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ON BOUNDS FOR THE CHARACTERISTIC FUNCTIONS OF
SOME DEGENERATE MULTIDIMENSIONAL

DISTRIBUTIONS

T. SHERVASHIDZE

Abstract. We discuss an application of an inequality for the modulus of
the characteristic function of a system of monomials in random variables
to the convergence of the density of the corresponding system of the sam-
ple mixed moments. Also, we consider the behavior of constants in the
inequality for the characteristic function of a trigonometric analogue of the
above-mentioned system when the random variables are independent and
uniformly distributed. Both inequalities were derived earlier by the author
from a multidimensional analogue of Vinogradov’s inequality for a trigono-
metric integral. As a byproduct the lower bound for the spectrum of AkA′k is
obtained, where Ak is the matrix of coefficients of the first k + 1 Chebyshev
polynomials of first kind.
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Introduction. This note consists of two addenda to [13] which gives an
upper bound for the modulus of the characteristic function (c.f.) of the system
of monomials in random variables, using a multidimensional analogue [2] of
the well-known inequality by I. M. Vinogradov for a trigonometric integral; see
Proposition 1 below. In fact, [13] contains a more general statement for an ap-
propriate multiple trigonometric integral, which implies another inequality for
the particular random vector whose components are products of cosines of mul-
tiples of random arguments, which are independent and uniformly distributed
in [0, π]; see Proposition 2 below. We refer to [13] for an answer to the ques-
tion why this case is important to be considered (as well as for a short review
of the problem of constructing bounds for c.f. of degenerate multidimensional
distributions and a list of some basic references). Our first result concerns the
constants appearing in this bound. It enables us to replace them by others
which have an explicit dependence both on the number of variables and on
maximal multiplicity of a random argument. The result follows from the lower
bound which we have constructed for the spectrum of a matrix composed by the
coefficients of the Chebyshev polynomials of first kind. On the other hand, we
emphasize here the applicability of such analytic tools as the propositions men-
tioned, distinguishing by means of the first of them a certain class of densities
such that if a population density belongs to this class, the density of a properly
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centered and normalized system of sample mixed moments converges to an ap-
propriate normal density. This result is a simple consequence of the well-known
limit theorems for sums of independent random vectors, but it is given just as
a useful reference for statisticians, who often pose a question whether sampling
distributions of parameter estimators are convergent in a stronger sense as com-
pared with weak convergence (see, e.g., [3, 8, 9, 14]). Another advantage is that
due to the Sheffé’s theorem [12] the density convergence implies convergence in
variation. For some efficient examples of the application of the convergence in
variation in statistics see [10,11].

1. Preliminaries. Let ξ =(ξ1, . . . , ξs) ∈ Rs be a random vector and f(·, ζ)
denote the c.f. of a random vector ζ. Let the multiindex j = (j1, . . . , js) vary
in Js,k = {0, 1, . . . , k}s \ {0},0 = (0, . . . , 0), which is ordered lexicografically.

For j∈ Js,k denote ξj = ξj1
1 . . . ξjs

s a monomial in the components of the random
vector ξ. As a random vector of particular interest consider the system of
monomials

Ms,k(ξ) =
(
ξj, j ∈ Js,k

)
.

Denote t = (tj, j ∈ Js,k) ∈ R(k+1)s−1 and τ = τ(t) = max
{|tj| : j ∈ Js,k

}
. If

η = (η1, . . . , ηs) denotes a random vector with the uniform distribution in [0, 1]s,
a multidimensional analogue of Vinogradov’s inequality from [2, p.39] can be
written in a form∣∣f(t,Ms,k(η))| ≤ 32s(2π)1/kτ−1/k lns−1(2 + τ/(2π)) ∧ 1. (1)

Let D = [a1, b1]×· · ·×[as, bs] be a parallelepiped with edges of positive length
hi = bi − ai < ∞, i = 1, . . . , s; for 1 ≤ i1 < · · · < ir ≤ s, 1 < r < s, denote
D(i1, . . . , ir) = [ai1 , bi1 ] × · · · × [air , bir ] and Dc(i1, . . . , ir) =

∏{[ai, bi] : i =
1, . . . , s, i 6= i1, . . . , ir}. The notation x(i1, . . . , ir) and xc(i1, . . . , ir) for x ∈ Rs

is to be understood similarly. Denote further by V and Vc(i1, . . . , ir) the sets of
vertices of the parallelepipeds D and Dc(i1, . . . , ir), respectively, and

Π(z) =
r∏

i=1

max(1, |zi|), z = (z1, . . . , zr) ∈ Rr, 1 ≤ r ≤ s.

Denote now by P the class of probability densities pξ(x) = p(x), x ∈ D,
such that p(x) is continuous in D and has, in D, continuous partial derivatives
pi = pxi

, pij = pxixj
, . . . , p1···s = px1...xs . Introduce the notation

Cr =
∑

1≤i1<···<ir≤s

∑

xc(i1,...,ir)∈Vc(i1,...,ir)

Π(xc(i1, . . . , ir))

×
∫

D(i1,...,ir)

Π(x(i1, . . . , ir))|pi1...ir(x)| dx(i1, . . . , ir), 1 ≤ r < s,

C0 =
∑
x∈V

Π(x)p(x), Cs =

∫

D

Π(x)|p1...s(x)| dx.

Let P also contain those densities, for which some of the edges of D have an
infinite length while the previous smoothness conditions are fulfilled in every
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bounded parallelepiped D(b) ⊂ D and the above expressions calculated for D(b)

have finite limits (as D(b) approaches D) denoted again by Cr, 0 ≤ r ≤ s.
In [13] from (1) the following inequality is derived (for which the formula of

integration by parts for several variables serves as a main tool):
∣∣f(t,Ms,k(ξ))

∣∣ ≤ C32s(2π)1/kτ−1/k lns−1(2 + τ/(2π)) ∧ 1,

where
C = C(s, k, pξ(·)) = C0 + · · ·+ Cs

(both for the bounded and the unbounded parallelepiped D).
It is possible, of course, to consider any sub-system ms,k(ξ) of the system

Ms,k(ξ). The c.f. of ms,k(ξ) can be obtained from f(t,Ms,k(ξ)) when substituting
0 instead of the coordinates of t with the indices outside the set of indices
corresponding to ms,k(ξ). Denote the suitable sub-vector of t by t(m). Clearly,
τ = τ(t) ≥ τ(t(m)) = τ(m). Since the right-hand side of (1) is decreasing with
respect to τ , we can replace τ by τ(m) for the fixed s and k. Further if d(m) is

the dimension of t(m), 1 ≤ d(m) ≤ (k + 1)s− 1, we have that τ(m) ≥ ‖t(m)‖d−1/2
(m) ,

where ‖t(m)‖ is Euclidean norm of t(m). In particular, τ ≥ ‖t‖[(k + 1)s − 1]−1/2

for t ∈ R(k+1)s−1, and the inequalities given above can be expressed in terms of
‖t(m)‖ and ‖t‖ as well. Let us formulate the second one in terms of t(m).

Proposition 1. If pξ(x) ∈ P, then
∣∣f(t,ms,k(ξ))

∣∣ ≤ C1‖t(m)‖−1/k lns−1(2 + C2‖t(m)‖) ∧ 1,

where t(m) ∈ Rd(m),

C1 = C(s, k, pξ(x)) = C32s(2π)1/kd
1/(2k)
(m) ,

C2 = C2(s, k) = (2π)−1d
−1/2
(m) .

For ms,k(ξ) = Ms,k(ξ) we have d(m) = [(k + 1)s − 1] and t(m) = t.
Let us now consider a trigonometric analogue of the system Ms,k(ξ) when ξ

is replaced by a random vector η uniformly distributed in [0, 1]s. Introduce the
system of cosines products

M
(c)
s,k(η) =

(
cos j1πη1 · · · cos jsπηs, j ∈ Jk,s

)
.

With the change of variables ζi = cos πηi, i = 1, . . . , s, we arrive at the system

M̃ (c)
s,k(ζ) =

(
Tj1(ζ1) · · ·Tjs(ζs), j ∈ Js,k

)
,

where Tr(u) =
r∑

i=0

ariu
i, u ∈ [−1, 1], is the Chebyshev polynomial of first kind

and ζ1, . . . , ζs are independent identically distributed random variables with the
common unbounded density defined in (−1, 1) (see [13]).

Let Ak be lower triangular (k+1)×(k+1)-matrix of coefficients of Chebyshev
polynomials with rows (ar0, . . . , arr, 0, . . . , 0), r = 0, . . . , k, and denote by λk the
least eigenvalue of the matrix AkA

′
k. Proposition 1 is not directly applicable

to the system of polynomials M̃ (c)
s,k(ζ), but in [13] this case was treated using
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some truncation argument. As a result the following inequality has been proved
which has turned out to have an optimal exponent of ‖t‖: for s = 1 there exist
directions in Rk along which the modulus of c.f. behaves asymptotically as
‖t‖−1/(2k).

Proposition 2. The following inequality holds:

|f(t,M
(c)
s,k(η))| ≤ C3‖t‖−

1
k(s+1) ln

s−1
s+1 (2 + C4‖t‖) ∧ 1,

where

C3 = C3(s, k) = C0
3(s, k)λ

− 1
2k(s+1)

k , C4 = C4(s, k) = C0
4(s, k)λ

s/2
k

with

C0
3(s, k) = 2

9ks+1
k(s+1) π−

2ks−1
k(s+1) s

1
s+1 [(k + 1)s − 1]

1
2k(s+1) ,

C0
4(s, k) = C2(s, k) = (2π)−1[(k + 1)s − 1]−1/2.

To have a complete picture of dependence of the constants C3(s, k) and
C4(s, k) on k and s we need to estimate λk from below.

2. Bounds for λk. We have

λk = λmin(Bk),

where Bk = AkA
′
k and Ak as mentioned below is defined by the coefficients of

the Chebyshev polynomials

Tn(u) = cos n arccos u =
n∑

i=0

aniu
i, n = 0, 1, . . . , k.

As it is well-known (see, e.g., [4], p. 25),

Tn+1(u) = 2uTn(u)− Tn−1(u), n ≥ 1, T0(u) ≡ 1, T−1(u) ≡ 0,

which implies that

an+1,i = 2an,i−1 − an−1,i, 0 ≤ i ≤ n. (2)

Further, ani = 0, i > n, an0 = cos nπ
2

, a00 = 1, an+1,n+1 = 2ann − an−1,n = 2ann,

i.e., ann = 2n, n ≥ 0, and therefore |Ak| = 1 · 2 · · · 2k = 2
k(k+1)

2 ; thus

|Bk| = |AkA
′
k| = 2k(k+1),

which gives that λk+1
k ≤ 2k(k+1) and

λk ≤ 2k = λ∗k. (3)

To obtain a lower bound for λk let us estimate the trace of B−1
k from above.

If λ0 ≥ · · · ≥ λk stand for the eigenvalues of Bk in decreasing order, λ−1
j ,

j = 0, . . . , k, are the eigenvalues of B−1
k in increasing order and

1

λk

≤ 1

λ0

+ · · ·+ 1

λk

=
k∑

j=0

|Bjj|
|Bk| ≤ |Bk|−1

k∑
j=0

b00 · · · bkk

bjj

, (4)
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where bjj, j = 0, . . . , k, are diagonal elements of the positive definite matrix Bk

and |Bjj| are principal minors of |Bk|.
Let us estimate bnn from above. From (2) we have that

a2
n+1,i = 4a2

n,i−1 + a2
n−1,i − 4an,i−1an−1,i (5)

and summing (5) with respect to i from 1 till n + 1, we obtain

bn+1,n+1 − cos2(n + 1)
π

2
= 4bnn + bn−1,n−1 − cos2(n− 1)

π

2
− 4

n+1∑
i=1

an,i−1an−1,i.

The Cauchy inequality leads to the estimate

( n+1∑
i=1

an,i−1an−1,i

)2

≤
n+1∑
i=1

a2
n,i−1

n+1∑
i=1

a2
n−1,i = bnn

(
bn−1,n−1 − cos2(n− 1)π/2

)
,

whence

bn+1,n+1 ≤
(
2
√

bnn +
√

bn−1,n−1

)2
.

Let us now introduce a new sequence sn such that bnn ≤ s2
n for n ≥ 0,

s0 = b00 = 1, s1 =
√

b11 = 2 and

sn+1 = 2sn + sn−1. (6)

The sequence {sn} satisfying (6) must be of the type

sn = c1µ
n
1 + c2µ

n
2 ,

where µ1, µ2 are the roots of the characteristic equation

µ2 − 2µ− 1 = 0,

i.e., µ1 = 1 +
√

2, µ2 = 1 − √2, and the constants c1, c2 are calculated by the

initial conditions s0 = 1 and s1 = 2: c1 =
√

2+1
2
√

2
, c2 =

√
2−1

2
√

2
.

Therefore

sn =
1

2
√

2

(
(
√

2 + 1)n+1 − (1−
√

2)n+1
)

(in particular, we have s0 = 1, s1 = 2, s2 = 5).
It is easy to see that

s2
n =

1

8

[
(
√

2 + 1)2(n+1) + (1−
√

2)2(n+1) + 2(−1)n
]

=
1

8

[
(3 + 2

√
2)(
√

2 + 1)2n + (3− 2
√

2)n+1 + (−1)n
]

< 6n.

Finally

λ−1
k ≤ 2−k(k+1)

k∑
j=0

6−j · 6
kP

j=0
j

< 2−k(k+1)6
k(k+1)

2
1

1− 1/6
=

6

5

(3

2

) k(k+1)
2

and we arrive at the following
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Proposition 3. A lower bound of the spectrum of matrix AkA
′
k is given by

the relation

λk ≥ 5

6

(2

3

) k(k+1)
2

= λk∗. (7)

In particular, λ0∗ = 5
6
, λ1∗ = 5

9
, λ2∗ = 10

27
.

Thus in the constants C3 and C4 appearing in Proposition 2 one can replace
λk by λk∗ defined in (7).

Let us now compare λk with λk∗ for k = 0, 1, 2.
For k = 0 B0 = 1, λ0 = 1, λ0∗ = 5

6
,

for k = 1 B1 =

(
1 0
0 4

)
, λ1 = 1, λ1∗ = 5

9
,

for k = 2 B2 =




1 0 −1
0 4 0
−1 0 17


 , λ2 = 9−√68 = 0.73, λ2∗ = 10

27
.

3. Convergence of the Density of a System of Sample Mixed Mo-
ments. Proposition 1 finds a convenient application in the limit theorem for
the density of the system of sample mixed moments. The background for it
is the multidimensional version of Gnedenko’s famous local limit theorem for
densities of sums of independent identically distributed random variables with
finite variances due to Hekendorf [6]. It asserts that integrability of some natural
power of the modulus of c.f. of common distribution is necessary and sufficient
for the uniform convergence of densities of sums to the normal density.

Let us first consider the case of one-dimensional population ξ with a density
p(x), x ∈ R1, such that max(1, |x|)|p′(x)| ∈ L(R1) and there exist limits of
xp(x) as x tends to infinite ends of an interval supporting p(x), i.e., p(x) ∈ P.

In this case M1,k(ξ) = (ξ, . . . , ξk), k > 1, and according to Proposition 1,

|f(t,M1,k(ξ))| ≤ C1(k, p(x))‖t‖−1/k ∧ 1, t ∈ Rk. (8)

If Eξ2k < ∞, the random vector M1,k(ξ) has the covariance matrix

C = (cij = Eξi+j − EξiEξj, i, j = 1, . . . , k)

which is nonsingular since the inequality

E

[ k∑
j=1

aj(ξ
j − Eξj)

]2

=

∫

R1

[ k∑
j=1

aj(x
j − Eξj)

]2

p(x) dx > 0 (9)

holds true for any a = (a1, . . . , ak) ∈ Rk except for a = 0.
Under the condition Eξ2k < ∞ the Lindeberg–Lévy theorem implies that if

ξ(1), ξ(2), . . . are independent copies of the random variable ξ, then the normal-
ized sum

Sn = n−1/2[M1,k(ξ
(1) + · · ·+ M1,k(ξ

(n))− nEM1,k(ξ
(1))]
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as n →∞ has the limiting normal distribution ΦC with mean 0 and covariance
matrix C. If we now introduce the notation

M1,k(ξ) =
1

n

n∑
j=1

M1,k(ξ
(j))

for the vector of sample initial moments constructed by the sample ξ(1), . . . , ξ(n)

from the population ξ with the density p(x), then the normalized sum Sn can
be written as

Sn =
√

n [M1,k(ξ)− EM1,k(ξ
(1))]

and we obtain the assertion about the weak limit ΦC for the distribution PSn of
the system of sample initial moments with the suitable centering and normal-
ization.

But for those n for which PSn has the density pSn(x) with respect to the
Lebesgue measure in Rk we have the following expression for the total variation
distance v(PSn , ΦC) between PSn andΦC, i.e., for the value in Rk of the total
variation of the signed measure PSn − ΦC,

v(PSn , ΦC) =

∫

Rk

|pSn(x)− ϕC(x)|dx,

which according to Scheffé’s theorem [12] tends to zero if densities converge
pointwise. So the conditions which guarantee the convergence of density imply
the convergence in total variation. As we have already mentioned, the conver-
gence of densities in our situation is equivalent to the existence of a natural
number r such that |f(t,M1,k(ξ))|r ∈ L(Rk). Let us try to find r.

Using (8) and passing to the polar coordinates, we formally have∫

Rk

|f(t,M1,k(ξ))|rdt ≤ V (B) + C1

∫

Rk\B
‖t‖−r/kdt

≤ V (B) + C ′
1

∫ ∞

b

‖t‖k−1 · ‖t‖−r/kd‖t‖,

where B is the ball of a radius b in Rk centered at the origin outside which
the inequality (8) becomes non-trivial and V (B) is its volume, while C ′

1 is the
product of C1 and the integral taken from the factor of Jacobian depending on
angle coordinates. The latter integral is finite if − r

k
+ k − 1 < −1 and hence

r > k2, (10)

e.g., r can be taken equal to k2 + 1.
It is evident that uniform, exponential and normal densities belong to the

class P introduced above.
Example 1. Let ξ have the uniform distribution in [0, 1]. Consider the

random vector M1,2(ξ) = (ξ, ξ2) and let ξ(1), ξ(2), . . . be independent copies of
the random variable ξ. As Eξn = 1

n+1
, n = 1, 2, . . . , we have EM1,2(ξ) =

(1/2, 1/3),

C =

(
1/12 1/12
1/12 4/45

)
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and, according to (10), |f(t,M1,2(ξ))|r is integrable for r = 5. Thus for n ≥ 5

there exists a density of Sn =
√

n(M1,2(ξ) − (1/2, 1/3)) which converges to
ϕC(x) in R2 and as a result v(PSn , ΦC) → 0 (n →∞).

Example 2. Let ξ have the exponential distribution with parameter 1. Ac-
cording to Proposition 1 the random vector M1,2(ξ) has the c.f. integrable in

5th power and as Eξn = n! the random vector Sn =
√

n(M1,2(ξ) − (1, 2)) con-
structed by independent copies ξ(1), . . . , ξ(n) of ξ has a limiting normal density
ϕC(x) with

C =

(
1 4
4 20

)
;

as a result v(PSn , ΦC) → 0 (n →∞).
If s > 1 and the population ξ = (ξ1, . . . , ξs) has a density p(x) ∈ P, then

the c.f. of the system of monomials Ms,k(ξ) behaves according to Proposition
1, i.e., passing again to the polar coordinates, we obtain that its rth power is
integrable as a function of t ∈ R(k+1)s−1 as soon as the function

‖t‖(k+1)s−2‖t‖−r/k lnr(s−1)(2 + C2(k, s)‖t‖) ∈ L((b,∞))

for some positive b. But it takes place if (k + 1)s − 2 − r/k < −1, and finally
for r we have the inequality

r > k[(k + 1)s − 1] (11)

which reduces to (10) for s = 1.
Let E(ξ1 · · · ξs)

2k < ∞, then the covariance matrix of the random vector
Ms,k(ξ) is as follows:

C = (cij = Eξi+j − EξiEξj, i, j ∈ Js,k),

and its nonsingularity is proved as in (9) for s = 1.
If now we introduce the system of sample mixed moments constructed by

independent copies of ξ = (ξ1, . . . , ξs) denoted by ξ(1), . . . , ξ(n) as

Ms,k(ξ) =
1

n

n∑
j=1

Ms,k(ξ
(j))

and note that according to the Lindeberg–Lévy theorem

Sn = n−1/2[Ms,k(ξ
(1) + · · ·+ Ms,k(ξ

(n))− nEMs,k(ξ
(1))]

has a weak limit ΦC in R(k+1)s−1, then the following proposition can be derived
from Hekendorf’s theorem, Proposition 1 and (11).

Proposition 4. If an s-dimensional population ξ has a density p(x) ∈ P and
E(ξ1 · · · ξs)

2k < ∞, then the system of sample mixed moments, constructed by
n independent observations transformed by proper centering and norming into

Sn =
√

n [Ms,k(ξ)− EMs,k(ξ
(1))],

has a density pSn(x) as soon as n exceeds the lower bound defined by (11) which
uniformly converges to the normal density ϕC(x) in R(k+1)s−1 and as a conse-
quence v(PSn , ΦC) → 0 (n →∞) holds too.
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Example 3. Let ξ = (ξ1, ξ2) have the normal distribution with the zero
mean and unit variances and covariance ρ, ρ2 < 1. According to Proposition 1
the random vector M2,1(ξ) = (ξ2, ξ1, ξ1ξ2) has the c.f. integrable in 4th power,

and random vector Sn =
√

n(M2,1(ξ) − (0, 0, ρ)) constructed by independent
copies ξ(1), . . . , ξ(n) of ξ has the limiting normal density ϕC(x) with

C =




1 ρ 0
ρ 1 0
0 0 1 + ρ2


 ;

as a consequence v(PSn , ΦC) → 0 (n →∞).
According to the properties of variation distance the convergence in varia-

tion asserted by Proposition 4 is preserved for any measurable function of the
random vector Sn. Thus it remains valid, e.g., for any system of sample central
moments. As there exist no results of Slutsky type(asserting that the limiting
distribution of a sequence of random variables is preserved when any even de-
pendent sequence is added to the initial one which tends to zero in probability;
see, e.g.,[5]) for densities, one should use the theorem on continuously differ-
entiable mapping (see Theorem 4.2.5 in [1]) to calculate the parameters of the
limiting normal distribution. Using the latter theorem again we arrive at the
covariance matrix C of the limiting (in the sense of convergence in variation)
normal distribution of the properly centered and normed vector composed of
the sample coefficients of skewness and curtosis constructed by means of inde-
pendent copies ξ(1), . . . , ξ(n) of a random variable ξ with finite eighth moment.
If ξ is normal, then

C =

(
6 0
0 33

)
.

Although convergence in variation of the distribution of multivariate measure
of curtosis seems difficult to treat by means of similar arguments as completely
as the weak convergence is treated in [7], the joint distribution of sample mar-
ginal measures of skewness and curtosis could be considered definitely.
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14. T. J. Sweeting, On a converse to Scheffé’s theorem. Ann. Statist. 14(1986), No. 3,
1252–1256.

(Received 24.02.2003)

Author’s addresses:

A. Razmadze Mathematical Institute
Georgian Academy of Sciences
1, M. Aleksidze St., Tbilisi 0193
Georgia
E-mail: sher@rmi.acnet.ge

The Abdus Salam International Centre for Theoretical Physics
11, Strada Costiera, Trieste 34014
Italy


