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Abstract. We consider the problem of transition from a weakly separated
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Let (E, S) be a measurable space. A family of probability measures (µi)i∈I


defined on this space is called weakly separated if there exists a family (Xi)i∈I


of measurable subsets of E such that


(∀i)(i ∈ I & j ∈ I → µi(Xj) = δ(i, j)),


where δ(i, j)denotes Kronecker’s function on the Cartesian square I2 of the
set I.


A family of probability measures (µi)i∈I defined on the measurable space
(E, S) is called strictly separated if there exists a disjoint family (Xi)i∈I of
measurable subsets of E such that


(∀i)(i ∈ I → µi(Xi) = 1).


It is clear that an arbitrary strictly separated family (µi)i∈I of probability mea-
sures is weakly separated.


In connection with the definitions above, see [6] where the structure of weakly
separated and strictly separated families of probability measures is investigated.


In a general theory of statistical decisions there often arises a question of
transition from a weakly separated family of probability measures to the cor-
responding strictly separated family. In this context, the following result is of
certain interest.


Theorem 1. In the system of axioms (ZFC) the following three conditions
are equivalent:


1) The Continuum Hypothesis (c = 2ℵ0 = ℵ1);
2) for an arbitrary probability space (E, S, µ), the µ-measure of the union of


any family (Ei)i∈I of µ-measure zero subsets, such that card(I) < c, is equal to
zero;


3) an arbitrary weakly separated family of probability measures, of cardinality
continuum, is strictly separated.
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Proof. 1) → 2). Let (E, S, µ) be an arbitrary probability space and let (Ei)i∈I


be a family of µ-measure zero subsets of E such that card(I) < c. Applying
condition 1), we have card(I) ≤ ω, where ω denotes the cardinality of the set
of all natural numbers. Finally, applying the semiadditivity of the measure µ,
we obtain


µ
( ⋃


i∈I


Ei


)
≤


∑
i∈I


µ(Ei) = 0.


The implication 1) → 2) is thus proved.
2) → 3). Let ωφ denote the first ordinal number of cardinality of the contin-


uum, let (µξ)ξ≺ωφ
be a family of probability measures defined on a measurable


space (E, S) and suppose that there exists a family (Xξ)ξ≺ωφ
of measurable


subsets of E such that


(∀ξ)(∀τ)(ξ ≺ ωφ & τ ≺ ωφ → µξ(Xτ ) = δ(ξ, τ)),


where δ(ξ, τ) denotes Kronecker’s function on the Cartesian square [0; ωφ[×
[0; ωφ[ of the set [0; ωφ[.


Let


(∀ξ)
(
ξ ≺ ωφ → Yξ = Xξ \


⋃


τ≺ξ


Xτ


)
.


By the condition 2) we conclude that (Yξ)ξ≺ωφ
is a disjoint family of measur-


able subsets of the space E such that


(∀ξ)(ξ ≺ ωφ → µξ(Yξ) = 1).


This means that the implication 2) → 3) is proved.
3) → 1). For arbitrary x ∈]0; 1[, define the σ-algebra Bx of subsets of the


space 42 =]0; 1[×]0; 1[ by


Bx =
{
Y |Y ⊆ 42 & (card(Y ∩({x}×]0; 1[))≤ℵ0)∨(card(({x}×]0; 1[)\Y )≤ℵ0)


}
.


For arbitrary x ∈]1; 2[, denote by Bx the σ-algebra of subsets of the space 42


defined by


Bx =
{


Y |Y ⊆ 42 & (card(Y ∩ (]0; 1[×{x− 1})) ≤ ℵ0)


∨(card((]0; 1[×{x− 1}) \ Y ) ≤ ℵ0)
}
.


Let us put


S =
⋂


x∈]0;1[∪]1;2[


Bx.


It is clear that each element of the families ({x}×]0; 1[)x∈]0;1[ and (]0; 1[×
{x− 1})x∈]1;2[ belongs to the σ-algebra S.


Define the family (µt)t∈]0;1[∪]1;2[ of probability measures by


(∀t)
(


t ∈]0; 1[ → (∀Z)


(
Z ∈ S → µt(Z)


=


{
1, if card(({t}×]0; 1[) \ Z) ≤ ℵ0,
0, if card(({t}×]0; 1[) ∩ Z) ≤ ℵ0


))
,
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(∀t)
(


t ∈]1; 2[ → (∀Z)


(
Z ∈ S → µt(Z)


=


{
1, if card((]0; 1[×{t− 1}) \ Z) ≤ ℵ0,
0, if card((]0; 1[×{t− 1}) ∩ Z) ≤ ℵ0


))
.


Let us consider the family (Xt)t∈]0;1[∪]1;2[ of measurable subsets of the space
42, where


(∀t)
(


t ∈]0; 1[∪]1; 2[→ Xt =


{ {t}×]0; 1[ if t < 1
]0; 1[×{t− 1} if t > 1


)
.


It is clear that the family (µt)t∈]0;1[∪]1;2[ of probability measures is weakly
separated because of


(∀t1)(∀t2)((t1, t2) ∈
(
]0; 1[∪]1; 2[


)2 → µt1(Xt2) = δ(t1, t2)),


where δ(., .) denotes Kronecker’s function defined on the Cartesian square
(]0; 1[∪]1; 2[)2 of the set ]0; 1[∪]1; 2[.


From the condition 3) we have that the family (µt)t∈]0;1[∪]1;2[ of probability
measures is strictly separated. This means that there exists a family of disjoint
measurable subsets (Yt)t∈]0;1[∪]1;2[ such that


(∀t)(t ∈]0; 1[∪]1; 2[→ µt(Yt) = 1
)
.


We may assume without loss of generality that Yt ⊆ Xt for all t ∈]0; 1[∪]1; 2[.
Let us consider the sets A =


⋃
t∈]0;1[ Yt and B =


⋃
t∈]1;2[ Yt. It is clear that A


and B do not have common points. On the other hand, we can write


(∀x)
(
x ∈]0; 1[→ card(({x}×]0; 1[) ∩B) ≤ ℵ0


& card((]0; 1[×{x}) ∩ A) ≤ ℵ0


)
.


Denote by (Cξ)ξ≺ω1 some injective transfinite sequence of horizontal segments
of the space 42. It is clear that


card
(
A ∩


( ⋃


ξ≺ω1


Cξ


))
≤ ℵ0 × ℵ1 = ℵ1.


We have to prove that the orthogonal projection of the set A∩( ⋃
ξ≺ω1


Cξ


)
on


the interval ]0; 1[×{0} coincides with this interval. Indeed, let a be an arbitrary
vertical segment of the space 42. Since


card(B ∩ a) ≤ ℵ0,


there exists an ordinal index ξ0 ≺ ω1 such that the point of the intersection
of Cξ0 and a belongs to the set A. This means that the set A ∩ ( ⋃


ξ≺ω1
Cξ


)
is


projected on the whole interval ]0; 1[×{0} and therefore


2ℵ0 ≤ ℵ1. ¤


Remark 1. Note that the implication 1) → 3) was obtained in [6]. The
validity of the implication 3) → 1) was established in [15].
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Remark 2. M. Coldstern [4] offers a different proof of the equivalence of the
conditions 1) and 2). His proof is based on the following fact:


Fact A: There is a measure space and a family of ℵ1-many measure zero sets
whose union is not measure zero, and not even measurable.


Notice that Fact A is true in the usual axiomatic set theory (e.g., in ZFC).


One proof of Fact A reads as follows:
Take any uncountable set X. Consider the σ-algebra of those subsets of X


which are either at most countable or whose complement is at most countable.
Define the measure µ by letting µ(C) = 0 and µ(X \ C) = 1 whenever C is
countable. This is a complete measure and serves as an example for Fact A.


Here is the second example (proposed by the same author) with an incomplete
measure.


Consider the σ-algebra of Borel sets equipped with the Lebesgue measure.
Then there is a family of ℵ1-many measure zero sets whose union is not


measurable. This example can be found in [3](see Volume 5, Exercise 511Xj).


Remark 3. In the system of axioms (ZFC)&(¬CH)&(MA) the family of
probability measures (µt)t∈]0;1[∪]1;2[ considered in Theorem 1 is an example of a
weakly separated family of probability measures which is not strictly separated.


Remark 4. It is reasonable to note that the pair {A,B} constructed in The-
orem 1 is similar to the Sierpiṅski partition of the unit square ]0; 1[2 (see, e.g.,
[16]).


Remark 5. Applying the well-known results of Cohen and Gödel (see [1] and
[5]), we conclude that each of the following statements:


– “for an arbitrary probability space (E, S, µ) the µ-measure of the union of
every family (Ei)i∈I of µ-measure zero subsets, such that card(I) < c, is equal
to zero”;


– “an arbitrary weakly separated family of probability measures is strictly
separated whenever its cardinality is not greater than 2ℵ0”,
is independent of the theory ZFC.


Let us consider the question of transition from a weakly separated family of
probability measures to a strictly separated one when the family of probability
measures is defined on the so-called Radon metric space (about the notion of
a Radon metric space, see, e.g., [9], [17]). The next auxiliary proposition plays
the key role in our further consideration.


Lemma 1. Let (E, ρ) be a Radon metric space. Let µ be an arbitrary σ-finite
Borel measure defined on E. Then there exists a closed separable subspace E(µ)
of E such that


µ(E \ E(µ)) = 0.


Remark 6. We remind the reader that a cardinal number α is real-valued
measurable if there exists a continuous probability measure defined on the class
of all subsets of some set of cardinality α. In connection with Lemma 1, we
must also recall that an arbitrary complete metric space (E, ρ) whose topological
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weight is not a real-valued measurable cardinal, is a Radon metric space (see,
e.g., [9], p. 48, Theorem 7).


The following important result is essentially due to Martin and Solovay (see,
e.g., [2] and [7]).


Lemma 2. Let (F, ρ) be a separable metric space equipped with some prob-
ability Borel measure µ. If (Ei)i∈I is a family of µ-measure zero subsets of F ,
such that card(I) < c, then (in the system of axioms (ZFC) & (MA)) the outer
measure µ∗ of the set E =


⋃
i∈I Ei is equal to zero.


The proof of Lemma 4 can be found, e.g., in [7]. The following theorem is
valid.


Theorem 2. Let (F, ρ) be a Radon metric space. Let (µi)i∈I be a weakly
separated family of Borel probability measures with card(I) ≤ c defined on (F, ρ).
Then, in the system of axioms (ZFC) & (MA), the family (µi)i∈I is strictly
separated.


Proof. Note that an arbitrary Borel probability measure µ defined on the space
(F, ρ) has the property


(∀J)(∀(Xi)i∈J)


(
card(J)<2ℵ0 & (∀i)(i ∈ J → µ(Xi)=0) → µ∗


( ⋃
i∈J


Xi


)
= 0


)
.


Indeed, by Lemma 3 applied to µ, there exists a separable closed support
F (µ) in (F, ρ). Let us consider the set


⋃
i∈J


Xi =
[( ⋃


i∈J


Xi


)
∩ F (µ)


]
∪


[
(F \ F (µ)) ∩


( ⋃
i∈J


Xi


)]
.


Using Lemma 4, we conclude that the set
( ⋃


i∈J Xi


) ∩ F (µ) is a µ∗-measure
zero subset of F (µ). Note that the outer measure of the set (F \ F (µ)) ∩( ⋃


i∈J Xi


)
is equal to zero because µ(F \ F (µ)) = 0.


Let (µi)i∈J be a weakly separated family of Borel probability measures with
card(J) ≤ c. Let us represent this family as an injective sequence (µξ)ξ≺ωα ,
where the first ordinal number of cardinality J is denoted by ωα. Since the
family (µξ)ξ≺ωα is weakly separated, there exists a family (Xξ)ξ≺ωα of Borel
subsets of the space F such that


(∀ξ)(∀τ)(ξ ∈ [0; ωα[ & τ ∈ [0; ωα[→ µξ(Xτ ) = δ(ξ, τ)),


where δ(., .) denotes Kronecker’s function on the Cartesian square [0; ωα[2 of the
set [0; ωα[. Let us define an ωα-sequence of subsets (Bξ)ξ≺ωα of the metric space
F so that:


1)(∀ξ)(ξ ≺ ωα → Bξ is a Borel subset in F );
2)(∀ξ)(ξ ≺ ωα → Bξ ⊆ Xξ);
3)(∀τ1)(∀τ2)(τ1 ≺ ωα & τ2 ≺ ωα & τ1 6= τ2 → Bτ1 ∩Bτ2 = ∅);
4)(∀τ)(τ ≺ ωα → µτ (Bτ ) = 1).
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Take B0 = X0. Let, for ξ ≺ ωα, the partial sequence (Bτ )τ≺ξ be already
constructed. It is clear that


µ∗ξ
( ⋃


τ≺ξ


Bτ


)
= 0.


This means that there exists a Borel subset Yξ of the space F such that
⋃


τ≺ξ


Bτ ⊆ Yξ, µξ(Yξ) = 0.


We put Bξ = Xξ \ Yξ. Now it can easily be verified that the ωα-sequen-
ce (Bξ)ξ≺ωα of disjoint measurable subsets of the space F is constructed so
that


(∀ξ)(ξ ≺ ωα → µξ(Bξ) = 1
)
. ¤


Remark 7. Theorem 2 generalizes the main results obtained in [15] and [18].
Similar results are also discussed in [8], [10], [11], [13] and [14].


The next remark shows that all complete metric spaces can be assumed to
be Radon (under some additional set-theoretic hypothesis.


Remark 8. The following conditions are equivalent:
a) an arbitrary complete metric space is a Radon space;
b) there does not exist a real-valued measurable cardinal.


Proof. a) → b). Assume the contrary and let J be a real-valued measurable
cardinal. Let µ be a continuous probability measure defined on the class of all
subsets of J .


Let us define a metric space (V, ρ) by
1) V = J ;
2) (∀x)(∀y)(x ∈ V &y ∈ V → ρ(x, y) = 1 if x 6= y, and ρ(x, y) = 0 if x = y).
It is clear that (V, ρ) is a complete metric space whose topological weight is


equal to J . The measure µ is not concentrated on a separable closed subset,
because such a subset is at most countable and hence has µ-measure zero.


b) → a). Let (V, ρ) be an arbitrary complete metric space and W be its
topological weight. By using the validity of the condition b), we have that W is
not a real-valued measurable cardinal. In view of Remark 6 we conclude that
(V, ρ) is a Radon metric space. ¤
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Matematyczne, 34 Państwowe Wydawnictwo Naukowe, Warsaw, 1958.


17. N. N. Vakhania, V. I. Tarieladze and S. A. Chobanyan, Probability distributions in
Banach spaces. Mathematics and its Applications (Soviet Series), 14. D. Reidel Publishing
Co., Dordrecht, 1987; Russian original: Nauka, Moscow, 1985.


18. Z. S. Zerakidze, Weakly separable and separable families of probability measures. (Rus-
sian) Soobshch. Akad. Nauk Gruzin. SSR 113(1984), No. 2, 273–275.


(Received 23.04.2002)


Author’s address:


Department of Mathematics No. 63
Georgian Technical University
77, Kostava St., Tbilisi 0175
Georgia
E-mail: gogi pantsulaia@hotmail.com






