x_{n}\right) \rightarrow 1$ as $n \rightarrow \infty$.
(ii) It follows from Theorem 1.1 that if $\left\|x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$, then $\varrho\left(x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Conversely, suppose $\left\|x_{n}\right\| \nrightarrow 0$ as $n \rightarrow \infty$. Then there is $\epsilon \in$ $(0,1)$ and a subsequence $\left(x_{n_{k}}\right)$ of $\left(x_{n}\right)$ such that $\left\|x_{n_{k}}\right\|>\epsilon$ for all $k \in \mathbb{N}$. By Proprosition 2.4 (vi), we have $\varrho\left(x_{n_{k}}\right)>\epsilon^{M}$ for all $k \in \mathbb{N}$. This implies $\varrho\left(x_{n}\right) \nrightarrow 0$ as $n \rightarrow \infty$.

Proposition 2.6. Let $\left(x_{n}\right) \subseteq B(l(p))$ and $\left(y_{n}\right) \subseteq B(l(p))$. If $\sigma\left(\frac{x_{n}+y_{n}}{2}\right)$ $\rightarrow 1$, then $x_{n}(i)-y_{n}(i) \rightarrow 0$ as $n \rightarrow \infty$ for all $i \in \mathbb{N}$.

Proof. We first note that if $x \in B\left(\ell(p)\right.$, then $\sigma(x) \leq 1$. Supose that $x_{n}(i)-$ $y(i) \nrightarrow 0$ as $n \rightarrow \infty$ for some $i \in \mathbb{N}$. Without loss of generality we may assume that $i=1$, and then assume without loss of generality (passing to a subsequence if necessary) that, for some $\epsilon>0$,

$$
\left|x_{n}(1)-y_{n}(1)\right|^{p_{1}} \geq \epsilon \quad \forall n \in \mathbb{N} .
$$

Thus

$$
\begin{equation*}
2^{p_{1}}\left(\left|x_{n}(1)\right|^{p_{1}}+\left|y_{n}(1)\right|^{p_{1}}\right) \geq \epsilon \quad \forall n \in \mathbb{N} . \tag{2.3}
\end{equation*}
$$

Since the function $t \rightarrow|t|^{p_{1}}$ is uniformly convex, there exists $\delta>0$ such that

$$
\begin{equation*}
\left|\frac{x_{n}(1)+y_{n}(1)}{2}\right|^{p_{1}} \leq(1-\delta)\left(\frac{\left|x_{n}(1)\right|^{p_{1}}+\left|y_{n}(1)\right|^{p_{1}}}{2}\right) \forall n \in \mathbb{N} . \tag{2.4}
\end{equation*}
$$

It follows from (2.3) and (2.4) that for each $n \in \mathbb{N}$,

$$
\begin{aligned}
\sigma\left(\frac{x_{n}+y_{n}}{2}\right) & =\sum_{i=1}^{\infty}\left|\frac{x_{n}(i)+y_{n}(i)}{2}\right|^{p_{i}} \\
& =\left|\frac{x_{n}(1)+y_{n}(1)}{2}\right|^{p_{1}}+\sum_{i=2}^{\infty}\left|\frac{x_{n}(i)+y_{n}(i)}{2}\right|^{p_{i}} \\
& \leq(1-\delta)\left(\frac{\left|x_{n}(1)\right|^{p_{1}}+\left|y_{n}(1)\right|^{p_{1}}}{2}\right)+\frac{1}{2} \sum_{i=2}^{\infty}\left|x_{n}(i)\right|^{p_{i}}+\frac{1}{2} \sum_{i=2}^{\infty}\left|y_{n}(i)\right|^{p_{i}} \\
& =\frac{1}{2} \sigma\left(x_{n}\right)+\frac{1}{2} \sigma\left(y_{n}\right)-\delta\left(\frac{\left|x_{n}(1)\right|^{p_{1}}+\left|y_{n}(1)\right|^{p_{1}}}{2}\right) \\
& \leq \frac{1}{2}+\frac{1}{2}-\delta \frac{\epsilon}{2^{p_{1}+1}}=1-\delta \frac{\epsilon}{2^{p_{1}+1}}
\end{aligned}
$$

This implies that $\sigma\left(\frac{x_{n}+y_{n}}{2}\right) \nrightarrow 1$ as $n \rightarrow \infty$, a contradiction, which finishes the proof.

Proposition 2.7. Let $\left(x_{n}\right) \subseteq B(\operatorname{ces}(p))$ and $x \in S(\operatorname{ces}(p))$. If $\varrho\left(\frac{x_{n}+x}{2}\right) \rightarrow 1$ as $n \rightarrow \infty$, then $x_{n}(i) \rightarrow x(i)$ as $n \rightarrow \infty$ for all $i \in \mathbb{N}$.

Proof. For each $n \in \mathbb{N}$ and $i \in \mathbb{N}$, let

$$
s_{n}(i)= \begin{cases}\operatorname{sgn}\left(x_{n}(i)+x(i)\right) & \text { if } x_{n}(i)+x(i) \neq 0 \\ 1 & \text { if } x_{n}(i)+x(i)=0\end{cases}
$$

Hence we have

$$
\begin{align*}
1 \leftarrow \varrho\left(\frac{x_{n}+x}{2}\right) & =\sum_{k=1}^{\infty}\left(\frac{1}{k} \sum_{i=1}^{k}\left|\frac{x_{n}(i)+x(i)}{2}\right|\right)^{p_{k}} \\
& =\sum_{k=1}^{\infty}\left(\frac{1}{k} \sum_{i=1}^{k} s_{n}(i) \frac{x_{n}(i)}{2}+\frac{1}{k} \sum_{i=1}^{k} s_{n}(i) \frac{x(i)}{2}\right)^{p_{k}} . \tag{2.5}
\end{align*}
$$

Let $a_{n}(k)=\frac{1}{k} \sum_{i=1}^{k} s_{n}(i) x_{n}(i)$ and $b_{n}(k)=\frac{1}{k} \sum_{i=1}^{k} s_{n}(i) x(i)$ for all $n, k \in \mathbb{N}$. Then $\left(a_{n}\right) \in l(p)$ and $\left(b_{n}\right) \in l(p)$, and from (2.5) we have

$$
\sigma\left(\frac{a_{n}+b_{n}}{2}\right) \rightarrow 1 \quad \text { as } \quad n \rightarrow \infty
$$

Form Proposition 2.6 we have

$$
\begin{equation*}
a_{n}(i)-b_{n}(i) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{2.6}
\end{equation*}
$$

for all $i \in \mathbb{N}$. Now we shall show that $x_{n}(k) \rightarrow x(k)$ as $n \rightarrow \infty$ for all $k \in \mathbb{N}$. From (2.6) we have

$$
s_{n}(1) x_{n}(1)-s_{n}(1) x(1) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

This implies $x_{n}(1) \rightarrow x(1)$ as $n \rightarrow \infty$. Assume that $x_{n}(i) \rightarrow x(i)$ as $n \rightarrow \infty$ for all $i \leq k-1$. Then we have

$$
\begin{equation*}
s_{n}(i)\left(x_{n}(i)-x(i)\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{2.7}
\end{equation*}
$$

for all $i \leq k-1$. Since $s_{n}(k)\left(x_{n}(k)-x(k)\right)=k\left(a_{n}(k)-b_{n}(k)\right)-\sum_{i=1}^{k-1} s_{n}(i)\left(x_{n}(i)-\right.$ $x(i)$), it follows from (2.6) and (2.7) that $s_{n}(k)\left(x_{n}(k)-x(k)\right) \rightarrow 0$ as $n \rightarrow \infty$. This implies $x_{n}(k) \rightarrow x(k)$ as $n \rightarrow \infty$. So we have by induction that $x_{n}(k) \rightarrow$ $x(k)$ as $n \rightarrow \infty$ for all $k \in \mathbb{N}$.

Theorem 2.8. The space ces(p) is $L U R$.
Proof. Let $\left(x_{n}\right) \subseteq B(\operatorname{ces}(p))$ and $x \in S(\operatorname{ces}(p))$ be such that $\left\|x_{n}+x\right\| \rightarrow 2$ as $n \rightarrow \infty$. Then $\left\|\frac{x_{n}+x}{2}\right\| \rightarrow 1$ as $n \rightarrow \infty$. By Proposition 2.5 (i) we have $\varrho\left(\frac{x_{n}+x}{2}\right) \rightarrow 1$ as $n \rightarrow \infty$. By Proposition 2.7 we have $x_{n}(i) \rightarrow x(i)$ as $n \rightarrow \infty$ for all $i \in \mathbb{N}$.

Now let $\epsilon>0$ be given. Then there exist $k_{0} \in \mathbb{N}$ and $n_{0} \in \mathbb{N}$ such that

$$
\begin{gather*}
\sum_{k=k_{0}+1}^{\infty}\left(\frac{1}{k} \sum_{i=1}^{k}|x(i)|\right)^{p_{k}}<\frac{\epsilon}{3} \frac{1}{2^{M+1}}, \tag{2.8}\\
\sum_{k=1}^{k_{0}}\left(\frac{1}{k} \sum_{i=1}^{k}\left|x_{n}(i)-x(i)\right|\right)^{p_{k}}<\frac{\epsilon}{3} \text { for all } n \geq n_{0}, \tag{2.9}\\
\sum_{k=1}^{k_{0}}\left(\frac{1}{k} \sum_{i=1}^{k}\left|x_{n}(i)\right|\right)^{p_{k}}>\sum_{k=1}^{k_{0}}\left(\frac{1}{k} \sum_{i=1}^{k}|x(i)|\right)^{p_{k}}-\frac{\epsilon}{3} \frac{1}{2^{M}} \text { for all } n \geq n_{0} . \tag{2.10}
\end{gather*}
$$

By Proposition 2.4 (i) and (iii) we have $\varrho\left(x_{n}\right) \leq 1$ for all $n \in \mathbb{N}$ and $\varrho(x)=1$. From these together with (2.8), (2.9), (2.10) and the fact that $(a+b)^{p_{k}} \leq$ $2^{p_{k}}\left(a^{p_{k}}+b^{p_{k}}\right)$ for $a, b \geq 0$ we have that for all $n \geq n_{0}$,

$$
\begin{aligned}
\varrho\left(x_{n}\right. & -x)=\sum_{k=1}^{\infty}\left(\frac{1}{k} \sum_{i=1}^{k}\left|x_{n}(i)-x(i)\right|\right)^{p_{k}} \\
& =\sum_{k=1}^{k_{0}}\left(\frac{1}{k} \sum_{i=1}^{k}\left|x_{n}(i)-x(i)\right|\right)^{p_{k}}+\sum_{k=k_{0}+1}^{\infty}\left(\frac{1}{k} \sum_{i=1}^{k}\left|x_{n}(i)-x(i)\right|\right)^{p_{k}} \\
& <\frac{\epsilon}{3}+2^{M}\left(\sum_{k=k_{0}+1}^{\infty}\left(\frac{1}{k} \sum_{i=1}^{k}\left|x_{n}(i)\right|\right)^{p_{k}}+\sum_{k=k_{0}+1}^{\infty}\left(\frac{1}{k} \sum_{i=1}^{k}|x(i)|\right)^{p_{k}}\right) \\
& =\frac{\epsilon}{3}+2^{M}\left(\varrho\left(x_{n}\right)-\sum_{k=1}^{k_{0}}\left(\frac{1}{k} \sum_{i=1}^{k}\left|x_{n}(i)\right|\right)^{p_{k}}+\sum_{k=k_{0}+1}^{\infty}\left(\frac{1}{k} \sum_{i=1}^{k}|x(i)|\right)^{p_{k}}\right) \\
& \leq \frac{\epsilon}{3}+2^{M}\left(1-\sum_{k=1}^{k_{0}}\left(\frac{1}{k} \sum_{i=1}^{k}\left|x_{n}(i)\right|\right)^{p_{k}}+\sum_{k=k_{0}+1}^{\infty}\left(\frac{1}{k} \sum_{i=1}^{k}|x(i)|\right)^{p_{k}}\right) \\
& <\frac{\epsilon}{3}+2^{M}\left(1-\sum_{k=1}^{k_{0}}\left(\frac{1}{k} \sum_{i=1}^{k}|x(i)|\right)^{p_{k}}+\frac{\epsilon}{3} \frac{1}{2^{M}}+\sum_{k=k_{0}+1}^{\infty}\left(\frac{1}{k} \sum_{i=1}^{k}|x(i)|\right)^{p_{k}}\right) \\
& =\frac{\epsilon}{3}+2^{M}\left(\varrho(x)-\sum_{k=1}^{k_{0}}\left(\frac{1}{k} \sum_{i=1}^{k}|x(i)|\right)^{p_{k}}+\frac{\epsilon}{3} \frac{1}{2^{M}}+\sum_{k=k_{0}+1}^{\infty}\left(\frac{1}{k} \sum_{i=1}^{k}|x(i)|\right)^{p_{k}}\right) \\
& =\frac{\epsilon}{3}+2^{M}\left(\sum_{k=k_{0}+1}^{\infty}\left(\frac{1}{k} \sum_{i=1}^{k}|x(i)|\right)^{p_{k}}+\frac{\epsilon}{3} \frac{1}{2^{M}}+\sum_{k=k_{0}+1}^{\infty}\left(\frac{1}{k} \sum_{i=1}^{k}|x(i)|\right)^{p_{k}}\right) \\
& =\frac{\epsilon}{3}+2^{M}\left(2 \sum_{k=k_{0}+1}^{\infty}\left(\frac{1}{k} \sum_{i=1}^{k}|x(i)|\right)^{p_{k}}+\frac{\epsilon}{3} \frac{1}{2^{M}}\right) \\
& =\frac{\epsilon}{3}+2^{M+1} \sum_{k=k_{0}+1}^{\infty}\left(\frac{1}{k} \sum_{i=1}^{k}|x(i)|\right)^{p_{k}}+\frac{\epsilon}{3}<\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon .
\end{aligned}
$$

This shows that $\varrho\left(x_{n}-x\right) \rightarrow 0$ as $n \rightarrow \infty$. By Proposition 2.5(ii) we have $\left\|x_{n}-x\right\| \rightarrow 0$ as $n \rightarrow \infty$. This completes the proof of the theorem.

It is known in general that a locally uniformly rotund space has property (H). So we have the following result.

Corollary 2.9. The space ces(p) possesses property (H).

Acknowledgements

The author would like to thank the Thailand Research Fund for the financial support and is very indebted to the referee for his valuable comments and suggestions.

References

1. S. T. Chen, Geometry of Orlicz spaces. With a preface by Julian Musielak. Dissertationes Math. (Rozprawy Mat.) 356(1996), 1-204.
2. Y. A. Cui and H. Hudzik, On the Banach-Saks and weak Banach-Saks properties of some Banach sequence spaces. Acta Sci. Math. (Szeged) 65(1999), No. 1-2, 179-187.
3. Y. A. Cui, H. Hudzik and C. Meng, On some lacal geometry of Orlicz sequence spaces equipped the Luxemburg norms. Acta Math. Hungar. 80(1998), No. 1-2, 143-154.
4. Y. A. Cui, H. Hudzik and R. Pliciennik, Banach-Saks property in some Banach sequence spaces. Ann. Polon. Math. 65(1997), No. 2, 193-202.
5. Y. A. Cui and C. Meng, Banach-Sak property and property (β) in Cesáro sequence spaces. Southeast Asian Bull. Math. 24(2000), No. 2, 201-210.
6. J. Diestel, Geometry of Banach Spaces - Selected Topics. Lecture Notes in Mathematics, 485. Springer-Verlag, Berlin-New York, 1975.
7. H. Hudzik, Orlicz spaces without strongly extreme points and without H-points. Canad. Math. Bull. 36(1993), No. 2, 173-177.
8. H. Hudzik and D. Pallaschke, On some convexity properties of Orlicz sequence spaces. Math. Nachr. 186(1997), 167-185.
9. P. Y. Lee, Cesáro sequence spaces. Math. Chronicle 13(1984), 29-45.
10. Y. Q. Liu, B. E. Wu, and Y. P. Lee, Method of sequence spaces. (Chinese) Guangdong of Science and Technology Press, 1996.
11. L. Maligranda, Orlicz spaces and interpolation. Seminários de Matemática. 5, 1-206. Campinas, SP: Univ. Estadual de Campinas, Dep. de Matemática, 1989.
12. J. Musielak, Orlicz spaces and modular spaces. Lecture Notes in Math. 1034, SpringerVerlag, Berlin, 1983.
13. W. Orlicz, A note on modular spaces I. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 9(1961), 157-162.
14. R. Pluciennik, T.F Wang and Y. L. Zhang, H-points and Denting Points in Orlicz Spaces. Comment. Math. Prace Mat. 33(1993), 135-151.
15. W. Sanhan, On geometric properties of some Banach sequence spaces. Thesis for the degree of Master of Science in Mathematics, Chiang Mai University, 2000.
16. J.-S. Shiue, On the Cesáro sequence spaces. Tamkang J. Math. 1(1970), 19-25.
(Received 20.11.2001; revised 27.05.2002)
Author's address:
Department of Mathematics
Faculty of Science
Chiang Mai University, Chiang Mai, 50200
Thailand
E-mail: suantai@yahoo.com
