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ABOUT ASYMPTOTIC AND OSCILLATION PROPERTIES OF
THE DIRICHLET PROBLEM FOR DELAY PARTIAL


DIFFERENTIAL EQUATIONS


ALEXANDER DOMOSHNITSKY


Abstract. In this paper, oscillation and asymptotic properties of solutions of
the Dirichlet boundary value problem for hyperbolic and parabolic equations
are considered. We demonstrate that introducing an arbitrary constant de-
lay essentially changes the above properties. For instance, the delay equation
does not inherit the classical properties of the Dirichlet boundary value prob-
lem for the heat equation: the maximum principle is not valid, unbounded
solutions appear while all solutions of the classical Dirichlet problem tend to
zero at infinity, for “narrow enough zones” all solutions oscillate instead of
being positive. We establish that the Dirichlet problem for the wave equation
with delay can possess unbounded solutions. We estimate zones of positivity
of solutions for hyperbolic equations.
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1. Introduction


In this paper the following equation with memory


Lv(·, x)(t) + Tv
′′
xx(·, x)(t) = 0, x ∈ [0, ω], t ∈ [0, +∞), (1.1)


is considered. Here L : Dk
loc[0,∞) → Lloc[0,∞) and T : Lloc[0,∞) → Lloc[0,∞)


are linear Volterra operators. Dk
loc[0,∞) is a space of functions z : [0,∞) → R1


absolutely continuous with derivative of (k−1)−th order on each finite interval,
and Lloc[0,∞) is a space of locally summable functions w : [0,∞) → R1.
It should be noted that the operators L and T act on v(·, x) or on v′′xx(·, x)
respectively as on the functions of a variable t only for fixed x. It is also assumed
that the operators L and T cannot depend on x and do not include derivatives
with respect to x.


Obviously, the classical wave, heat and Laplace equations can be written in
the form of equation (1.1), which also includes natural “delay” and “integro-
differential” generalizations of the classical equations. For example, the heat
equation with delay


v′t(t, x)(t) = v
′′
xx(t− θ(t), x), (1.2)


and the wave equation with delay


v′′tt(t, x)(t) = v
′′
xx(t− θ(t), x), (1.3)
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can be considered. The theory and various applications of partial functional dif-
ferential equations are presented in the monograph by J. H. Wu [14]. “Integro-
differential” generalizations of the classical equations is another possible realiza-
tion of equation (1.1). Refer in this connection to the well-known monograph
by J. Pruss [12] in which many mathematical models containing integral partial
differential equations (PDE) are studied.


Let us write several possible forms of the operators L and T :


Lv(·, x)(t) ≡ v
(k)


t (t, x) +
r∑


j=0


m∑
i=1


pji(t)v
(j)
t (t− τji(t), x)


+
r∑


j=0


t∫


0


Kj(t, ξ)v
(j)
t (ξ, x)dξ, r < k,


Tv′′xx(·, x)(t) ≡
m∑


i=1


ai(t)v
′′
xx(t− θi(t), x) +


t∫


0


Q(t, ξ)v′′xx(ξ, x)dξ,


where
v


(i−1)
t (ξ, x) = ϕi(ξ, x), i = 1, . . . , k, v


′′
xx(ξ, x) = ϕ0(ξ, x),


x ∈ [0, ω], ξ < 0.
(1.4)


where pji, ai, Kj, Q are continuous functions, τji(t) and θi(t) are measurable
positive functions, ϕi(ξ, x), ϕ0(ξ, x) are continuous functions (i = 1, . . . , m, j =
1, . . . , r).


This paper deals with oscillation and asymptotic properties of solutions
to the Dirichlet boundary value problem (1.1), (1.5), where


v(t, 0) = v(t, ω) = 0, t ∈ [0, +∞). (1.5)


Definition 1.1. We say that a solution u(t, x) of the PDE boundary value
problem oscillates if for each t0 there exists a point (t1, x1) : t1 > t0, x1 ∈ (0, ω)
such that u(t1, x1) = 0.


Below we assume that there exist solutions to the boundary value problem
in order not to discuss the question of solution existence here.


In this paper the PDE boundary value problem is reduced to an “ordinary
delay equation”. The properties of this equation allow us to make a conclusion
about the oscillation and asymptotic behavior of solutions to the considered
PDE problem.


Oscillation properties of hyperbolic equations were considered by P. Wang in
the paper [13].


The following partial differential-difference equation


v(p(t), x) + a(t)v′′xx(t, x) + b(t, x)v(r(t), x) = 0, t > 0, x ∈ [0, ω], (1.6)


where p and r are monotone increasing functions such that p(t) ≥ t, r(t) ≤ t,
was considered in the paper by D. Bainov and Yu. Domshlak [3]. In that case
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the operator L is a functional operator of the form


Lv(·, x)(t) ≡ v(p(t), x) + b(t, x)v(r(t), x), t > 0, x ∈ [0, ω]. (1.7)


Also, in [3], estimates of the zone of solutions positivity for the Dirichlet bound-
ary value problem with equation (1.6) were derived. Because of the instability
of equation (1.1) (see, Theorem 2.4) it is impossible to use the passage to the
limit and to tend directly the results on oscillation and asymptotic properties
from differential-difference equation (1.6) to the PDE (1.1).


Thus estimates of the domains of solutions positivity will be obtained in terms
of the spectral radius of the compact operator


(Kν,µz)(t) = −
∫ µ


ν


Gν,µ(t, s)
m∑


i=0


pi(s)z(s− τi(s))ds, t ∈ [ν, µ], (1.8)


acting in the space of continuous functions. Here z(s) = 0 if s < ν, p0(t) =
a(t)(nπ


ω
)2, τ0(t) = θ(t), and Gν,µ(t, s) is the Green function of the two point


boundary value problem


z′′(t) = f(t), t ∈ [ν, µ], z(ν) = 0, z(µ) = 0. (1.9)


Denote by rν,µ the spectral radius of the operator Kν,µ.
Various estimates of the distance between adjoint zeros of oscillating solu-


tions for “ordinary delay equations” were obtained by N. V. Azbelev [1], Yu.
Domshlak [8], A. D. Myshkis [10], S. B. Norkin [11] and in the work [5]. In Part
2 we propose an assertion about an estimate of the zone of solution positivity
for the PDE (1.1).


Results on the unboundedness of solutions of “ordinary delay equations” were
obtained by the author in a recent paper [6] with a comprehensive bibliography.
In Part 2 an assertion about the unboundedness of solutions of the PDE (1.3)
is given.


In order to illustrate our results on this subject, let us consider the equation


v′′tt(t, x)− v′′xx(t− ε, x) = 0, t ∈ [0, +∞), x ∈ [0, ω]. (1.10)


If ε > 0, then there exist unbounded solutions of the Dirichlet problem (1.10),
(1.5). If ε = 0, then all solutions of this problem are bounded on (0, +∞).


2. Main Results


Let us consider the Dirichlet boundary value problem for the heat equation


v′t(t, x) = v′′xx(t− θ, x), t > 0, x ∈ [0, ω],


v(t, 0) = v(t, ω) = 0, v(0, x) = α(x),
(2.1)


where θ is a positive constant, α(x) is a continuous function such that α(0) =
α(ω) = 0 and v′′xx(s, x) = 0 for s < 0.


For problem (2.1) in the case of the classical heat equation (θ = 0) the
maximum principle is valid, solutions are positive when α(x) > 0 and tend to
zero when t →∞. If the delay θ is not zero, then, in contrast to these facts, we
have the following assertion.
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Theorem 2.1. There exist unbounded solutions of the Dirichlet boundary
value problem (2.1) and the maximum principle is not valid for the heat equation.
If


θ >
1


e


ω2


π2
, (2.2)


then all solutions of this problem oscillate.


Remark 2.1. Inequality (2.2) guarantees that in a narrow enough zone all
solutions oscillate.


Let us consider the following particular case of equation (1.1):


Lv(·, x)(t)− a(t)v′′xx(t− θ(t), x) = 0, x ∈ [0, ω], t > 0, (2.3)


where


v
(i−1)
t (ξ, x) = 0, i = 1, . . . , k, v


′′
xx(ξ, x) = 0, x ∈ [0, ω], ξ < 0. (2.4)


Theorem 2.2. 1) If for any n there exist unbounded solutions of the “ordinary
delay equation”


Lz(t) +
(nπ


ω


)2


a(t)z(t− θ(t)) = 0, t > 0, (2.5)


then there exist unbounded solutions of the Dirichlet problem (2.3), (1.5).
2) If each solution of the equation


Lz(t) +
(π


ω


)2


a(t)z(t− θ(t)) = 0, t > 0, (2.6)


oscillates, then each solution of the Dirichlet problem (2.3), (1.5) oscillates.


Let us consider the following particular case of equation (2.3):


v′′tt(t, x)− a(t)v′′xx(t− θ(t), x) = 0, t > 0, x ∈ [0, ω]. (2.7)


Corollary 2.1. If θ is a bounded function on [0, +∞) and there exists a
positive constant ε such that


a(t) ≥ (1 + ε)


4t2
ω2


π2
, for t > b > 0, (2.8)


then all solutions of the Dirichlet problem (2.7), (1.5) oscillate on (0, +∞) ×
(0, ω).


Remark 2.2. Inequality (2.8) cannot be improved in the following sense. If
we consider the classical hyperbolic equation (θ = 0) and set ε = 0 in inequality
(2.8), then there exists a positive solution v(t, x) =


√
t sin(π


ω
x) of the Dirichlet


problem


v′′tt(t, x)− 1


4t2
ω2


π2
v′′xx(t, x) = 0, t > b, x ∈ [0, ω],


v(t, 0) = v(t, ω) = 0, t ∈ [b, +∞).


Remark 2.3. If the coefficient a(t) in equation (2.7) is of the form a(t) = C
t2


,
then the geometrical size ω of a zone influences the oscillation of solutions.
Inequality (2.8) guarantees that in a narrow enough zone all solutions oscillate.
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We propose an approach reducing study of oscillation to the classical problem
about the spectral radius of the compact operator Kν,µ determined by formula
(1.8).


Let us determine ν∗ = vrai inft∈[ν,µ] h(t), where h(t) = min1≤i≤m{t− τi(t)}.
Theorem 2.3. Let the inequality rν,µ ≥ 1 be fulfilled. Then all nontrivial


solutions of the Dirichlet problem for the equation


v′′tt(t, x)− a(t)v′′xx(t, x) +
m∑


i=1


pi(t)v(t− τi(t), x) = 0, t > 0, x ∈ [0, ω], (2.9)


change their sign in the zone (ν∗, µ)× (0, ω).


Denote τ ∗ = supt∈[β,µ] max1≤i≤m τi(t) and a0 = inft∈[β,µ] a(t)


Corollary 2.2. All nontrivial solutions of problem (2.9), (1.5) change their
sign in a zone (β, µ)× (0, ω) if


µ− β >
ω√
a0


+ τ ∗. (2.10)


Remark 2.4. Inequality (2.10) cannot be improved in the following sense. If
instead of the inequality we put the equality in (2.10), then the assertion of
Corollary 2.2 is not true. Let us consider the following example: a is a positive
constant and pi = 0 for i = 1, 2, . . . , m. It is clear that τ ∗ = 0 and the function


v(t, x) = sin[
√


a
π


ω
(t− β)] sin


π


ω
x (2.11)


is a solution which is positive in the zone (β, β + ω√
a
)× (0, ω).


The following assertion shows whether there exist unbounded solutions of
PDE boundary value problems.


Theorem 2.4. If a(t) and t − θ(t) are nondecreasing functions, a(t) is a


bounded function and
∞∫


θ(t)dt = ∞, then there exist unbounded solutions of the
Dirichlet problem (2.7), (1.5).


3. Proofs


Proof of Theorem 2.2. Let us denote


z(t) =


ω∫


0


sin
(πn


ω
x
)


v(t, x)dx, t ∈ [0, +∞), (3.1)


Multiplying each term in equation (2.3) by sin(πn
ω


x) and integrating, we get the
following equation for the function z :


(Lz)(t) +
(nπ


ω


)2


a(t)z(t− θ(t)) = 0, t ∈ [0, +∞), (3.2)


where z(s) = 0 for s < 0.
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If n = 1, then


z(t) =


ω∫


0


sin(
π


ω
x)v(t, x)dx, t ∈ [0, +∞), (3.3)


is positive for a positive function v(t, x), and if z(t) oscillates, then v(t, x) also
oscillates. It proves assertion 2).


From formula (3.1) it follows that for each bounded v(t, x) the function z(t)
is also bounded. If for any n the corresponding function z(t) is unbounded, this
implies that v(t, x) is unbounded too. It proves assertion 1). ¤


Proof of Corollary 2.1. Multiplying each term in equation (2.7) by sin(π
ω
x)


and integrating, we get the following equation for the function z :


z′′tt(t, x) + a(t)
π2


ω2
z(t− θ(t)) = 0, t > 0, (3.4)


The inequality


p(t) ≥ 1 + ε


4t2
, ε > 0,


is one of the classical tests of oscillation of the ordinary differential equation


z′′tt(t) + p(t)z(t) = 0, t > 0.


Now it is clear that the inequality


a(t) ≥ (1 + ε)


4t2
ω2


π2
for t > 0, ε > 0, (3.5)


guarantees the oscillation of the ordinary differential equation


z′′tt(t) + a(t)
π2


ω2
z(t) = 0, t > 0. (3.6)


The known theorem of Brands [4] claims that the one term second order equa-
tion (3.4) with bounded delay θ is oscillatory iff the corresponding ordinary
equation (3.6) is oscillatory. Now oscillation of solutions to equation (3.4) fol-
lows from condition (3.5). Now assertion 2) of Theorem 2.2 completes the
proof. ¤


Proof of Theorem 2.4. Multiplying each term in equation (2.7) by sin(π
ω
x)


and integrating, we get equation (3.4) for the function z. By Theorem 1.1 from
[6] there exist unbounded solutions to equation (3.4). Now assertion 1) of
Theorem 2.2 completes the proof. ¤


Proof of Theorem 2.1. Let us introduce z(t) by formula (3.1). Multiplying
each term in equation (2.1) by sin(πn


ω
x) and integrating, we get the following


equation for z(t) :


z′(t) +
(πn


ω


)2


z(t− θ) = 0, t ∈ [0, +∞). (3.7)


It is clear that
(


nπ
ω


)2 → +∞ as n →∞ and for positive θ we obtain the existence
of unbounded solutions of this equation. Condition (2.2) implies oscillation of
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solutions of equation (3.7) for n = 1. The assertions of Theorem 2.1. follow
now from Theorem 2.2. ¤


Proof of Theorem 2.3 is based on the following assertion proved in [7].


Lemma 3.1 ([7]). If rν,µ ≥ 1, then each nontrivial solution of the “ordinary
delay equation”


z′(t) + a(t)
(π


ω


)2


z(t− θ) +
m∑


i=1


pi(t)z(t− τi(t)) = 0, t ∈ [0, +∞), (3.8)


changes its sign in the interval (ν∗, µ).


Multiplying each term in equation (2.9) by sin(π
ω
x) and integrating, we get


equation (3.8) for the function z. The proof of Theorem 2.3 follows now from
formula (3.3). ¤


Proof of Corollary 2.2 is based on the estimate of the spectral radius rν,µ ≥ 1
of the compact operator Kν,µ obtained in [7]. Multiplying each term in equa-
tion (2.9) by sin(π


ω
x) and integrating, we get equation (3.8) for the function z.


Condition (2.10) implies the estimate rν,µ ≥ 1 of the spectral radius. ¤
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