
Georgian Mathematical Journal
Volume 10 (2003), Number 2, 209–222
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Abstract. Functions of dimension modulo a (rather wide) class of spaces
are considered and the conditions are found, under which the dimension
of the product of spaces modulo these classes is equal to zero. Based on
these results, the sufficient conditions are established, under which spaces
of free topological semigroups (in the sense of Marxen) and spaces of free
topological groups (in the sense of Markov and Graev) are zero-dimensional
modulo classes of compact spaces.
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The question when the product of two spaces is π-compact (i.e., has an open
base, each element of which has a compact boundary) was studied in various
particular cases in [17], [10] and in a general case in [5].

According to A. Lelek and J. de Groot (see, e.g., [1] and [14]), if a function of
dimension type is considered modulo a class of compact spaces which is defined
by the method of induction analogously to the function ind , then π-compact
spaces turn out to be zero-dimensional (modulo a class of compact spaces).

In this paper, functions of dimension modulo a (rather wide) class of spaces
are considered and the conditions are found, under which the dimension of
the product of spaces modulo these classes is equal to zero. These results
can therefore be regarded as a generalization of the results of [17], [10] and
[5]. Moreover, based on the same results of [17], the sufficient conditions are
established, under which spaces of free topological semigroups (in the sense
of Marxen) and spaces of free topological groups (in the sense of Markov and
Graev) are zero-dimensional modulo the class of compact spaces.

The paper consists of three parts. Part 1 contains the notation. In Part 2 the
necessary definitions and statements are formulated. In Part 3 the conditions,
under which the dimension modulo classes of a product of spaces is equal to
zero, are established. Based on these results the structures of free topological
semi-groups and free topological groups are determined.

1. Notation

All spaces considered in this paper are assumed to be Hausdorff and com-
pletely regular (Tychonoff). By M (with or without an index) we denote topo-
logically closed subclasses of the class of all completely regular spaces (that M
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is topologically closed means the following: if X ∈ M and X is homeomorphic
to Y , then Y ∈ M).

For each topological space X and for any of its subset U by [U ]X we denote
the closure of U in X, and by Fr XU the boundary of U in X.

Also, the following notation is used:
Mc is a class of all compact spaces;
Mmc is the class of all metrizable compact spaces;
Mdc is the class of all Dugundji compacts [2];
Mcor is the class of all Corson compacts [2];
Mℵ0 is the class of all countable spaces;
Mcn is the class of spaces with countable networks in the sense of Arkhangel-

skii [2];
Mcon is the class of all connected spaces;
Mps is the class of all pseudocompact spaces;
Mcc is the class of all countably compact spaces;
Mpar is the class of all paracompact spaces;
Mpp is the class of all weakly paracompact spaces;
by N we denote the set of all integers ≥ −1, i.e., N = {−1, 0, 1, 2, . . . }.

2. Definitions and Necessary Auxiliary Propositions

Definition 2.1. Let M be some topologically closed subclass of the class of
completely regular spaces. Denote by loc M the class of all spaces possessing
the following property: X ∈ loc M if and only if for each point x of the space
X and each open set Ux such that x ∈ Ux there exists an open set Vx in X such
that x ∈ Vx ⊆ [Vx]X ⊆ Ux and [Vx]X ∈ M.

Remark 2.1. It is obvious that for each topologically closed class M, loc M
is also topologically closed.

Definition 2.2. The class M is called c-monotone if M is topologically closed
and any closed subspace of each space from the class M also belongs to M.

Definition 2.3. Let M be some class of spaces. For each space X (from the
class of all completely regular spaces) the small inductive dimension in (X, M)
modulo M is defined as follows:

(i) in (X, M) = −1 if X ∈ M;
(ii) for each n ≥ 0, in (X, M) ≤ n if for each point x of the space X and

for each neighborhood of this point Ux there exists an open neighborhood Vx

in X such that x ∈ Vx ⊆ Ux and in (Fr XVx,M) ≤ n − 1; in (X, M) = n
if in (X, M) ≤ n and in (X, M) 6≤ n − 1 and finally, in (X, M) = +∞ if
in (X, M) 6≤ n for each n ∈ N .

Remark 2.2. If M is the empty class, then for any space X we have:
in (X, M) = ind X (where ind X is the small inductive dimension of X [14]).

Remark 2.3. in (X, M) ≤ 0 if and only if either 1) X ∈ M or 2) there
exists in X an open base {Ua}a∈M such that Fr XUa ∈ M for each a ∈ M . In
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particular, for each regular space X we have: in (X, Mc) ≤ 0 if and only if X
is semicompact (≡ π-compact), see [8].

Definition 2.4. The class M is called stable if the following conditions are
fulfilled:

1) M is topologically closed;
2) M is c-monotone;
3) if X ∈ M and Y is a continuous image of the space X, then Y ∈ M.

Definition 2.5. The class M is called multiplicative if the following condi-
tions are fulfilled:

1) M is topologically closed;
2) if X ∈ M and Y ∈ M, then X × Y ∈ M, where X × Y denotes the usual

product of topological spaces X and Y .

The classes Mc, Mmc, Mdc, Mcor, Mℵ0 , Mcn are examples of stable multi-
plicative classes.

Definition 2.6. The class M is called weakly stable if it has the following
property: If X ∈ M and f : X → Y is a continuous closed mapping “onto”,
then Y ∈ M.

Remark 2.4. One can easily show that if M is a stable class and f : X → Y
is an open continuous mapping of a space X onto a space Y and X ∈ loc M
then Y ∈ loc M.

Next, we formulate some needed definitions.

Definition 2.7 ([12]). Let X be a completely regular topological space. A
pair (S(X), Θ) is called a free topological semigroup generated by the space X
if the following conditions are fulfilled:

1) S(X) is a topological semigroup the space of which is completely regular;
2) Θ : X → S(X) is a topological embedding of the space X in S(X);
3) Θ(X) generates S(X) algebraically;
4) for each completely regular topological semigroup T and for each continu-

ous mapping ω : X → T of the space X to T , there exists a unique continuous
homomorphism Ω : S(X) → T such that the composition ΩΘ is equal to ω.

In [12] and [4] it is shown that for the completely regular topological space
X, a free topological semigroup generated by X exists and is unique.

Definition 2.8 (A. A. Markov [11]). Let X be a completely regular space.
A Hausdorff topological group FM(X) (a Hausdorff abelian topological group
AM(X)) is called a free topological group in the sense of Markov (a free abelian
topological group in the sense of Markov) of the space X if X is a subspace
of FM(X) (resp. of AM(X)) and for each continuous mapping Φ : X → G
of the space X into an arbitrary topological group (into an arbitrary abelian
topological group) G there exists a unique continuous homomorphism ΦF :
FM(X) → G(resp. ΦA : AM(X) → G) such that ΦF |X = Φ (resp. ΦA|X = Φ).
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Definition 2.9 (M.N. Graev [9]). Let X be a completely regular space with
a distinguished point e. A Hausdorff topological group FG(X) (a Hausdorff
abelian topological group AG(X)) is called a free topological group in the sense
of Graev (a free abelian topological group in the sense of Graev) of the space
X if the following conditions are fulfilled:

1) X is a subspace of FG(X) (resp. of AG(X));
2) X algebraically generates FG(X) (resp. AG(X));
3) for each continuous mapping ϕ : X → Q of the space X into an arbitrary

topological group (an arbitrary topological abelian group) Q, which sends the
point e of X to the unit (to the zero element) of the group Q, there exists a
continuous homomorphism ΦF : FG(X) → Q (resp. ΦA : AG(X) → Q) such
that ΦF |X = ϕ (resp. ΦA|X = ϕ).

A. A. Markov and M. N. Graev showed ([11], [9]) the existence and uniqueness
(in the corresponding categories) of the groups FM(X), AM(X), FG(X) and
AG(X).

3. On the Zero-Dimensionality by Modulo Class of Topological
Spaces Topological Products, Free Topological Groups and

Semigroups

The following theorem is valid:

Theorem 3.1. If Z = X × Y , where X and Y are topological spaces, Y is
a nontrivial connected compact and in (X × Y, M) = 0, where M is a weakly
stable class, then X ∈ loc M.

Proof. Let us consider a point x ∈ X and an open neighborhood Ox of x. Let
U be some open in Y set with U 6= ∅ and U 6= Y . Take some point y ∈ U . Let
z = (x, y). Denote Uz = Ox × U ⊆ Wx. Since in (X × Y, M) ≤ 0, there exists
open Hz such that z ∈ Hz ⊆ [Hz] ⊆ Uz and Fr ZHz ∈ M. Denote Tx = PrX(Hz),
where PrX : X × Y → X is the projection. Obviously, x ∈ Tx ⊆ [Tx]X ⊆ Ox.
Show that Tx ⊆ PrX(Fr ZHz). Indeed, take any x′ ∈ Tx and consider the set
{x′} × Y = Ax′ . Denote Ax′ ∩ Hz = Bx′ . Show that Bx′ 6= ∅. Indeed, if
Bx′ = ∅, then PrX(Bx′) = ∅. But x′ ∈ PrX(Bx′), hence, it is not empty. On
the other hand, since Hz is open in Z, the set Bx′ is open in Ax′ . Now let us
show that 1) Fr Ax′Bx′ ⊆ Fr ZHz and 2) Fr Ax′Bx′ 6= ∅.

First let us show 1). Fr Ax′Bx′ = [Bx′ ]Ax′\Bx′ , where [Bx′ ]Ax′ = [Bx′ ]Z (be-
cause Ax′ is closed in Z). But [Bx′ ]Z ⊆ [Ax′ ]Z ∩ [Hz]Z = Ax′ ∩ [Hz]Z (here we
use the inclusion [A ∩B] ⊆ [A] ∩ [B] and the fact that Ax′ is closed in Z).

Furthermore [Bx′ ]Z\Bx′ ⊆ (Ax′ ∩ [Hz]Z)\Bx′ (here we use the following: if
A ⊆ B, then for any C we have A\C ⊆ B\C). Let us show that (Ax′ ∩
[Hz]Z)\(Ax′ ∩Hz) ⊆ [Hz]Z\Hz (i.e., (Ax′ ∩ [Hz]Z)\Bx′ ⊆ [Hz]Z\Hz). Indeed if
x′′ ∈ Ax′ ∩ [Hz]Z\Ax′ ∩ Hz, then x′′ ∈ Ax′ ∩ [Hz]Z and x′′ 6∈ Ax′ ∩ Hz. Then
x′′ ∈ Ax′ , x′′ ∈ [Hz]Z and x′′ 6∈ Hz. Hence, in particular, x′′ ∈ [Hz]Z\Hz. Thus
[Bx′ ]Z\Bx′ ⊆ [Hz]Z\Hz. So we have Fr Ax′Bx′ = [Bx′ ]Ax′\Bx′ = [Bx′ ]Z\Bx′ ⊆
[Hz]Z\Hz = Fr ZHz. Thus 1) is proved.
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Now let us prove 2). Let us consider the mapping πx′ : Ax′ → Y determined as
follows: πx′(x

′, y) = y. This mapping is one-to-one and surjective. The mapping
πx′ is continuous because it is the restriction of the continuous mapping. Since
Y is compact and {x′} × Y = Ax′ , Ax′ is compact and so the mapping πx′ is
a homeomorphism (since continuous and one-to-one mapping from a compact
space onto a Hausdorff space is a homeomorphism). If Fr AxBx′ = ∅, then
Bx′ is closed and open in Ax′ . Let us note that πx′(Bx′) ⊆ U . Since πx′ is a
homeomorphism, the set πx′(Bx′) is closed and open in Y . But this is impossible
because πx′(Bx′) ⊂ U 6= Y , πx′(Bx′) 6= ∅ and Y is connected. Therefore our
assumption is false. So Fr AxBx′ 6= ∅.

Thus we see that for every x′ ∈ Tx there exists a point z′ ∈ Fr zHz such
that x′ = Prx(z

′). This means that Tx ⊆ PrX(Fr ZHz). Hz is dense in [Hz].
Therefore Tx = PrX(Hz) is dense in PrX([Hz]Z). Hence, [Tx]X = PrX([Hz]Z).
But since Y is compact, PrX : X × Y → X is the closed mapping, i.e.,
PrX([Hz]Z) is closed in X. On the other hand, Fr ZHz ⊆ [Hz]Z . Thus we
have Tx ⊆ PrX(Fr ZHz) ⊆ PrX([Hz]Z). But [Tx]X = PrX([Hz]Z), so [Tx]X ⊆
[PrX(Fr ZHz)]X ⊆ [PrX [Hz]Z ]X . Thus [Tx]X = [PrX(Fr ZHz)]X =PrX(Fr ZHz).
Since PrX : X × Y → X is the closed mapping and Fr ZHz ∈ M, by weak
stability, PrX(Fr ZHz) ∈ M. So we have found a neighborhood Tx of the point
x such that Tx ⊂ [Tx]X ⊂ Ox and [Tx]X ∈ M. Thus X ∈ loc M. ¤

Corollary 3.1. If Z = X × Y where X and Y are topological spaces, Y is a
connected compact and in (X × Y, Mcon) = 0, then X ∈ loc Mcon.

Corollary 3.2. If Z = X × Y where X and Y are topological spaces, Y is a
connected compact and in (X × Y, Mps) = 0, then X ∈ loc Mps.

Corollary 3.3. If Z = X × Y where X and Y are topological spaces, Y is a
connected compact and in (X × Y, Mcor) = 0, then X ∈ loc Mcor.

Corollary 3.4. If Z = X × Y , where X and Y are topological spaces, Y is
a connected compact and in (X × Y, Mpar) = 0, then X ∈ loc Mpar.

Corollary 3.5. If Z = X × Y , where X and Y are topological spaces, Y is
a connected compact and in (X × Y, Mpp) = 0, then X ∈ loc Mpp.

Corollary 3.6. If Z = X × Y , where X and Y are topological spaces, Y is
a connected compact and in (X × Y, Mc) = 0, then X ∈ loc Mc.

As it is shown in [1], the following theorem holds.

Theorem 3.2. If X × Y is a topological product of the spaces X and Y
such that in (X × Y, M) ≤ 0, where M is a stable class and ind X > 0, then
Y ∈ loc M.

In the sequel we shall need the following propositions which are easy to prove.

Proposition 3.1. If M is a c-monotone class and X ∈ loc M, then
in (X, M) ≤ 0.
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Proof. Let x ∈ X and Ox be some open neighborhood of x in X. Since X ∈
loc M, there is an open neighborhood Vx such that x ∈ Vx ⊆ [Vx]X ⊆ Ox and
[Vx]X ∈ M. But Fr XVx ⊆ [Vx]X and since [Vx]X ∈ M and Fr XVx is closed in X
(and therefore in [Vx]X too), then, by c-monotonity, Fr XVx ∈ M, which means
that in (X, M) ≤ 0. ¤

Proposition 3.2. If M is a multiplicative class, then the class loc M is also
multiplicative.

Proof. X ∈ loc M means that for every point x of X and for every its open
neighborhood Ox there exists an open neighborhood Vx of x such that x ∈
Vx ⊆ [Vx]X ⊆ Ox and [Vx]X ∈ M. Also, Y ∈ loc M means that for every point
y ∈ Y and any its open neighborhood Oy there is an open neighborhood Vy

of y such that y ∈ Vy ⊆ [Vy]Y ⊆ Oy and [Vy]Y ∈ M. Denote Z = X × Y .
Consider the point z = (x, y) ∈ Z and its open neighborhood Oz = Ox × Oy.
We have z = (x, y) ∈ Vx × Vy ⊆ [Vx × Vy]Z = [Vx]X × [Vy]Y ⊆ Ox × Oy.
Since M is multiplicative, [Vx]X × [Vy]Y ∈ M, i.e., [Vx × Vy]Z ∈ M. Since the
point z = (x, y) was selected arbitrarily in (X × Y ) and since the family of
neighborhoods of the form Oz = Ox×Oy is the base of the space X × Y at the
point z = (x, y), then X × Y ∈ loc M, i.e., loc M is multiplicative. ¤

Proposition 3.3. If M is a c-monotone class, A is closed in X and
in (X, M) ≤ 0, then in (A,M) ≤ 0.

Proof. Let us consider a point x ∈ A and an open in A neighborhood Ox of x.
Then there exists an open neighborhood O′

x of x in X such that O′
x ∩ A = Ox.

Then there is V ′
x, open in X, such that x ∈ V ′

x ⊆ O′
x and Fr XV ′

x ∈ M. Let us
consider V ′

x ∩ A = Vx.
Clearly, Vx is open in A, Vx ⊆ O′

x and Fr AVx ⊆ Fr XV ′
x. Furthermore Fr AVx

is closed in Fr XV ′
x. Since Fr XV ′

x ∈ M, by c-monotonity, Fr AVx ∈ M. Thus
we obtain that for every x ∈ A and any its neighborhood Ox there is an open
neighborhood Vx of x such that x ∈ Vx ⊆ Ox and Fr AVx ∈ M. This means that
in (A, M) ≤ 0. ¤

The following is true.

Theorem 3.3. Let M be a stable multiplicative class. Then the inequality,
in (X×Y, M) ≤ 0 takes place if and only if one of the following four conditions
is fulfilled:

1) ind X ≤ 0, ind Y ≤ 0;
2) X ∈ loc M, Y ∈ loc M;
3) X ∈ loc M, ind X = 0 and in (Y, M) ≤ 0;
4) Y ∈ loc M, ind Y = 0 and in (X, M) ≤ 0.

Proof. Necessity. Let us show that if in (X × Y, M) ≤ 0, then one of the
conditions given above is fulfilled. Let us consider four possible cases:

1. ind X = 0, ind Y = 0;
2. ind X > 0, ind Y > 0;
3. ind X > 0, ind Y = 0;
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4. ind X = 0, ind Y > 0.

1. If ind X = 0 and ind Y = 0, then there is nothing to prove.
2. If ind X > 0 and ind Y > 0, then, by Theorem 3.2, Y ∈ loc M and

X ∈ loc M.
3. If ind X > 0 and ind Y = 0, then, by Theorem 3.1, Y ∈ loc M and

ind Y = 0.
4. The proof is similar to the proof in case 3.
Sufficiency. 1) If ind X ≤ 0, ind Y ≤ 0, then ind (X×Y ) ≤ 0 (see [7]). Then

since (by c-monotonity) ∅ ∈ M, we have in (X × Y, M) ≤ 0.
2) If X ∈ loc M and Y ∈ loc M, then, by Proposition 3.2, X × Y ∈ loc M.

Then by Proposition 3.1, we have: in (X × Y, M) ≤ 0. Suppose X ∈ loc M,
ind X = 0 and in (Y, M) ≤ 0. Let us show that in (X × Y, M) ≤ 0.

3) Suppose z = (x, y) is any point of the space X × Y and Uz is any neigh-
borhood of this point. Then there is a neighborhood Ox of x and there is a
neighborhood Oy of y such that z ∈ Ox × Oy ⊆ Uz. Since X ∈ loc M, there
exists Vx such that x ∈ Vx ⊆ [Vx] ⊆ Ox and [Vx]X ∈ M. Since ind X = 0,
there is WX such that x ∈ Wx ⊆ Vx ⊆ [Vx] ⊆ Ox and WX is closed and open
in X (i.e., Fr XWx = ∅). Thus Wx is closed and open in [Vx]X too. Since
M is c-monotone, Wx ∈ M. So Wx is closed and open and Wx ∈ M. Since
in (Y, M) ≤ 0, there exists an open set Wy such that y ∈ Wy ⊆ [Wy]Y ⊆ Oy and
Fr Y Wy ∈ M.

Let us consider Wz = Wx ×Wy. Then z ∈ Wz = Wx ×Wy ⊆ Ox × Oy ⊆ Uz

and Fr ZWz = ([Wx]X × Fr Y Wy) ∩ (Fr XWx × [Wy]Y ). Since Fr XWx = ∅,
(Fr XWx× [Wy]Y ) = ∅, i.e., Fr ZWz = [Wx]X×Fr Y Wy = Wx×Fr Y Wy because
[Wx]X = Wx (since it is closed and open). But Wx ∈ M and Fr Y Wy ∈ M. Since
M is multiplicative, we have Wx × Fr Y Wy. So Fr ZWz ∈ M. Since the point x
and its open neighborhood Oz were chosen arbitrarily, in (X × Y, M) ≤ 0.

The fourth case is similar to the third one. ¤
Corollary 3.7. in (X × Y, Mc) ≤ 0 if and only if one of the following four

conditions is fulfilled:
1) ind X = 0, ind Y = 0;
2) X ∈ loc McX ∈ loc Mc;
3) X ∈ loc Mc, ind X = 0 and in (Y, Mc) ≤ 0;
4) Y ∈ loc Mc, ind Y = 0 and in (X, Mc) ≤ 0.

Corollary 3.8. in (X × Y, Mmc) ≤ 0 if and only if one of the following four
conditions is fulfilled:

1) ind X = 0, ind Y = 0;
2) X ∈ loc Mmc, X ∈ loc Mmc;
3) X ∈ loc Mmc, ind X = 0 and in (Y, Mmc) ≤ 0;
4) Y ∈ loc Mmc, ind Y = 0 and in (X, Mmc) ≤ 0.

Corollary 3.9. in (X × Y, Mdc) ≤ 0 if and only if one of the following four
conditions is fulfilled:

1) ind X = 0, ind Y = 0;
2) X ∈ loc Mdc, X ∈ loc Mdc;
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3) X ∈ loc Mdc, ind X = 0 and in (Y, Mdc) ≤ 0;
4) Y ∈ loc Mdc, ind Y = 0 and in (X, Mdc) ≤ 0.

Corollary 3.10. in (X × Y, Mcor) ≤ 0 if and only if one of the following
four conditions is fulfilled:

1) ind X = 0, ind Y = 0;
2) X ∈ loc Mcor, X ∈ loc Mcor;
3) X ∈ loc Mcor, ind X = 0 and in (Y, Mcor) ≤ 0;
4) Y ∈ loc Mcor, ind Y = 0 and in (X, Mcor) ≤ 0.

Corollary 3.11. in (X×Y, Mℵ0) ≤ 0 if and only if one of the following four
conditions is fulfilled:

1) ind X = 0, ind Y = 0;
2) X ∈ loc Mℵ0, X ∈ loc Mℵ0;
3) X ∈ loc Mℵ0, ind X = 0 and in (Y, Mℵ0) ≤ 0;
4) Y ∈ loc Mℵ0, ind Y = 0 and in (X, Mℵ0) ≤ 0.

Corollary 3.12. in (X×Y, Mcn) ≤ 0 if and only if one of the following four
conditions is fulfilled:

1) ind X = 0, ind Y = 0;
2) X ∈ loc Mcn, X ∈ loc Mcn;
3) X ∈ loc Mcn, ind X = 0 and in (Y, Mcn) ≤ 0;
4) Y ∈ loc Mcn, ind Y = 0 and in (X, Mcn) ≤ 0.

Based on the obtained results, we determine the structure of free topological
semigroups (in the sense of Marxen) and free topological groups (in the sense of
Markov [11] and Graev [9]) in the case where these objects are zero-dimensional
modulo a certain class.

Theorem 3.4. Let M be a stable multiplicative class. Then the space S(X)
of free topological semigroups of the space X has in (S(X),M) ≤ 0 if and only
if either ind X = 0 or X ∈ loc M.

Proof. Marxen showed in [12] that the space of the topological semi-group S(X)

of any space X is of the form S(X) =
∞∨

n=1

Xn, where
∨

is a symbol for a

topological sum and Xn is the nth power of X.
As is known, if ind X = 0, then for every n ≥ 1 we have ind Xn = 0, but

the topological sum of zero-dimensional (in sense of ind ), spaces is still zero-
dimensional (in sense of ind ). Thus ind S(X) = 0. Since M is a stable class,
we have in (S(X),M) ≤ 0. If X ∈ loc M, then for every n ≥ 1 (by multiplicity
of M) we have Xn ∈ loc M. Now let us show that S(X) ∈ loc M. Suppose
x ∈ S(X) is a point chosen arbitrarily and Ox is any its neighborhood in S(X).
Then there is unique n such that x ∈ Xn. Let us consider O′

x = Ox ∩ Xn.
Since Xn ∈ loc M, there is a neighborhood V ′

x such that x ∈ V ′
x ⊆ [V ′

x]Xn ⊆ O′
x

and [V ′
x]X ∈ M. V ′

x is open in Xn and Xn is open in S(X). So V ′
x is open

in S(X). Thus we have found an open neighborhood Vx in S(X) such that
x ∈ V ′

x ⊆ [V ′
x]Xn = [V ′

x]S(X) ⊆ O′
x ⊆ Ox and [V ′

x]S(X) ∈ M. Consequently,
S(X) ∈ loc M. Therefore, by Proposition 3.1, in (S(X),M) ≤ 0.
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And vice versa suppose in (S(X),M) ≤ 0. We have to show that either

ind X = 0 or X ∈ loc M. Since S(X) =
∞∨

n=1

Xn, X × X is the closed subset

of S(X). So, by Proposition 3.3, in (X × X, M) ≤ in (S(X),M) ≤ 0. Thus
in (X × X, M) ≤ 0. Since M is a stable multiplicative class, by Theorem 3.2,
either ind X = 0 or X ∈ loc M, which was to be proved. ¤

Definition 3.1. Let M be a topologically closed class. The uncountable
space X is called M-dispersed if for every uncountable and closed subset B we
have AM(B) 6∈ loc M, where AM(B) is a free abelian topological group of B
in the sense of Markov.

Remark 3.1. One can show that every uncountable compact space is Mc,
Mdc-, Mmc-, Mℵ0-dispersed (see, e.g., [6]).

Theorem 3.5. Let X be an uncountable compact and M-dispersed space,
where M is a stable and multiplicative class. Then the following conditions
are equivalent: 1) ind X ≤ 0, 2) ind AG(X) ≤ 0, 3) ind AM(X) ≤ 0,
4) in (AG(X),M) ≤ 0, 5) in (AM(X),M) ≤ 0, 6) Ind AM(X) ≤ 0,
7) Ind AG(X) ≤ 0.

Proof. The proof will follow the scheme: 1)⇒2)⇒3)⇒4)⇒ 5)⇒6)⇒7)⇒1).
First let us show that 1)⇒2). Since X is a compact space, AG(X) is a

Kω-space (see [9]), i.e., AG(X) =
∞⋃

n=1

Ai(X), where Ai(X) symbolizes a sub-

space of the group AG(X), which consists of words the length of which is ≤ i.
It is known (see [9]) that for every n = 1, 2, . . . , An(X) is a compact sub-
space of AG(X). Let us show by induction that dim An(X) = 0. Indeed,
when n = 1 we have A1(X) = X

∨
(−X)

∨{0}. Since ind X = 0, we have
dim X = 0. Since (−X) is homeomorphic to X, we have dim (−X) = 0,
i.e., dim A1(X) = dim X = ind X = 0. Suppose for every p ≤ n − 1 it
is known that dim Ap(X) = 0. Let us discuss An(X). It is obvious that
An(X) = An−1(X)∪(An(X)\An−1(X)). Since An−1(X) is closed in AG(X) (see
[9]), it is closed in An(X). Therefore An(X)\An−1(X) is open in An(X). Now let
us show that ind (An(X)\An−1(X)) ≤ 0. Suppose α ∈ An(X)\An−1(X). This
means that α is a non-cancellable word of length n, i.e., α = ε1x1 + · · ·+ εnxn,
where εi is equal to 1 or −1 for every i = 1, 2, . . . , n.

Let us consider any open neighborhood Oα of the point α in An(X). Accord-
ing to Arkhangelskii–Joiner’s lemma (see, e.g., [3]) there exist closed and open
subsets U1, U2, . . . , Un which satisfy the following:

1. xi ∈ Ui for every i = 1, 2, . . . , n;
2. Ui ∩ Uj = ∅ as soon as i 6= j (i, j = 1, 2, . . . , n);
3. the set ε1U1 + ε2U2 + · · · + εnUn is an open neighborhood of the point α

in An(X);
4. ε1U1+ε2U2+· · ·+εnUn ⊆ Oα because for every i, Ui is compact. Therefore

ε1U1 + ε2U2 + · · · + εnUn is an open compact neighborhood of the point α ∈
An(X)\An−1(X).
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Since the point α and its neighborhood Oα were chosen arbitrarily, then
ind (An(X)\An−1(X)) ≤ 0. Furthermore, for any closed subset F of An, where
An(X) ⊆ An(X)\An−1(X), we have dim F ≤ ind F ≤ ind (An(X)\An−1(X)) ≤
0. Then, by the inductive assumption and according to Dowker’s theorem [7],

we obtain dim An(X) ≤ 0. Since AG(X) =
∞⋃

n=1

Ai(X), we have dim AG(X) ≤ 0.

Thus ind AG(X) ≤ 0.
1)⇒2) is proved.
2)⇒3). According to F. Ward’s theorem AM(X) ≈ AG(X)× Z, where Z is

the set of integers with discrete topology. Therefore AM(X) =
∞∨

n=1

AG(X)i and

thus 2)⇒3).
3)⇒4). Since M is a stable class, ∅ ∈ M and according to Nishiura’s The-

orem 1.8 from [14] we have in (AM(X),M) ≤ ind AM(X) = ind AG(X) = 0.
3)⇒4) is proved.

4)⇒5) follows also from [16]. Indeed, in (AG(X),M)=0 ⇒ in (AM(X),M)=

in (AG(X)× Z, M)= in (
∞∨

n=1

AG(X)i,M) = 0.

5)⇒6). We have to prove that in (AM(X), M) ≤ 0 ⇒ Ind AM(X) ≤ 0.
Suppose, on the contrary, that Ind AM(X) > 0. Then ind X > 0 because if
ind X ≤ 0, then ind AG(X) ≤ 0 and ind AM(X) ≤ 0. Since AM(X) is σ-
compact and thus, finally compact, we have dim AM(X) ≤ Ind AM(X) = 0.
This contradicts our assumption. Therefore ind X > 0. Since X is compact
and ind X > 0, we have dim X > 0. By Proposition 2.6.3 from [17], there
are compact subspaces F1 and F2 of the compact X such that F1 ∩ F2 = ∅,
dim F1 > 0, dim F2 > 0. Let us consider the compact space F = F1 ∪F2. Since
F1 ∩F2 = ∅, the compact F is homeomorphic to the topological sum of F1 and
F2, i.e., F = F1

∨
F2.

According to Ward’s theorem from [16], the free topological group AM(X)
is topologically isomorphic to AG(X)× Z. Since in (AM(X),M) ≤ 0 we have
in (AG(X),M) ≤ 0. Denote by G(F ) the subgroup of AG(X) which is gener-
ated algebraically by the compact subspace F ⊆ X. It is well-known that [9]
G(F ) is closed in AG(X) and G(F ) is topologically isomorphic to AG(F ).

Thus in (G(F ), M) = in (AG(F ), M) ≤ 0.

By Ward’s theorem, AM(F ) = AG(F ) × Z, i.e., AM(F ) =
∞∨

n=1

AG(F )i,

where for every i = 1, 2, . . . , AG(F )i is homeorphic to AG(F ). It is easy to
show that we have in (AM(F ),M) ≤ 0. But F = F1

∨
F2. It is known that

AM(F1

∨
F2) ∼= AM(F1) × AM(F2). Then in (AM(F1) × AM(F2),M) ≤ 0.

Consequently, by Theorem 3.3, one of the following four cases will take place:
1. ind AM(F1) ≤ 0, ind AM(F2) ≤ 0,
2. AM(F1) ∈ loc M, AM(F2) ∈ loc M,
3. AM(F1) ∈ loc M, ind AM(F1) = 0 and in AM(F2),M) ≤ 0,
4. AM(F2) ∈ loc M, ind AM(F2) = 0 and in AM(F1),M) ≤ 0.
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But in accordance with the condition it is impossible for AM(F1) or AM(F2)
to belong to loc M. Therefore only case 1) remains.

Since F1 ⊆ AM(F1) and F2 ⊆ AM(F2), we have ind F1 ≤ 0 and ind F2 ≤ 0.
Then dim F1 ≤ 0 and dim F2 ≤ 0. But this contradicts dim F1 > 0, dim F2 > 0.

Thus our assumption that Ind AM(X) > 0 is false. So 5)⇒6) is proved.
6)⇒7) follows from Ward’s theorem.
7)⇒1). Since Ind AG(X) ≤ 0, we have Ind X ≤ 0 because X is the closed

subspace of AG(X). Hence ind X ≤ 0. ¤

Theorem 3.6. Let X be an uncountable Kω-space [13] and an M-dispersed
space, where M is a stable multiplicative class. Then the following conditions
are equivalent: 1) ind X ≤ 0, 2) ind FG(X) ≤ 0, 3) ind FM(X) ≤ 0,
4) in (FG(X), M) ≤ 0, 5) in (FM(X), M) ≤ 0.

Proof. The proof will follow the scheme 1)⇒2)⇒3)⇒4)⇒5) ⇒1).
1)⇒2). Since X is a Kω-space, there exists a Kω-decomposition {Xi} of X,

i.e., there exists a system {Xi}, i = 1, 2, . . . , of subspaces of the space X such
that:

1. X =
∞⋃
i=1

Xi;

2. Xi is compact for every i = 1, 2, . . . ;
3. Xi ⊆ Xj, for every i < j (i, j = 1, 2, . . . );
4. the set A is closed in X if and only if A∩Xi is compact for every i = 1, 2, . . .

(If {Xi} is a Kω-decomposition of X, we write X
ω
=

∞⋃
i=1

Xi).

As we know (see [13]), if X
ω
=

∞⋃
i=1

Xi, then FG(X)
ω
=

∞⋃
j=1

∞⋃
i=1

Fj(Xi), where

Fj(Xi) denotes the set of words generated by elements of Xi, the length of
which is ≤ j. It is clear that Fj(Xi) ⊆ FG(Xi) for every j = 1, 2, . . . . Let
us show that ind FG(Xi) = 0 for every i = 1, 2, . . . . We know that Fn(Xi)
is compact for every n. Let us show by induction that dim Fn(Xi) = 0 for
every i . For n = 1 we have dim Xi = 0. Then dim F1(Xi) = 0, where F1(Xi) =
Xi

∨
X−1

i

∨{1}. Suppose for every p ≤ n−1 the assertion is already proved and
that dim Fp(Xi) = 0. Let us consider Fn(Xi) = Fn−1(Xi)∪ (Fn(Xi)\Fn−1(Xi)).
Since Fn−1(Xi) is closed in FG(Xi), then it is also closed in Fn(Xi). Thus
Fn(Xi)\Fn−1(Xi) is open in Fn(Xi). Let us show that ind (Fn(Xi)\Fn−1(Xi)) ≤
0. Indeed, suppose α ∈ Fn(Xi)\Fn−1(Xi). Thus α = xε1

1 xε2
2 . . . xεn

n , where εi

is equal to 1 or −1. Let us consider any open neighborhood Oα of the point
α in Fn(Xi). Then according to Arkhangelskii–Joiner’s lemma (which is also
true for the group FG(Xi)), there exist open compact sets U1, U2, . . . , Un which
satisfy the following conditions:

1. xi ∈ Ui, i = 1, 2, . . . ;
2. Ui ∩ Uj = ∅, i 6= j (i, j = 1, 2, . . . );
3. the set U ε1

1 U ε2
2 . . . U εn

n is an open neighborhood of the point α in Fn(Xi);
4. U ε1

1 U ε2
2 . . . U εn

n ⊆ Oa.
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Since Ui is compact for every i = 1, 2, . . . , n, U ε1
1 U ε2

2 . . . U εn
n is an open com-

pact neighborhood of the point α ∈ Fn(Xi)\Fn−1(Xi). Since the point α and its
neighborhood Oα where chosen arbitrarily, we have ind (Fn(Xi)\Fn−1(Xi)) ≤ 0.

For every compact F ⊆ Fn(Xi)\Fn−1(Xi) we have: dim F ≤ 0. Since ac-
cording to the inductive assumption, dim Fn−1(Xi) ≤ 0, by Dowker’s theo-
rem (see[7]) we conclude that dim Fn(Xi) ≤ 0, i.e., for every i we have shown
that dim Fn(Xi) ≤ 0. Hence FG(Xi) ≤ 0. Since FG(X) is compact and

FG(X) =
∞⋃

n=1

∞⋃
i=1

Fn(Xi), we have dim FG(X) ≤ 0. Thus ind FG(X) ≤ 0.

2)⇒3). Suppose ind FG(X) = 0. Then ind X = 0 because X ⊆ FG(X). Let
us consider the space Y = X

∨{p}, where p 6∈ X, which is a topological sum
of the space X and the singleton {p}. It is clear that since X is the Kω-space,
we have ind Y = 0. So by means of 1)⇒2) we get ind FG(Y ) = 0. But it
is known (see [9]) that FM(X) is topologically isomorphic to FG(Y ). Thus
ind FM(X) = 0.

So ind FM(X) = 0. According to Morris’ theorem (see [13]), the group
FM(X) is topologically isomorphic to the coproduct of the group FG(X) and
the discrete group Z of integers i.e., FM(X) ∼= FG(X) ∗ Z. Hence FG(X) is
a closed subspace of FM(X). Thus ind FG(X) = 0 is proved.

3)⇒4). Since M is the stable class and ∅ ∈ M, according to Nishiura’s
theorem (see [14]), in (FM(X), M) ≤ in (FM(X),∅) = ind FM(X) ≤ 0.

4)⇒5). Suppose in (FM(X), M)≤0. We have to show that in (FG(X), M)≤
0. According to Morris’ theorem, FM(X) ∼= FG(X) ∗ Z. Since FG(X) is a
topological group the space of which is a Kω-space, it is complete in the sense of
A. Weil (see [9]). Moreover, FG(X) is a closed subgroup of FM(X). Therefore,
by c-monotonity of the function in (X, P ), we get in (FG(X),M) ≤ 0.

Now let us prove 5)⇒1). Suppose in (FG(X),M) ≤ 0. We have to show that
ind X = 0.

Let us assume that the opposite is true, i.e., ind X > 0. Then dim X > 0.

Since X is the Kω-space, there exists its ω decomposition X
ω
=

∞⋃
i=1

Xi, where

each Xi is compact.
Suppose i0 is a natural number such that dim Xi0 > 0 (if there is no such i0

and for every i dim Xi is equal to 0, then dim X is also equal to 0).
Since Xi0 is compact, then, based on the well-known result that dim Xi0 is

equal to the supremum of dim dimensions of the components of Xi0 , there exists
a connected compact φi0 ⊆ Xi0 such that dim φi0 > 0.

According to Zambakhidze’s Theorem 2.6.3 (see [17]) there exist subsets F i0(1)

and F i0(2) closed in φi0 (and therefore in X too) such that F i0(1) ∩ F i0(2) = ∅,
dim F i0(1) > 0, dim F i0(2) > 0. Since φi0 is connected and compact, there ex-
ists a point z = φi0\F i0(1)

⋃
F i0(2) (otherwise φi0 would be decomposed into

the sum of two separate closed subsets, which contradicts the connectedness
of φi0). Suppose Yi0 = F i0(1)

⋃
F i0(2) and Y ′

i0
= F i0(1)

⋃
F i0(2)

⋃{z}. Since

F i0(1)
⋂

F i0(2) = ∅ and z 6∈ F i0(1)
⋃

F i0(2), we have Yi0 = F (i0(1)
∨

F i0(2),
Y ′

i0
= F i0(1)

∨
F i0(2)

∨{z}. Obviously, Yi0 and Y ′
i0

are compact subspaces of
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the space X. Then according to Graev’s theorem (see [9]), FM(Yi0) is topo-
logically isomorphic to the group FG(Y ′

i0
). Since Y ′

i0
is a compact subspace

of the Kω-space, the subgroup G(Y ′
i0
) of the group FG(X) (which is gener-

ated algebraically from the compact Y ′
i0
) is closed in FG(X) and is topolog-

ically isomorphic to the free topological group FG(Y ′
i0
). By the condition,

in (FG(X),M) ≤ 0. So in (FG(Y ′
i0
),M) ≤ 0 and thus in (FG(Yi0),M) ≤ 0.

Furthermore, Yi0 is homeomorphic to the topological sum of the spaces F i0(1)

and F i0(2). According to Morris’ theorem (see [13]) the group FM(Yi0) is topo-
logically isomorphic to the free product FM(F i0(1)) ∗FM(F i0(2)) of topological
groups FM(F i0(1)) and FM(F i0(2)). Thus in (FM(F i0(1)) ∗ FM(F i0(2)),M) ≤
0. According to Ordman’s theorem (see [15]), in the sequence FM(F i0(1)) ×
FM(F i0(2))

i→ FM(F i0(1)) ∗ FM(F i0(2))
ρ→ FM(F i0(1)) × FM(F i0(2)), where

i is a homeomorphic inclusion of FM(F i0(1)) × FM(F i0(2)) into FM(F i0(1)) ∗
FM(F i0(2)) and ρ is a continuous mapping of FM(F i0(1)) ∗ FM(F i0(2)) onto
FM(F i0(1))× FM(F i0(2)), the composition iρ is the identical mapping. Hence
i(FM(F i0(1)) × FM(F i0(2))) is closed in FM(F i0(1)) ∗ FM(F i0(2)). Therefore
in (FM(F i0(1) × FM(F i0(2)), M) ≤ 0.

According to Theorem 3.3 in (FM(F i0(1)) × FM(F i0(2)),M) ≤ 0 is true if
and only if one of the following conditions is fulfilled:

1. ind FM(F i0(1)) = 0, ind FM(F i0(2)) = 0;
2. FM(F i0(1)) ∈ loc M, FM(F i0(2)) ∈ loc M;
3. FM(F i0(1)) ∈ loc M, ind FM(F i0(1)) = 0 and in (FM(F i0(2)),M) ≤ 0;
4. FM(F i0(2)) ∈ loc M, ind FM(F i0(2)) = 0 and in (FM(F i0(1)),M) ≤ 0.
As we know (see [11]), abelian free topological groups AM(F i0(1)) and

AM(F i0(2)) are topologically isomorphic to the factor groups FM(F i0(1))/K1

and FM(F i0(2))/K2, where K1 and K2 are commutants. The mappings

π1 : FM(F i0(1)) → FM(F i0(1))/K1 = AM(F i0(1)),

π2 : FM(F i0(2)) → FM(F i0(2))/K2 = AM(F i0(2))

are open. If FM(Fα0(1)) ∈ loc M and FM(Fα0(2)) ∈ loc M, then AM(F i0(1)) ∈
loc M and AM(F i0(2)) ∈ loc M, respectively. But this is impossible because
the space X is M-dispersed. Thus we exclude cases 2), 3) and 4). So we
have ind FM(F i0(1)) = 0 and ind FM(F i0(2)) = 0. On the other hand, we
have dim FM(F i0(1)) > 0 and dim FM(F i0(2)) > 0 (since dim F i0(1) > 0
and dim F i0(2) > 0). So, FM(F i0(1)) and FM(F i0(2)) are σ-compacts and
ind FM(F i0(1)) > 0, ind FM(F i0(2)) > 0. This is the contradiction. Thus
our assumption that ind X > 0 is not true. Therefore ind X ≤ 0. ¤
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