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DYNAMIC PROGRAMMING AND MEAN-VARIANCE
HEDGING IN DISCRETE TIME


S. GUGUSHVILI


Abstract. We consider the mean-variance hedging problem in the discrete
time setting. Using the dynamic programming approach we obtain recurrent
equations for an optimal strategy. Additionally, some technical restrictions
of the previous works are removed.


2000 Mathematics Subject Classification: 91B28, 60H30, 90C39.
Key words and phrases: Mean-variance hedging, dynamic programming,
optimality principle.


1. Introduction


Let (Ω,F , P ) be a probability space endowed with a filtration F = (Fn),
n = 0, 1, . . . , N(F0 is trivial, FN = F) and let X = (Xn) be a sequence of
random variables, adapted to this filtration, such that for all n, E((∆Xn)2|Fn−1)
< ∞. Denote by Π the set of sequences of predictable random variables π =
(πn), n = 1, 2, . . . , N , such that


∑N
i=1 πi∆Xi is square integrable.


For a given real number c and a square integrable random variable H ∈ FN


let us consider the optimization problem:


minimize E


[(
H − c−


N∑
i=1


πi∆Xi


)2 ]
over all π ∈ Π. (1.1)


The corresponding solution π∗ will be called an optimal strategy.
(1.1) is a discrete time analogue of the mean-variance hedging problem orig-


inally introduced by Föllmer and Sondermann [2]. Here Xn can be interpreted
as the price of a risky asset at time n, H as a contigent claim due at time N and
c as the initial capital of an investor. The set Π is then the set of all admissible
trading strategies.


This problem was solved by Schweizer [7] under some additional restrictions,
namely: for an arbitrary n, n = 1, . . . , N, Xn is square integrable and satisfies
the so-called nondegeneracy condition. Moreover, π is admissible if and only if
for each n, n = 0, 1, . . . , N, πn∆Xn is square integrable.


Melnikov and Nechaev [6] improved Schweizer’s results; they removed the
non-degeneracy condition and they do not require the square integrability of
πn∆Xn for all n, but they still require Xn ∈ L2(P ), n = 0, . . . , N.


Unlike the approaches of those papers, in the present work the dynamic pro-
gramming method is used, which enables us to derive relatively simple, one-step
backward equations for random variables an, bn, defining π∗n, while Schweizer’s
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or Melnikov and Nechaev’s recurrent equations for quantities βn, ρn defining
π∗n involve all previous βi from n + 1 to N. Moreover, the requirement of the
square integrability of Xn, n = 0, 1, . . . , is removed. The dynamic programming
method has already been applied to the mean-variance hedging problem in [3],
[5], but they do not cover our case as [3] deals with the diffusion model, while
in [5] the asset process X, which is a semimartingale, and the filtration F are
supposed to be continuous.


The paper is organized as follows: in Section 2 we introduce the value func-
tion V (n, x) corresponding to (1.1). Proposition 2.1 gives us the main working
tool, the Bellman equation. In Section 3 we formulate and prove the main the-
orem. Section 4 is dedicated to the discussion of the obtained results. Finally,
Appendix contains some results, used throughout the paper.


2. Backward Equation for V (n, x)


First let us introduce some conventions and notation:
a) If A is an empty set, then let


∑
a∈A


Ya = 0,
∏
a∈A


Ya = 1.


b) The uncertainty 0
0


= 0.
c) Relations between random variables are understood in the a.s. sense.
d) Π(n,N) denotes the set of π ∈ Π such, that πi = 0 for i ≤ n.
Let us define the value function V (n, x) corresponding to (1.1) as


V (n, x) = essinf
π∈Π(n,N)


E


((
H − x−


N∑
i=n+1


πi∆Xi


)2 ∣∣∣ Fn


)
.


Note that V (N, x) = (H − x)2.


Proposition 2.1. The function V (n, x) satisfies the recurrent equation


V (n− 1, x) = essinf
π∈Π(n−1,N)


E
(
V (n, x + πn∆Xn)|Fn−1


)
(2.1)


with the boundary condition V (N, x) = (H − x)2.


Proof. Due to Proposition A1 of Appendix for every fixed π̂ ∈ Π(n− 1, N) we
have


V (n− 1, x) ≤ E
(
V (n, x + π̂n∆Xn)|Fn−1


)
.


Therefore, taking essinf, we obtain


V (n− 1, x) ≤ essinf
π∈Π(n−1,N)


E
(
V (n, x + πn∆Xn)|Fn−1


)
. (2.2)
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Conversely (π̂ = (π̂n) is fixed),


E
(
V (n, x + π̂n∆Xn)|Fn−1


)


= E


(
essinf


π∈Π(n−1,N)
E


((
H − x− π̂n∆Xn −


N∑
i=n+1


πi∆Xi


)2 ∣∣∣ Fn


) ∣∣∣ Fn−1


)


≤ E


(
E


((
H − x−


N∑
i=n


π̂i∆Xi


)2 ∣∣∣ Fn


) ∣∣∣ Fn−1


)


= E


((
H − x−


N∑
i=n


π̂i∆Xi


)2 ∣∣∣ Fn−1


)
.


Taking essinf of both sides, we get


essinf
π∈Π(n−1,N)


E
(
V (n, x + πn∆Xn)|Fn−1


)


≤ essinf
π∈Π(n−1,N)


E


((
H − x−


N∑
i=n


πi∆Xi


)2 ∣∣∣ Fn−1


)
= V (n− 1, x)


which together with (2.2) proves (2.1). ¤


3. Main Result


After above preliminary result, we are ready to formulate the main theorem.


Theorem 1. Assume that E((∆Xn)2|Fn−1) < ∞ for all 1 ≤ n ≤ N. Then
the value function V (n, x) is a square trinomial in x,


V (n, x) = anx
2 + 2bnx + cn,


where the Fn-measurable random variables an, bn and cn satisfy the backward
recurrent equations


an = E(an+1|Fn)− (E(an+1∆Xn+1|Fn))2


E(an+1(∆Xn+1)2|Fn)
, (3.1)


bn = E(bn+1|Fn)− E(an+1∆Xn+1|Fn)E(bn+1∆Xn+1|Fn)


E(an+1(∆Xn+1)2|Fn)
, (3.2)


cn = E(cn+1|Fn)− (E(bn+1∆Xn+1|Fn))2


E(an+1(∆Xn+1)2|Fn)
, (3.3)


with the boundary conditions


aN = 1, bN = −H, cN = H2.


Moreover, an optimal strategy π∗ = (π∗n) is given by


π∗n = − E(bn∆Xn|Fn−1)


E(an(∆Xn)2|Fn−1)
−


(
c +


n−1∑
i=1


π∗i ∆Xi


)
E(an∆Xn|Fn−1)


E(an(∆Xn)2|Fn−1)
. (3.4)
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Proof. For n = N we have V (N, x) = (H − x)2; hence V (N, x) is a square
trinomial in x and aN = 1, bN = −H, cN = H2. Suppose that for some n,
V (n, x) is a square trinomial in x


V (n, x) = anx
2 + 2bnx + cn,


and 0 ≤ an ≤ 1. Since V (n, x) ≥ 0, this implies that b2
n ≤ ancn, whence


(ω : an = 0) ⊂ (ω : bn = 0).


Moreover, by the Hölder inequality
(
E(an∆Xn|Fn−1)


)2
=


(
E(
√


an


√
an∆Xn|Fn−1)


)2


≤ E
(
an|Fn−1)E(an(∆Xn)2|Fn−1


)
, (3.5)


i.e., (
ω : E(an(∆Xn)2|Fn−1) = 0


) ⊂ (
ω : E(an∆Xn|Fn−1) = 0


)
. (3.6)


If we denote by A the set
(
ω : E(an(∆Xn)2|Fn−1) = 0


)
, then


E
[
an(∆Xn)2IA


]
= E


[
E(an(∆Xn)2|Fn−1)IA


]
= 0,


whence an(∆Xn)2IA = 0. This implies that bn(∆Xn)2IA = 0, and therefore
bn∆XnIA = 0. Taking conditional expectation we get E(bn∆Xn|Fn−1)IA = 0,
whence we finally obtain


(
ω : E(an(∆Xn)2|Fn−1) = 0


) ⊂ (
ω : E(bn∆Xn|Fn−1) = 0


)
. (3.7)


Therefore essinf w.r.t. π ∈ Π(n− 1, N) in


E
(
V (n, x + πn∆Xn)|Fn−1


)


= E
(
an(x + πn∆Xn)2 + 2bn(x + πn∆Xn) + cn|Fn−1


)


= E
(
anx


2 + 2bnx + cn|Fn−1


)
+ π2


nE
(
an(∆Xn)2|Fn−1


)


+ 2πn


(
xE(an∆Xn|Fn−1


)
+ E


(
bn∆Xn|Fn−1)


)
] (3.8)


is attained for


πn = − E(bn∆Xn|Fn−1)


E(an(∆Xn)2|Fn−1)
− x


E(an∆Xn|Fn−1)


E(an(∆Xn)2|Fn−1)
. (3.9)


Note that on the set A, πn can be chosen arbitrarily, e.g., it can be set to be
0. The agreement 0


0
= 0 allows one to write this in compact form (3.9). After


substituting πn defined by the above formula in (3.8) and using (2.1), we obtain


V (n− 1, x) =


[
E(an|Fn−1)− (E(an∆Xn|Fn−1))


2


E(an(∆Xn)2|Fn−1)


]
x2


+ 2


[
E(bn|Fn−1)− E(an∆Xn|Fn−1)E(bn∆Xn|Fn−1)


E(an(∆Xn)2|Fn−1)


]
x


+ E(cn|Fn−1)− (E(bn∆Xn|Fn−1))
2


E(an(∆Xn)2|Fn−1)
.
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Denoting


an−1 = E(an|Fn−1)− (E(an∆Xn|Fn−1))
2


E(an(∆Xn)2|Fn−1)
,


bn−1 = E(bn|Fn−1)− E(an∆Xn|Fn−1)E(bn∆Xn|Fn−1)


E(an(∆Xn)2|Fn−1)
,


cn−1 = E(cn|Fn−1)− (E(bn∆Xn|Fn−1))
2


E(an(∆Xn)2|Fn−1)
,


we obtain
V (n− 1, x) = an−1x


2 + 2bn−1x + cn−1.


Using the definition of an−1 and (3.5) it is easy to check that 0 ≤ an−1 ≤ 1.
Therefore (3.6), (3.7) are satisfied for k = n−1 as well and, consequently, using
the induction, for all k = 0, . . . , N. Hence the reasoning used to find essinf is
true for all k.


Bellman’s principle suggests us that a natural candidate for an optimal so-
lution is (3.4), where an, bn satisfy (3.1)–(3.2) with initial conditions aN = 1,


bN = −H. Let us show that Xπ∗
N =


∑N
i=1 π∗i ∆Xi is square integrable (i.e., π∗ is


admissible). For this it is sufficient to check that an(Xπ∗
n )2 = an(


∑n
i=1 π∗i ∆Xi)


2


is integrable for all n. Since aN = 1, this will entail the square integrability of
Xπ∗


N . Obviously, a0(X
π∗
0 )2 is integrable (as a0 ≤ 1 and Xπ∗


0 = c). If we prove
the equality


E[an(Xπ∗
n )2] = E[an−1(X


π∗
n−1)


2] + E


[
(E(bn∆Xn|Fn−1))


2


E(an(∆Xn)2|Fn−1)


]
, (3.10)


then by induction it is sufficient to show that for all n,


(E(bn∆Xn|Fn−1))
2


E(an(∆Xn)2|Fn−1)


is integrable. But this directly follows if we note that (cn, Fn) is a submartingale
since cn = V (n, 0) and for arbitrary x, (V (n, x), Fn) is a submartingale, whence


cn ≤ E(cN |Fn) = E(H2|Fn),


and since for all n we have |bn| ≤ √
ancn, by the Hölder inequality


(E(bn∆Xn|Fn−1))
2


E(an(∆Xn)2|Fn−1)
≤ (E(


√
ancn∆Xn|Fn−1))


2


E(an(∆Xn)2|Fn−1)
≤ E(cn|Fn−1).


Now let us verify (3.10). We have


E
[
an(Xπ∗


n )2] = E[an(Xπ∗
n−1 + π∗n∆Xn)2


]


= E
[
an(Xπ∗


n−1)
2 + 2π∗nan∆XnX


π∗
n−1 + an(π∗n∆Xn)2


]


= E
[
E(an|Fn−1)(X


π∗
n−1)


2 + 2π∗nE(an∆Xn|Fn−1)X
π∗
n−1


+ (π∗n)2E(an(∆Xn)2|Fn−1)
]


= E


[
E(an|Fn−1)(X


π∗
n−1)


2 − 2


[
E(bn∆Xn|Fn−1)E(an∆Xn|Fn−1)


E(an(∆Xn)2|Fn−1)
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+
(E(an∆Xn|Fn−1))


2


E(an(∆Xn)2|Fn−1)
Xπ∗


n−1


]
Xπ∗


n−1


+
(E(bn∆Xn|Fn−1))


2


E(an(∆Xn)2|Fn−1)
+ 2


E(bn∆Xn|Fn−1)E(an∆Xn|Fn−1)


E(an(∆Xn)2|Fn−1)
Xπ∗


n−1


+
(E(an∆Xn|Fn−1))


2


E(an(∆Xn)2|Fn−1)
(Xπ∗


n−1)
2


]


= E


[
(E(an|Fn−1)− (E(an∆Xn|Fn−1))


2


E(an(∆Xn)2|Fn−1)
)(Xπ∗


n−1)
2


]


+ E


[
(E(bn∆Xn|Fn−1))


2


E(an(∆Xn)2|Fn−1)


]
,


which is the desired result. Hence Xπ∗
N is square integrable.


The optimality of π∗ can be easily derived using the optimality criterion (Pro-
position A2), equations (3.1)–(3.2) and the fact that V (n, x) is a square trino-
mial (one should substitute the expressions for V (n, c+


∑n
i=1 π∗i ∆Xi) and V (n−


1, c+
∑n−1


i=1 π∗i ∆Xi) in the hypothetical equality E(V (n, c+
∑n


i=1 π∗i ∆Xi)
∣∣Fn−1)=


V (n− 1, c +
∑n−1


i=1 π∗i ∆Xi)). ¤


4. Remarks and Applications


Remark 4.1. Let us show how the obtained results are related to the solutions
previously proposed in the literature. In order to make comparisons valid,
suppose that Xn is square integrable for all n. Recall from [6] that an optimal
solution is given by


π∗n = ρn −
(
c +


n−1∑
i=1


π∗i ∆Xi


)
βn, (4.1)


where the predictable processes β = (βk) and ρ = (ρk) are defined by the
backward equations


βn =
E


(
∆Xn


∏N
i=n+1(1− βi∆Xi)


∣∣Fn−1


)


E
(
(∆Xn)2


∏N
i=n+1(1− βi∆Xi)


∣∣Fn−1


) , (4.2)


ρn =
E


(
H∆Xn


∏N
i=n+1(1− βi∆Xi)


∣∣Fn−1


)


E
(
(∆Xn)2


∏N
i=n+1(1− βi∆Xi)


∣∣Fn−1


) . (4.3)


The link between a = (ak), b = (bk) and β = (βk), ρ = (ρk) is quite simple,
namely


βn =
E(an∆Xn


∣∣Fn−1)


E(an(∆Xn)2
∣∣Fn−1)


,


ρn = − E(bn∆Xn


∣∣Fn−1)


E(an(∆Xn)2
∣∣Fn−1)


.


Indeed, since aN = 1, bN = −H, these relations are true for n = N . The same
fact for general n can be easily obtained using induction. Conversely, an and bn
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can be expressed in terms of βn+1, . . . , βN as


an = E


( N∏
i=n+1


(1− βi∆Xi)
∣∣ Fn


)
,


bn = −
(


H


N∏
i=n+1


(1− βi∆Xi)
∣∣ Fn


)
,


which again can be proved by induction. As it can be seen from (4.2)–(4.3),
equations (3.1)–(3.2) provide some advantages for describing an optimal strat-
egy as they are one-step, unlike (4.2)–(4.3), which involve βn+1, . . . , βN . On the
other hand, (4.1) seems simpler than (3.4).


Remark 4.2. Note that the requirement of the square integrability of Xn,
n = 0, . . . , N , of [6], [7] in our setting is substituted by a weaker one:


E
(
(∆Xn)2


∣∣Fn−1


)
< ∞


for all n.


Remark 4.3. It is interesting to determine the value of the shortfall


R∗ = E


[(
H − c−


N∑
i=1


π∗i ∆Xi


)2 ]


associated with the optimal strategy π∗. Noting that


E


[(
H − c−


N∑
i=1


π∗i ∆Xi


)2 ]
= V (0, c),


we obtain
R∗ = a0c


2 + 2b0c + c0.


Remark 4.4. When hedging a contigent claim, we usually are also interested
in determining the price of this claim, i.e. we consider the problem


minimize E
[(


H − x−
N∑


i=1


πi∆Xi


)2]
over all (x, π) ∈ R× Π.


For every fixed c and arbitrary π ∈ Π we have


E
[(


H − c−
N∑


i=1


π∗i (c)∆Xi


)2]
≤ E


[(
H − c−


N∑
i=1


πi∆Xi


)2]
,


where π∗(c) is defined by (3.1)–(3.4). Let us minimize the left-hand side by c.
Since it is equal to


V (0, c) = a0c
2 + 2b0c + c0,


the minimum is attained for −b0/a0 (of course, if a0 6= 0) and a minimal shortfall
is equal to


R∗ = −b2
0 − a0c0


a0


.
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If a0 = 0, then b0 = 0 too (see the proof of Theorem 1), which means that an
optimal strategy π∗(c) does not depend on the initial capital c; therefore the
price can be set to 0 and it can be again written as c∗ = − b0


a0
. The shortfall in


this case equals c0. Note that this result due to Remark 4.1 coincides with the
solution proposed in [6]. ¤


Appendix


Lemma A1. The family of random variables Λπ
n = E((H−x−∑n


i=1 π̂i∆Xi−∑N
i=n+1 πi∆Xi)


2
∣∣Fn), π ∈ Π(π̂, n, N), possesses the ε-lattice property (for ε =


0). Here Π(π̂, n, N) denotes the set of π ∈ Π such that πi = π̂i for i = 0, 1, . . . , n.


Proof. Let π1, π2 ∈ Π(π̂, n, N) and let us define π3 ∈ Π(π̂, n,N) as


π3
i = π1


i IB + π2
i IBc ,


where B = (ω : Λπ1


n ≤ Λπ2


n ). Then since B ∈ Fn,


Λπ3


n = E


((
H − x−


N∑
i=1


π3
i ∆Xi


)2 ∣∣∣ Fn


)


= E


((
H − x− IB


N∑
i=1


π1
i ∆Xi − IBc


N∑
i=1


π2
i ∆Xi


)2 ∣∣∣ Fn


)


= IBE


((
H − x−


N∑
i=1


π1
i ∆Xi


)2 ∣∣∣ Fn


)


+ IBcE


((
H − x−


N∑
i=1


π2
i ∆Xi


)2 ∣∣∣ Fn


)


= E


((
H − x−


N∑
i=1


π1
i ∆Xi


)2 ∣∣∣ Fn


)
∧ E


((
H − x−


N∑
i=1


π2
i ∆Xi


)2 ∣∣∣ Fn


)


and therefore the family Λπ
n has the ε-lattice property. ¤


Proposition A1. The sequence V (n, x +
∑n


i=1 π̂i∆Xi), Fn) is a submartin-
gale for arbitrary fixed π̂ ∈ Π, x ∈ R.


Proof. We must prove that for any n


E


(
V


(
n, x +


n∑
i=1


π̂i∆Xi


) ∣∣∣ Fn−1


)
≥ V


(
n− 1, x +


n−1∑
i=1


π̂i∆Xi


)
.


Taking into account the previous lemma and Lemma 16.A.5 of [1], we obtain


E


(
essinf


π∈Π(bπ,n,N)
E


((
H − x−


n∑
i=1


π̂i∆Xi −
N∑


i=n+1


πi∆Xi


)2∣∣Fn


) ∣∣∣ Fn−1


)
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= essinf
π∈Π(bπ,n,N)


E


(
E


((
H − x−


n∑
i=1


π̂i∆Xi −
N∑


i=n+1


πi∆Xi)
2
∣∣Fn


) ∣∣∣ Fn−1


))


= essinf
π∈Π(bπ,n,N)


E


((
H − x−


n∑
i=1


π̂i∆Xi −
N∑


i=n+1


πi∆Xi


)2 ∣∣∣ Fn−1


)


≥ essinf
π∈Π(bπ,n−1,N)


E


((
H − x−


n−1∑
i=1


π̂i∆Xi −
N∑


i=n


πi∆Xi


)2 ∣∣∣ Fn−1


)


= V


(
n− 1, x +


n−1∑


i=k


π̂i∆Xi


)
,


which is the desired result. ¤


Proposition A2 (Optimality Principle). π∗ ∈ Π is optimal if and only
if the sequence (V (n, c +


∑n
i=1 π∗i ∆Xi) , Fn) is a martingale.


Proof. Necessity. Suppose that π∗ = (π∗n) is optimal. Then since (V (n, c +∑n
i=1 π∗∆Xi), Fn) is a submartingale, due to Lemma 6.6 of [4] it is sufficient to


check the equality


E


[
V


(
N, c +


N∑
i=1


π∗i ∆Xi


)]
= E[V (0, c)].


We have


E


[
V


(
N, c +


N∑
i=1


π∗i ∆Xi


)]
= E


[(
H − c−


N∑
i=1


π∗i ∆Xi


)2]
.


Noting that the optimality of π∗ means


V (0, c) = E


[(
H − c−


N∑
i=1


π∗i ∆Xi


)2]
,


we finally obtain


E


[
V


(
N, c +


N∑
i=1


π∗i ∆Xi


)]
= E[V (0, c)].


Sufficiency. Suppose that (V (n, c +
∑n


i=1 π∗i ∆Xi), Fn) is a martingale. Then


E


(
V


(
N, c +


N∑
i=1


π∗i ∆Xi


) ∣∣∣ F0


)
= V (0, c),


whence


E


[(
H − c−


N∑
i=1


π∗i ∆Xi


)2]
= V (0, c),


which means that π∗ is optimal. ¤
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