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ON THE OSCILLATION OF SOLUTIONS OF FIRST ORDER
DIFFERENTIAL EQUATIONS WITH RETARDED

ARGUMENTS
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Abstract. For the differential equation

u′(t) +
m∑

i=1

pi(t)u(τi(t)) = 0,

where pi ∈ Lloc(R+; R+), τi ∈ C(R+; R+), τi(t) ≤ t for t ∈ R+, lim
t→+∞

τi(t) =

+∞ (i = 1, . . . , m), optimal integral conditions for the oscillation of all solu-
tions are established.
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1. Introduction

Consider the differential equation

u′(t) +
m∑

i=1

pi(t)u(τi(t)) = 0, (1.1)

where pi ∈ Lloc(R+; R+), τi ∈ C(R+; R+), τi(t) ≤ t for t ∈ R+, lim
t→+∞

τi(t) = +∞
(i = 1, . . . , m).

The first systematic study for the oscillation of all solutions of equation (1.1)
for the case of constant coefficients and constant delays was made by Myshkis
[18]. Since then a number of papers have been devoted to this subject. For the
case m=1 the reader is referred to the papers [2–7, 10, 12–14, 16, 18], while for
the case m > 1 to [1, 6, 9, 11, 15, 17]. The difficulties connected with the study
of specific properties of solutions of delay differential equations are emphasized
in the monograph by Hale [8]. In [12] the following statement is proved.

Theorem 1.1. Let m = 1,

lim inf
t→+∞

t∫

τ1(t)

p1(s)ds >
1

e
.

Then equation (1.1) is oscillatory.

In the case m > 1 there are some difficulties in finding optimal conditions for
the oscillation of solutions of (1.1). In the present paper we make an attempt
at carrying out in this direction. Several sufficient oscillation conditions for the
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case of several delays are contained in [1, 9, 15, 17]. It is to be pointed out that
the technique used in [17] cannot be applied for equation (1.1).

2. Formulation of the Main Results

Throughout the paper we will assume that pi : R+ → R+ (i = 1, . . . ,m)
are locally integrable functions, τi : R+ → R+ (i = 1, . . . , m) are continuous
functions, and

pi(t) ≥ 0, τi(t) ≤ t for t ∈ R+, lim
t→+∞

τi(t) = +∞ (i = 1, . . . , m). (2.1)

Let a ∈ R+. Denote a0 = inf {τ∗(t) : t ≥ a}, τ∗(t) = min {τi(t) : i = 1, . . . , m}.
Definition 2.1. A continuous function u : [a0, +∞) → R is called a proper

solution of equation (1.1) in [a, +∞) if it is absolutely continuous in each finite
segment contained in [a, +∞) and satisfies (1.1) almost everywhere on [a, +∞)
and sup {|u(s)| : s ≥ t} > 0 for t ≥ a0.

Definition 2.2. A proper solution of equation (1.1) is said to be oscillatory
if it has a sequence of zeros tending to infinity; otherwise it is said to be non-
oscillatory.

Definition 2.3. Equation (1.1) is said to be oscillatory if its every proper
solution is oscillatory.

Theorem 2.1. Let condition (2.1) hold, for some i ∈ {1, . . . , m},

lim inf
t→+∞

t∫

τi(t)

pi(s)ds > 0, (2.2)

lim sup
t→+∞

t∫

σ(t)

p(s)ds < +∞ (2.3)

and

inf



lim inf

t→+∞
exp


λ

t∫

0

p(s)ds




×
m∑

i=1

+∞∫

t

pi(s) exp


−λ

τi(s)∫

0

p(ξ)dξ)ds


 : λ ∈ (0,∞)



 > 1, (2.4)

where

p(t) =
m∑

i=1

pi(t), σ(t) = inf {τ∗(s) : s ≥ t ≥ 0} ,

τ∗(t) = min {τi(t) : i = 1, . . . ,m} .

(2.5)

Then equation (1.1) is oscillatory.
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Remark 2.1. Condition (2.3) is not an essential restriction because if for some
i ∈ {1, . . . ,m} ,

lim sup
t→+∞

t∫

τi(t)

pi(s)ds > 1,

then equation (1.1) is oscillatory (see, e.g., [13]).

Theorem 2.2. Let conditions (2.2), (2.3) be fulfilled, p(t) > 0 for sufficiently
large t, and

lim inf
t→+∞

t∫

τi(t)

p(s)ds = αi > 0 (i = 1, . . . ,m). (2.6)

If, moreover, for some t0 ∈ R+,

inf

{
1

λ
vrai inf

t≥t0

(
1

p(t)

m∑
i=1

pi(t)e
αiλ

)
: λ ∈ (0, +∞)

}
> 1, (2.7)

then equation (1.1) is oscillatory.

Theorem 2.3. Let conditions (2.2), (2.3), (2.6) be fulfilled, and p(t) > 0 for
sufficiently large t. Let, moreover, for some t0 ∈ R+,

vrai inf
t≥t0

(
1

p(t)

m∑
i=1

αipi(t)

)
>

1

e
. (2.8)

Then equation (1.1) is oscillatory.

Theorem 2.4. If conditions (2.2), (2.3), (2.6) are fulfilled, and

min {αi : i = 1, . . . , m} >
1

e
, (2.9)

then equation (1.1) is oscillatory.

Theorem 2.5. Let τi(t) (i = 1, . . . , m) be nondecreasing,

∞∫

0

| pi(t)− pj(t) | dt < +∞ (i, j = 1, . . . , m), (2.10)

lim inf
t→+∞

t∫

τi(t)

pi(s)ds = βi > 0 (i = 1, . . . , m) (2.11)

and

min

{
m∑

i=1

eβiλ

λ
: λ ∈ (0, +∞)

}
> 1. (2.12)

Then equation (1.1) is oscillatory.
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Theorem 2.6. Let conditions (2.10), (2.11) hold, and
m∑

i=1

βi >
1

e
. (2.13)

Then equation (1.1) is oscillatory.

Remark 2.2. It is obvious that Theorem 2.6 coincides with Theorem 1.1 for
the case m = 1.

3. Auxiliary Statements

Lemma 3.1. Let p : R+ → R+ be a summable function in every finite
segment, τ : R+ → R+ be a continuous and nondecreasing function, and
lim

t→+∞
τ(t) = +∞. If, moreover,

lim inf
t→+∞

t∫

τ(t)

p(s)ds > 0 (3.1)

and u : [a0, +∞) → (0, +∞) is a solution of the equation

u′(t) + p(t)u(τ(t)) = 0, (3.2)

then there exists λ > 0 such that

lim
t→+∞

u(t)



exp


λ

t∫

0

p(s)ds






 = +∞. (3.3)

Proof. First we will show that

lim sup
t→+∞

u(τ(t))

u(t)
< +∞. (3.4)

By virtue of (3.1) there are c > 0 and t0 ∈ R+ such that

t∫

τ(t)

p(s)ds ≥ c for t ≥ t0.

Thus for any t > t0 there exists t∗ > t such that

t∗∫

t

p(s)ds =
c

2
,

t∫

τ(t∗)

p(s)ds ≥ c

2
. (3.5)

Without loss of generality we can assume that u(τ(t)) > 0 for t ≥ t0. In view
of (3.5) from (3.2) we have

u(t) ≥
t∗∫

t

p(s)u(τ(s))ds ≥ u(τ(t∗))

t∗∫

t

p(s)ds =
c

2
u(τ(t∗))
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and

u(τ(t∗)) ≥
t∫

τ(t∗)

p(s)u(τ(s))ds ≥ c

2
u(τ(t)).

The last two inequalities result in u(t) ≥ (c2/4)u(τ(t)). This, in view of the
arbitrariness of t, means that (3.4) is valid. Thus from (3.2) we get

u(t) = u(t0) exp


−

t∫

t0

p(s)
u(τ(s))

u(s)
ds


 ≥ u(t0) exp


− 4

c2

t∫

t0

p(s)ds


 . (3.6)

On the other hand, from (3.1) it obviously follows that

+∞∫

t0

p(s)ds = +∞.

Therefore, according to (3.6), there exists λ > 0 such that (3.3) is satisfied. ¤

Lemma 3.2. Let (3.1) be fulfilled, p, q : R+ → R+ be summable functions in
every finite segment, τ, τ0 : R+ → R+ be continuous functions,

lim
t→+∞

τ(t) = lim t → +∞τ0(t) = +∞,

q(t) ≥ p(t), τ0(t) ≤ τ(t) ≤ t for t ≥ t0.
(3.7)

If, moreover, v : [t0, +∞) → (0, +∞) is a solution of the inequality

v′(t) + q(t)v(τ0(t)) ≤ 0, (3.8)

then equation (3.2) has a solution u : [t1, +∞) → (0, +∞) satisfying the condi-
tion

0 < u(t) ≤ v(t) for t ≥ t1, (3.9)

where t1 ≥ t0 is a sufficiently large number.

Proof. Let v : [t0, +∞) → (0, +∞) be a solution of inequality (3.8). By (3.1)
and (3.7) there is t1 > t0 such that v(τ0(t)) > 0 for t > t1 and

t∫

τ(t)

p(s)ds > 0 for t ≥ t1. (3.10)

From (3.8) we have

v(t) ≥
+∞∫

t

q(s)v(τ(s))ds for t ≥ t1. (3.11)
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Denote t∗1 = inf {τ(t) : t ≥ t1} and consider the sequence of functions ui :
[t∗1, +∞) → [0, +∞) (i = 1, 2, 3, . . . ) defined by the following equalities:

u1(t) = v(t) for t ≥ t∗1,

ui(t) =





+∞∫
t

p(s)ui−1(τ(s))ds for t ≥ t1

v(t)− v(t1) + ui(t1) for t∗1 ≤ t < t1

(i = 2, 3, . . . ). (3.12)

On account of the last inequality of (3.7) and conditions (3.10), (3.11) it is clear
that 0 < ui(t) ≤ ui−1(t) ≤ v(t) (i = 2, 3, . . . ) for t ≥ t1. Thus 0 ≤ u(t) ≤ v(t)
for t ≥ t1, where u(t) = limi→+∞ ui(t). Let us show that u(t) > 0 for t ≥ t1.
Otherwise there is t2 ≥ t1such that u(t) ≡ 0 for t ≥ t2 and u(t) > 0 for
t ∈ [t∗1, t2). Denote by U the set of points t satisfying τ(t) = t2, and put
t∗ = min U. Evidently t∗ ≥ t2. Therefore, by (3.10) and (3.12), we get

u(t2) =

+∞∫

t2

p(s)u(τ(s))ds ≥
t∗∫

τ(t∗)

p(s)u(τ(s))ds > 0.

The obtained contradiction proves that u(t) > 0 for t ≥ t1. Consequently we
have 0 < u(t) ≤ v(t) for t ≥ t1. ¤

Lemma 3.3. Let condition (2.1) hold, for some i ∈ {1, . . . , m},

lim inf
t→+∞

t∫

τi(t)

pi(s)ds > 0, (3.13)

and u : [t0, +∞) → (0, +∞) be a positive solution of equation (1.1). Then there
exists λ > 0 such that

lim
t→+∞

u(t) exp


λ

t∫

0

pi(s)ds


 = +∞. (3.14)

Proof. It is obvious that u is a solution of the differential inequality

u′(t) + pi(t)u(τi(t)) ≤ 0 for t ≥ t1,

where t1 > t0 is a sufficiently large number. Thus, taking into account (3.13)
and Lemmas 3.1, 3.2, there exists λ > 0 such that (3.14) is fulfilled. ¤

Lemma 3.4. Let t0 ∈ R+, ϕ, ψ ∈ C([t0, +∞); (0, +∞)), ψ(t) be non-in-
creasing and

lim
t→+∞

ϕ(t) = +∞, lim inf
t→+∞

ψ(t)ϕ̃(t) = 0,

where ϕ̃(t) = inf {ϕ(s) : s ≥ t ≥ t0.} Then there exists an increasing sequence
of points {tk}+∞

k=1 such that tk ↑ +∞ as k ↑ +∞ and

ϕ̃(tk) = ϕ(tk), ψ(t)ϕ̃(t) ≥ ψ(tk)ϕ̃(tk) for t0 ≤ t ≤ tk.

For the proof of Lemma 3.4 see [11, Lemma 7.1].
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4. Proof of the Main results

Proof of Theorem 2.1. Assume the contrary. Let equation (1.1) have a non-
oscillatory proper solution u : [t0, +∞) → (0, +∞). According to condition
(2.2) and Lemma 3.3, there exists λ > 0 such that

lim
t→+∞

u(t) exp


λ

t∫

0

p(s)ds


 = +∞, (4.1)

where the function p(t) is defined by the first equality of (2.5).
Denote by Λ the set of all λ satisfying condition (4.1), and put λ0 = inf Λ.

Since u(t) is non-increasing, in view of (4.1) it is obvious that λ0 ≥ 0. By the
definition of λ0 and condition (2.4), there exist ε > 0 and λ∗ > λ0 such that

lim inf
t→+∞



exp


λ∗

t∫

0

p(s)ds




m∑
i=1

+∞∫

t

pi(ξ) exp


−λ

τi(ξ)∫

0

p(s)ds


 dξ





> (1 + ε)e(1+M)ε, (4.2)

lim
t→+∞

u(t) exp


λ∗

t∫

0

p(ξ)dξ


 = +∞, (4.3)

lim inf
t→+∞

exp


(λ∗ − ε)

t∫

0

p(ξ)dξ


 = 0, (4.4)

where

M = lim sup
t→+∞

t∫

σ(t)

p(s)ds. (4.5)

Due to (4.3) and (4.4) it is clear that the functions ϕ and ψ satisfy the conditions
of Lemma 3.4 where

ϕ(t) = u(σ(t)) exp


λ∗

σ(t)∫

0

p(s)ds


 , ψ(t) = exp


−ε

t∫

0

p(s)ds




and the function σ(t) is defined by the last two equalities of (2.5). Therefore,
by Lemma 3.4, there exists an increasing sequence of points {tk}+∞

k=1 such that

ϕ̃(tk) exp


−ε

tk∫

0

p(s)ds)


 ≤ ϕ̃(t) exp


−ε

t∫

0

p(s)ds


 for t0 ≤ t ≤ tk, (4.6)

ϕ̃(tk) = u(σ(tk)) exp


λ∗

σ(tk)∫

0

p(s)ds


 . (4.7)
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If we take into account the definition of the function σ(t) (see condition (2.5)),
it becomes clear that

ρ̃i(t) = inf



u(τi(s)) exp


λ∗

τi(s)∫

0

p(ξ)dξ


 : s ≥ t





≥ inf



u(σ(s)) exp


λ∗

σ(s)∫

0

p(ξ)dξ


 : s ≥ t



 = ϕ̃(t) (i = 1, . . . , m).

Thus from (1.1) we get

u(σ(tk)) ≥
m∑

i=1




tk∫

σ(tk)

pi(s)u(τi(s))ds +

+∞∫

tk

pi(s)u(τi(s))ds




≥
m∑

i=1

tk∫

σ(tk)

pi(s) exp


−λ∗

τi(s)∫

0

p(ξ)dξ


 ρ̃i(s)ds

+
m∑

i=1

+∞∫

tk

pi(s) exp


−λ∗

τi(s)∫

0

p(ξ)dξ


 ρ̃i(s)ds

≥
m∑

i=1

tk∫

σ(tk)

pi(s) exp


−λ∗

τi(s)∫

0

p(ξ)dξ


 ϕ̃(s)ds

+
m∑

i=1

+∞∫

tk

pi(s) exp


−λ∗

τi(s)∫

0

p(ξ)dξ


 ϕ̃(s)ds

whence, in view of (4.6), we find

u(σ(tk)) ≥
m∑

i=1

ϕ̃(tk) exp


−ε

tk∫

0

p(ξ)dξ




×
tk∫

σ(tk)

exp


ε

s∫

0

p(ξ)dξ


 pi(s) exp


−λ∗

τi(s)∫

0

p(ξ)dξ


 ds

+
m∑

i=1

ϕ̃(tk)

+∞∫

tk

pi(s) exp


−λ∗

τi(s)∫

0

p(ξ)dξ


 ds

= ϕ̃(tk)
m∑

i=1

+∞∫

tk

pi(s) exp


−λ∗

τi(s)∫

0

p(ξ)dξ


 ds− ϕ̃(tk) exp


−ε

tk∫

0

p(s)ds
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×
m∑

i=1

tk∫

σ(tk)

exp


ε

s∫

0

p(ξ)dξ


 d

+∞∫

s

pi(ξ) exp


−λ∗

τi(ξ)∫

0

p(ξ1


 dξ1)dξ

= ϕ̃(tk)
m∑

i=1

exp


−ε

tk∫

σ(tk)

p(s)ds




+∞∫

σ(tk)

pi(s) exp


−λ∗

τi(s)∫

0

p(ξ)dξ


 ds.

By (4.7), for sufficiently large k we obtain

e−(1+M)ε

m∑
i=1

exp


λ∗

σ(tk)∫

0

p(ξ)dξ




+∞∫

σ(tk)

pi(s) exp


−λ∗

τi(s)∫

0

p(ξ)dξ


 ds ≤ 1

Consequently,

lim inf
t→+∞

exp


λ∗

t∫

0

p(ξ)dξ




m∑
i=1

+∞∫

t

pi(s) exp


−λ∗

τi(s)∫

0

p(ξ)dξ


 ds ≤ e(1+M)ε.

This contradicts inequality (4.2) and the proof of the theorem is complete. ¤
Proof of Theorem 2.2. It suffices to show that conditions (2.6) and (2.7) imply
inequality (2.4). Indeed, by (2.6) and (2.7) there exist ε > 0 and t1 > t0 such
that

t∫

τi(t)

p(s)ds > αi − ε for t ≥ t1 (i = 1, . . . , m) (4.8)

and for any λ ∈ (0, +∞),

1

p(t)

m∑
i=1

pi(t)e
λ(αi−ε) ≥ (1 + ε)λ for t ≥ t1. (4.9)

According to (4.8) and (4.9), for any λ ∈ (0, +∞) we find

exp


λ

t∫

0

p(s)ds




m∑
i=1

+∞∫

t

pi(s) exp


−λ

τi(s)∫

0

p(ξ)dξ


 ds

≥ exp


λ

t∫

0

p(s)ds




+∞∫

t

m∑
i=1

pi(s)e
λ(αi−ε) exp


−λ

s∫

0

p(ξ)dξ


 ds

≥ λ(1 + ε) exp


λ

t∫

0

p(s)ds




+∞∫

t

exp


−λ

s∫

0

−
p(ξ)dξ


 p(s)ds

= 1 + ε for t ≥ t1.

Therefore condition (2.4) holds and the proof of the theorem is complete. ¤
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Proof of Theorem 2.3. From (2.8), using the inequality ex ≥ ex, clearly follows
(2.7). This completes the proof. ¤

Proof of Theorem 2.4. It is enough to show that (2.9) yields (2.4). Indeed,
according to (2.9) there exist t1 ∈ R+ and ε > 0 such that

t∫

τi(t)

p(s)ds ≥ 1 + ε

e
for t ≥ t1 (i = 1, . . . ,m).

Thus for any λ ∈ (0, +∞) we have

exp


λ

t∫

0

p(s)ds




m∑
i=1

+∞∫

t

pi(s) exp


−λ

τi(s)∫

0

p(ξ)dξ


 ds

≥ e
(1+ε)λ

e exp


λ

t∫

0

p(s)ds




+∞∫

t

p(s) exp


−λ

τi(s)∫

0

p(ξ)dξ


 ds

≥ e(1 + ε)λ

λe
= 1 + ε.

Consequently, (2.4) is satisfied. ¤

Proof of Theorem 2.5. Below we will assume that

lim sup
t→+∞

t∫

τi(t)

pi(s)ds ≤ 1 (i = 1, . . . , m).

Otherwise it is easy to show that (1.1) is oscillatory. Thus, by virtue of (2.10),
condition (2.3) is satisfied. Therefore it is enough to show that inequality (2.4)
holds. Due to (2.11) and (2.12) there exist t1 ∈ R+ and ε ∈ (0, βi) such that

t∫

τi(t)

pi(s)ds > βi − ε fort ≥ t1 (i = 1, . . . , m) (4.10)

and for any λ ∈ (0, +∞),

m∑
i=1

e(βi−ε)λ

λ
> 1 + ε. (4.11)

Put

pi(t)− p1(t) = qi(t), η(t, s) = exp


−λ

m∑
i=1

∣∣∣∣
τi(s)∫

t

qi(ξ)dξ

∣∣∣∣


 for s ≥ t ≥ t1
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(i = 1, . . . , m) and

ψ(t, λ) = exp


λ

t∫

0

p(s)ds




m∑
i=1

+∞∫

t

pi(s) exp


−λ

τi(s)∫

0

p(ξ)dξ


 ds.

According to (4.10), (4.11), for any λ ∈ (0, +∞) we have

ψ(t, λ) = exp


λ

m∑
i=1

t∫

0

qi(s))ds


 exp


λm

t∫

0

p1(s)ds




×
m∑

i=1

+∞∫

t

(qi(s) + p1(s)) exp


−λ

m∑
i=1

τi(s)∫

0

qi(ξ)dξ


 exp


−λm

τi(s)∫

0

p1(ξ)dξ


 ds

≥ exp


λm

t∫

0

p1(s)ds




m∑
i=1

+∞∫

t

mp1(s) exp


−λm

τi(s)∫

0

p1(ξ)dξ


 η(t, s)ds

− exp


λm

t∫

0

p1(s)ds




+∞∫

t

m∑
i=1

|qi(s)|η(t, s)

× exp


−λm

s∫

0

p1(ξ)dξ


 exp


λm

s∫

τi(s)

p1(ξ)dξ


 ds.

Therefore, if we take into account the condition lim
t→+∞

η(t, s) = 1, then by (2.3)

and (2.10) we obtain for any λ ∈ (0, +∞),

lim inf
t→+∞

ψ(t, λ) ≥ lim inf
t→+∞

exp


λm

t∫

0

p1(s)ds




×
m∑

i=1

+∞∫

t

mp1(s) exp


−λm

s∫

0

p1(ξ)dξ


 e(βi−ε)λds

−lim sup
t→+∞

eλm(1+M)

+∞∫

t

m∑
i=1

|qi(ξ)|η(t, ξ)dξ

= lim inf
t→+∞

exp


λm

t∫

0

p1(s)ds




+∞∫

t

mp1(s) exp


−λm

s∫

0

p1(ξ)dξ




×
m∑

i=1

e(βi−ε)λ =
m∑

i=1

e(βi−ε)λ

λ
.
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Consequently, according to (4.11) inequality (4.2) evidently holds. The proof is
complete. ¤

The validity of Theorem 2.6 easily follows from Theorem 2.5 if we take into
consideration the inequality ex ≥ ex.

Remark 4.1. As it is noted in the Introduction, several sufficient conditions
for the oscillation of equation (1.1) for τi(t) = t − τi (i = 1, . . . , m), where τi

(i = 1, . . . , m) are positive constants, are established in [1,15,17], while a non-
integral condition is given in [9] for τi(t) = t − Ti(t), where Ti are continuous
and positive-valued functions on [0,∞). However, as the following example
indicates, even in the case of constant coefficients and constant delays none of
the conditions in the said papers [1,9,15,17] is satisfied, while the conditions of
Theorem 2.5 are satisfied.

Example 4.1. Consider the equation

u′(t) + u(t− τ) + u(t− (1/e− τ)) = 0, (4.12)

where τ ∈ (0, 1
e
), τ 6= 1/2e. It is easy to see that none of the conditions in

[1,9,15,17] is satisfied. However we will show that the conditions of Theorem
2.5 are satisfied. To this end it suffices to show the validity of the inequality

min

{(
eτλ

λ
+

e( 1
e
−τ)λ

λ

)
: λ ∈ (0,∞)

}
> 1. (4.13)

Since

min

{
eτλ

λ
: λ ∈ (0,∞)

}
= τe, min

{
e( 1

e
−τ)λ

λ
: λ ∈ (0,∞)

}
= 1− τe

and the functions eτλ

λ
, e( 1

e−τ)λ

λ
attain their minima at different points, it is clear

that (4.13) is valid. According to Theorem 2.5 all solutions of equation (4.12)
oscillate.
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