ON A RELATIONSHIP BETWEEN THE INTEGRABILITIES OF VARIOUS MAXIMAL FUNCTIONS

L. EPHREMIDZE

Abstract

It is shown that the right-sided, left-sided, and symmetric maximal functions of any measurable function can be integrable only simultaneously. The analogous statement is proved for the ergodic maximal functions.

Introduction. We deal with integrable functions on $\mathbb{T}=[0,2 \pi)$ and assume that they are extended to 2π-periodic functions on the whole line \mathbb{R}. The class of such functions will be denoted by L. One can also consider the functions of L to be defined on the unit circle in the complex plane.

If a measurable set $E \subset \mathbb{R}$ is such that \mathbb{I}_{E} is a 2π-periodic function and $f \in L$, then we assume that $|E|=\nu E=\nu(E \cap \mathbb{T})$ and

$$
\int_{E} f d \nu=\int_{E \cap \pi} f d \nu
$$

(ν denotes the Lebesgue measure on the line).
We shall say that a subset $\Delta \subset \mathbb{R}$ is a segment of \mathbb{T} if it is the preimage of an open arc of the unit circle by the exponential function. The set of such segments is denoted by \mathcal{E}. If $\Delta \in \mathcal{E}, \Delta \neq \mathbb{R}$ and (a, b) is a connected component of Δ, then we shall write $\Delta=(a, b)$, which should not cause any confusion. Obviously, in that case $|\Delta|=b-a$.

Let $x \in \mathbb{T}$. We introduce the following notations of subsets of \mathcal{E} :

$$
\begin{aligned}
& \mathcal{E}_{0}(x)=\{(a, b) \in \mathcal{E}: a<x<b\}, \\
& \mathcal{E}_{1}(x)=\{(a, b) \in \mathcal{E}: b=x\}, \\
& \mathcal{E}_{2}(x)=\{(a, b) \in \mathcal{E}: a=x\}, \\
& \mathcal{E}_{3}(x)=\left\{(a, b) \in \mathcal{E}: \frac{a+b}{2}=x\right\} .
\end{aligned}
$$

[^0]Consider the maximal operators $M_{j}, j=0,1,2,3$, defined by the equalities

$$
M_{j}(f)(x)=\sup _{\Delta \in \mathcal{E}_{j}(x)} \frac{1}{|\Delta|}\left|\int_{\Delta} f d \nu\right|, \quad f \in L
$$

It is wellknown that $f \in L \lg ^{+} L \Rightarrow M_{j}(f) \in L, j=0,1,2,3$, and if $f \geq 0$, then the inverse implication is true (see [1], [2]). But, in general, one cannot write explicitly the set of functions f for which $M_{j}(f)$ is integrable (in connection with this see [2], [3]). In this paper we shall show that for an arbitrary $f \in L$ the functions $M_{j}(f), j=0,1,2,3$, can be integrable only simultaneously. An analogous statement is proved for the ergodic maximal functions in $\S 2$.

The author's interest in this investigation was due to the question posed by Prof. L. Gogoladze (personal communication).
\S 1. Obviously, $M_{0}(f) \geq M_{j}(f), j=1,2,3$. We shall prove the following theorems.

Theorem 1. Let $f \in L$ and $M_{1}(f) \notin L$. Then $M_{3}(f) \notin L$.
Theorem 2. Let $f \in L$. Then

$$
M_{1}(f) \notin L \Leftrightarrow M_{2}(f) \notin L
$$

Since $M_{0}(f) \leq M_{1}(f)+M_{2}(f)$, Theorems 1 and 2 enable us to conclude that the functions $M_{j}(f), j=1,2,3$, are nonintegrable whenever $M_{0}(f)$ is nonintegrable.

We begin by proving some lemmas. Their proofs are given in the form simplifying their extension to the ergodic case.

Let M be the operator

$$
M(f)(x)=\sup _{a<x} \frac{1}{x-a} \int_{a}^{x} f d \nu, \quad f \in L
$$

Evidently, $\{x \in \mathbb{R}: M(f)(x)>t\}=(M(f)>t)$ is an open subset of \mathbb{R} for each t.

Lemma 1. Let $f \in L, t>0$, and let (a, b) be a finite (i.e., $a \neq-\infty$, $b \neq \infty)$ connected component of $(M(f)>t)$. Then we have

$$
\begin{equation*}
\frac{1}{x-a} \int_{a}^{x} f d \nu>t \tag{1}
\end{equation*}
$$

for each $x \in(a, b)$.
This lemma was actually proved in [4] but we give it here for the sake of completeness.

Proof. Suppose $h(x)=\int_{a}^{x} f d \nu-t(x-a), x \in \mathbb{R}$. Note that whenever $y<x$ we have $h(y)<h(x) \Leftrightarrow \frac{1}{x-y} \int_{y}^{x} f d \nu>t$. Evidently, $h(a)=0$ and $h(x) \geq 0$ for $x<a$, since, by the assumption, $M(f)(a) \leq t$. We have to show that $h(x)>0$ for each $x \in(a, b)$. Indeed, otherwise there would exist a point $x \in(a, b)$ for which $h(x)=\inf _{y \in[a, x)} h(y)$. Then we would have $h(y) \leq h(x)$ for each $y<x$, which is impossible, since $M(f)(x)>t$.

If E is an open subset of \mathbb{R} not containing any neighborhood of $-\infty$ and if the representation of E by the union of disjoint connected components has the form

$$
\begin{equation*}
E=\cup_{n=1}\left(a_{n}, b_{n}\right) \tag{2}
\end{equation*}
$$

then we suppose

$$
E^{-}=\bigcup_{n=1}\left(2 a_{n}-b_{n}, a_{n}\right)
$$

(each component is rotated with respect to the left origin).
Lemma 2. Let E be an open proper subset of \mathbb{R} for which \mathbb{I}_{E} is a 2π periodic function. Then

$$
\left|E^{-}\right| \geq \frac{1}{2}|E|
$$

Proof. Assume in representation (2) of E that $a_{n} \in[0,2 \pi)$ and $\left(a_{n}, b_{n}\right)=$ $\cup_{k \in \mathbb{Z}}\left(a_{n}+2 \pi k, b_{n}+2 \pi k\right)$ (i.e., $\left.\left(a_{n}, b_{n}\right) \in \mathcal{E}\right), n=1,2, \ldots$.

If $I \subset \mathcal{E}$ and Δ_{I} is a segment from \mathcal{E} such that $\Delta_{I} \in I$ and

$$
\left|\Delta_{I}\right|=\sup _{\Delta \in I}|\Delta|
$$

then we shall say that $\Delta_{I}=\max (I)$. If there are several segments with such properties, then one of them (for our proof it does not matter which one) will be called $\max (I)$. Also, I^{\prime} will denote the set of segments from I which are included in the rotated $\max (I)$, i.e.,

$$
\Delta \in I^{\prime} \Leftrightarrow \Delta \in I, \quad \Delta \subset \max (I)^{-}
$$

and $S(I)$ will denote the subset of $I \quad I \backslash\left(I^{\prime} \cup\{\max (I)\}\right)$. (The case $S(I)=\varnothing$ is not excluded.)

Suppose $I_{0}=\left\{\left(a_{n}, b_{n}\right): n=1,2, \ldots\right\}, I_{n}=S\left(I_{n-1}\right), n=1,2, \ldots$ and $\Delta_{n}=\max \left(I_{n}\right)$. Obviously, $I_{0} \supset I_{1} \supset \ldots$ and

$$
\begin{equation*}
I_{0}=\cup_{n=0}^{\cup}\left(\left\{\Delta_{n}\right\} \cup I_{n}^{\prime}\right) \tag{3}
\end{equation*}
$$

since each segment of I_{0} will at some moment become maximal or be excluded.

Since each $\Delta_{n} \in I_{0}$, we have

$$
\begin{equation*}
\Delta_{n}^{-} \subset E^{-}, \quad n=0,1, \ldots \tag{4}
\end{equation*}
$$

If now $i<j$, then $\left|\Delta_{i}\right| \geq\left|\Delta_{j}\right|, \Delta_{i} \cap \Delta_{j}=\varnothing$ and $\Delta_{j} \not \subset \Delta_{i}^{-}$, which imply

$$
\begin{equation*}
\Delta_{i}^{-} \cap \Delta_{j}^{-}=\varnothing . \tag{5}
\end{equation*}
$$

Hence $\left\{\Delta_{n}^{-}: n=0,1, \ldots\right\}$ is a set of pairwise disjoint segments.
We also have the inequality

$$
\begin{equation*}
\left|\Delta_{n}\right| \geq \sum_{\Delta \in I_{n}^{\prime}}|\Delta|, \quad n=0,1, \ldots \tag{6}
\end{equation*}
$$

Using (4), (5), (6), and (3), we conclude that

$$
\begin{array}{r}
\left|E^{-}\right| \geq\left|\cup_{n=0}^{\cup} \Delta_{n}^{-}\right|=\sum_{n=0}\left|\Delta_{n}^{-}\right|=\sum_{n=0}\left|\Delta_{n}\right| \geq \\
\geq \sum_{n=0} \frac{1}{2}\left(\left|\Delta_{n}\right|+\sum_{\Delta \in I_{n}^{\prime}}|\Delta|\right)=\frac{1}{2} \sum_{\Delta \in I_{0}}|\Delta|=\frac{1}{2}|E|
\end{array}
$$

Proof of Theorem 1. Let us show that if t is so large that $(M(f)>t) \neq \mathbb{R}$ (for instance, whenever $t>\frac{1}{2 \pi}\|f\|=\frac{1}{2 \pi} \int_{\mathbb{T}}|f| d \nu$), then

$$
\begin{equation*}
\nu(M(f)>t) \leq 2 \nu\left(M_{3}(f)>t\right) \tag{7}
\end{equation*}
$$

Indeed, if the representation of $(M(f)>t)$ by the union of connected components has the form

$$
\begin{equation*}
(M(f)>t)=\bigcup_{n=1}\left(a_{n}, b_{n}\right) \tag{8}
\end{equation*}
$$

then each $x \in\left(a_{n}, \frac{1}{2}\left(a_{n}+b_{n}\right)\right)$ belongs to $\left(M_{3}(f)>t\right)$, since by Lemma 1

$$
\frac{1}{2\left(x-a_{n}\right)} \int_{a_{n}}^{2 x-a_{n}} f d \nu>t
$$

Hence $\cup_{n=1}\left(a_{n}, \frac{1}{2}\left(a_{n}+b_{n}\right)\right) \subset\left(M_{3}(f)>t\right)$ and (7) holds.
If now $M_{1}(f) \notin L$, then we can assume without loss of generality that $M(f) \notin L$, since

$$
M_{1}(f) \leq \max (M(f), M(-f))
$$

Thus the left term in inequality (7) will not be integrable as a function of t in a neighborhood of ∞. This implies that neither will the right term, and consequently $M_{3}(f) \notin L$.
Proof of Theorem 2. It is enough to show that

$$
\begin{equation*}
M_{1}(f) \notin L \Rightarrow M_{2}(f) \notin L \tag{9}
\end{equation*}
$$

since the inverse implication will be obtained by applying (9) to the function $x \longmapsto f(-x)$.

Let us show that

$$
\begin{equation*}
\nu(M(f)>t) \leq 2 \nu\left(M_{2}(f)>t / 4\right) \tag{10}
\end{equation*}
$$

for $t>\frac{1}{2 \pi}\|f\|$. Indeed, if $a<x$ and (1) holds, then

$$
\max \left(\frac{1}{x-a}\left|\int_{2 a-x}^{a} f d \nu\right|, \quad \frac{1}{2(x-a)}\left|\int_{2 a-x}^{x} f d \nu\right|\right)>\frac{t}{4}
$$

since otherwise

$$
\begin{aligned}
& \int_{a}^{x} f d \nu \leq\left|\int_{2 a-x}^{a} f d \nu\right|+\left|\int_{2 a-x}^{x} f d \nu\right| \leq \\
& \leq \frac{t}{4}(x-a)+\frac{t}{2}(x-a)<t(x-a)
\end{aligned}
$$

Therefore, taking into account the representation of $(M(f)>t)$ by form (8) and Lemma 1, we conclude that

$$
(M(f)>t)^{-} \subset\left(M_{2}(f)>t / 4\right)
$$

Thus (10) holds by Lemma 2.
If now $M_{1}(f) \notin L$, then we we can assume, as in the proof of Theorem 1 , that $M(f) \notin L$. Therefore (10) implies $M_{2}(f) \notin L$.

Remark. Theorem 2 shows that the functions $t \longmapsto \nu\left(M_{i}(f)>t\right), t>0$, $i=1,2$, can be integrable only simultaneously. There naturally arises the question whether the inequality

$$
\begin{equation*}
\int_{0}^{\infty}\left|\nu\left(M_{1}(f)>t\right)-\nu\left(M_{2}(f)>t\right)\right| d t<\infty \tag{11}
\end{equation*}
$$

is satisfied.
The following example shows that (11) may not be valid even for a positive integrable function f.

Let $f \in L$ be a continuous function with the properties: $f(x)>0$ for $0<x \leq \pi, f(x)=0$ for $\pi<x \leq 2 \pi, f$ is monotonically decreasing on ($0, \pi$], and

$$
\int_{0}^{\pi} f(x) \lg \frac{\int_{0}^{x} f d \nu}{x f(x)} d x=\infty
$$

(the class of such functions is considered in [5]).

Clearly, $M(f)(x)=\frac{1}{x} \int_{0}^{x} f d \nu$ for each $x \in(0,2 \pi)$. Thus

$$
\int_{(f>0)} f \lg \frac{M(f)}{f} d \nu=\infty
$$

For $t>l=\frac{1}{2 \pi}\|f\|$ let x_{t} be the point from $(0, \pi]$ for which $f\left(x_{t}\right)=t$, let y_{t} be the point from $(0,2 \pi]$ for which $M_{1}(f)\left(y_{t}\right)=t$, and let z_{t} be the point from $[-\pi, 0)$ for which $\frac{1}{x_{t}-z_{t}} \int_{0}^{x_{t}} f d \nu=t$. Then it is not difficult to show that $\left(M_{1}(f)>t\right)=\left(0, y_{t}\right)$ and $\left(M_{2}(f)>t\right)=\left(z_{t}, x_{t}\right)$. Hence

$$
\nu\left(M_{1}(f)>t\right)=\frac{1}{t} \int_{(M(f)>t)} f d \nu
$$

and

$$
\nu\left(M_{2}(f)>t\right)=\frac{1}{t} \int_{(f>t)} f d \nu
$$

By Fubini's theorem we now obtain

$$
\begin{gathered}
\int_{l}^{\infty}\left|\nu\left(M_{1}(f)>t\right)-\nu\left(M_{2}(f)>t\right)\right| d t=\int_{l}^{\infty} \frac{d t}{t} \int_{(M(f)>t) \backslash(f>t)} f d \nu= \\
=\int_{(M(f)>l) \cap(f \leq l)} f \lg \frac{M(f)}{l} d \nu+\int_{(f>l)} f \lg \frac{M(f)}{f} d \nu=\infty .
\end{gathered}
$$

§ 2. This section will be devoted to proving analogous theorems for ergodic maximal operators.

Let (X, \mathbb{S}, μ) be a σ-finite measure space and let $T: X \rightarrow X$ be an invertible measure-preserving ergodic transformation.

To emphasize the analogues we shall retain the notions of the preceding section, which should not cause misunderstanding.

Let L be the class of integrable functions (with respect to the measure μ) on X. As usual, the functions distinct from each other on a set of measure 0 are identified.

By \mathcal{E} we shall denote the class of subsets of \mathbb{Z} of the type $\{m, m+1, \ldots$, $m+k\}, m \in \mathbb{Z}, k=0,1 \ldots$. If $\Delta \in \mathcal{E}$, then it is assumed that $|\Delta|=$ $\operatorname{card}(\Delta)$. Let $\mathcal{E}_{j}, j=0,1,2,3$, be the following subclasses of \mathcal{E} :

$$
\begin{aligned}
& \mathcal{E}_{0}=\{\{m, m+1, \ldots, m+k\}: m \leq 0, m+k \geq 0\}, \\
& \mathcal{E}_{1}=\{\{m, m+1, \ldots, m+k\}: m+k=0\}, \\
& \mathcal{E}_{2}=\{\{m, m+1, \ldots, m+k\}: m=0\}, \\
& \mathcal{E}_{3}=\{\{m, m+1, \ldots, m+k\}:-m=m+k\},
\end{aligned}
$$

and let $M_{j}, j=0,1,2,3$, be the corresponding ergodic maximal operators:

$$
M_{j}(f)(x)=\sup _{\Delta \in \mathcal{E}_{j}} \frac{1}{|\Delta|}\left|\sum_{n \in \Delta} f \circ T^{n}(x)\right|
$$

It is wellknown that if $f \geq 0$, then $f \in L \lg ^{+} L \Leftrightarrow M_{j}(f) \in L$ when $\mu(X)<\infty$ and $M_{j}(f) \in L \Leftrightarrow f \equiv 0$ when $\mu(X)=\infty$ (see [6]). But a necessary and sufficient condition for $M_{j}(f)$ to be integrable does not exist on f in general (in this connection see [7]). We shall show that for arbitrary $f \in L$ the functions $M_{j}(f), j=0,1,2,3$, can be integrable only simultaneously. To this end, as in Section 1, it is sufficient to prove theorems which formally look like Theorems 1 and 2 . They will be called Theorems 1^{\prime} and 2^{\prime}. It can be said that Lemmas 3 and 4 to be used in proving these theorems are ergodic analogues of Lemmas 1 and 2.

Let M be the operator

$$
M(f)(x)=\sup _{N \geq 0} \frac{1}{N+1} \sum_{n=0}^{N} f \circ T^{-n}(x), \quad f \in L
$$

We shall say that a measurable set $A \subset X$ is a tower with the base B if $B=\cup_{m=0}^{\infty} B_{n}$, the sets $T^{n} B_{m}, m=0,1,2, \ldots, 0 \leq n \leq m$, are paiwise disjoint, and

$$
\begin{equation*}
A=\bigcup_{m=0}^{\infty} \bigcup_{n=0}^{m} T^{n} B_{m} \tag{12}
\end{equation*}
$$

$C_{m}=\cup_{n=0}^{m} T^{n} B_{m}$ is said to be a column of height m.
Lemma 3. Let $f \in L$ and let $(M(f)>t) \neq X$. Then the set $(M(f)>t)$ can be represented as a tower

$$
\begin{equation*}
(M(f)>t)=\bigcup_{m=0}^{\infty} \bigcup_{n=0}^{m} T^{n} B_{m} \tag{13}
\end{equation*}
$$

such that

$$
\begin{equation*}
\frac{1}{N+1} \sum_{n=0}^{N} f \circ T^{n}(x)>t, \quad N=0,1, \ldots, m \tag{14}
\end{equation*}
$$

for each $x \in B_{m}$.
Proof. Let

$$
B=T(M(f) \leq t) \cap(M(f)>t)
$$

Since T is ergodic, we have

$$
\mu(B)>0 .
$$

For each $x \in B$ let $m(x)$ be the maximum value of m for which (14) holds. (We can easily check, and it also follows from the reasoning below,
that $x \in B$ implies $f(x)>t$. Therefore $m(x)$ is correctly defined. It can be formally assumed that $m(x)$ is not defined whenever $f(x) \leq t$.) Suppose

$$
B_{m}=\{x \in B: m(x)=m\}, \quad m=0,1, \ldots
$$

Then the set A defined by equality (12) will be the tower with the desired property. Let us now show that

$$
A=(M(f)>t)
$$

To this end it is sufficient to prove

$$
(M(f)>t) \subset A
$$

since the inverse inclusion directly follows from the construction of A.
Suppose $x \in(M(f)>t)$. Let \bar{m} be a nonnegative integer for which $x, T^{-1} x, \ldots, T^{-\bar{m}} x \in(M(f)>t)$ and $T^{-\bar{m}-1} x \notin(M(f)>t)$. Then $\bar{x}=$ $T^{-\bar{m}}(x) \in B$ and

$$
\begin{equation*}
M(f)\left(T^{-1} \bar{x}\right) \leq t \tag{15}
\end{equation*}
$$

We shall show that

$$
m(\bar{x}) \geq \bar{m}
$$

which, by the definition of A, implies that $T^{\bar{m}} \bar{x}=x \in A$.
Consider the function

$$
h(k)=\operatorname{sign}(k)\left(\sum_{n \in \Delta_{k}} f \circ T^{n}(\bar{x})-t\left|\Delta_{k}\right|\right), \quad k \in \mathbb{Z},
$$

where $\Delta_{k}=\{0,1, \ldots, k-1\}$ when $k>0, \Delta_{0}=\varnothing$ and $\Delta_{k}=\{k, k+1, \ldots,-1\}$ when $k<0$. Note that if $p<k$, then $h(p)<h(k) \Leftrightarrow \frac{1}{p-k} \sum_{n=1}^{p-k} f \circ$ $T^{-n}\left(T^{k} \bar{x}\right)>t$. We have $h(0)=0$ and, due to (15), $h(k) \geq 0$ when $k<0$. We need to show that the inequality $h(k)>0$ holds for each $k=0,1, \ldots, \bar{m}$. Indeed, otherwise there would exist $k \in\{0,1, \ldots, \bar{m}\}$ for which $h(k)=$ $\inf _{1 \leq p \leq k} h(p)$. Then we would have $h(k) \leq h(p)$ for each $p \leq k$, which is impossible, since $M(f)\left(T^{k} \bar{x}\right)>t$.

Proof of Theorem 1^{\prime}. As in proving Theorem 1, we assume that $M(f) \notin L$ and it is sufficient to show that

$$
\begin{equation*}
\mu(M(f)>t) \leq 2 \mu\left(M_{3}(f)>t\right) \tag{16}
\end{equation*}
$$

whenever t is so large that $(M(f)>t) \neq X$.
Representing, by virtue of Lemma 3, the set $(M(f)>t)$ in the form (13) and assuming that $x \in B_{m}, m=0,1, \ldots$, on account of (14) we have

$$
\frac{1}{2 N+1} \sum_{n=-N}^{N} f \circ T^{n}\left(T^{N} x\right)>t
$$

for all nonnegative integers N which do not exceed $\frac{m}{2}$. Thus

$$
\bigcup_{m=0}^{\infty}{\underset{n=0}{\cup}}_{\bigcup_{n=0}^{n}} B_{m} \subset\left(M_{3}(f)>t\right)
$$

where \underline{m} denotes $\frac{m}{2}$ for even m and $\frac{m+1}{2}$ for odd m, and (16) holds, since representation (13) has a tower construction.

If A is a tower, then A^{-}will denote the union of rotated columns with respect to the base, i.e., if A has the form (12), then

$$
A^{-}=\bigcup_{m=0}^{\infty} \bigcup_{n=0}^{m} T^{-n} B^{m}
$$

Lemma 4. Let A be a tower. Then

$$
\mu\left(A^{-}\right) \geq \frac{1}{2} \mu(A)
$$

(The case where both sides of this inequality are infinite is not excluded.)
Proof. Suppose that A is a tower whose height is finite, i.e., it has the form

$$
A=\bigcup_{m=0}^{k} \bigcup_{n=0}^{m} T^{n} B_{m}
$$

The lemma will be obtained if k is made to tend to ∞.
For everyone of such towers A we shall use the following notation. Let $C(A)$ be a column of the maximum height and $C(A)^{-}$be its rotation, i.e.,

$$
C(A)=\bigcup_{n=0}^{k} T^{n} B_{k}, \quad C(A)^{-}=\bigcup_{n=0}^{k} T^{-n} B_{k}
$$

Since $C(A)$ is a column, the sets $B_{k}, T^{-1} B_{k}, \ldots, T^{-k} B_{k}$ will be pairwise disjoint and hence

$$
\begin{equation*}
\mu(C(A))=\mu\left(C(A)^{-}\right) \tag{17}
\end{equation*}
$$

Let A^{\prime} be the union of parts of columns of height less than k whose ground floors are contained in $C(A)^{-}$, i.e.,

$$
A^{\prime}=\bigcup_{m=0}^{k-1} \bigcup_{n=0}^{m} T^{n}\left(B_{m} \cap C(A)^{-}\right)
$$

and let

$$
S(A)=A \backslash\left(A^{\prime} \cup C(A)\right)
$$

Obviously, $A^{\prime} \cap C(A)=\varnothing$ and

$$
\begin{equation*}
A^{\prime} \subset C(A)^{-} \tag{18}
\end{equation*}
$$

Suppose $A_{0}=A$ and

$$
A_{n}=S\left(A_{n-1}\right), \quad n=1,2, \ldots
$$

We shall therefore have a sequence of imbedded towers $A_{0} \supset A_{1} \supset \ldots$. Clearly,

$$
\begin{equation*}
A=\cup_{n=0}\left(C\left(A_{n}\right) \cup A_{n}^{\prime}\right) \tag{19}
\end{equation*}
$$

since all columns of A will split into several parts everyone of which will, at some moment, be either maximum or excluded.

Because of $C\left(A_{n}\right) \subset A$ we have

$$
\begin{equation*}
C\left(A_{n}\right)^{-} \subset A^{-}, \quad n=0,1, \ldots . \tag{20}
\end{equation*}
$$

If $i<j$, then the height of $C\left(A_{i}\right)$ exceeds that of $C\left(A_{j}\right), C\left(A_{i}\right) \cap C\left(A_{j}\right)=$ \varnothing and the intersection of $C\left(A_{i}\right)^{-}$with the base of $C\left(A_{j}\right)$ is also empty. This enables us to conclude that

$$
\begin{equation*}
C\left(A_{i}\right)^{-} \cap C\left(A_{j}\right)^{-}=\varnothing, \tag{21}
\end{equation*}
$$

i.e., $C\left(A_{1}\right)^{-}, C\left(A_{2}\right)^{-}, \ldots$ are pairwise disjoint.

By virtue of (18)

$$
\begin{equation*}
\mu\left(A_{n}^{\prime}\right) \leq \mu\left(C\left(A_{n}\right)\right), \quad n=0,1, \ldots \tag{22}
\end{equation*}
$$

Taking (20), (21), (17), (22), and (19) into account, we have

$$
\begin{gathered}
\mu\left(A^{-}\right) \geq \mu\left(\cup_{n=0} C\left(A_{n}\right)^{-}\right)=\sum_{n=0} \mu\left(C\left(A_{n}\right)^{-}\right)= \\
=\sum_{n=0} \mu\left(C\left(A_{n}\right)\right) \geq \sum_{n=0} \frac{1}{2}\left(\mu\left(C\left(A_{n}\right)\right)+\mu\left(A_{n}^{\prime}\right)\right)= \\
=\sum_{n=0} \frac{1}{2} \mu\left(C\left(A_{n}\right) \cup A_{n}^{\prime}\right)=\frac{1}{2} \mu(A) .
\end{gathered}
$$

Proof of Theorem 2^{\prime}. It is sufficient to show that

$$
\begin{equation*}
M_{1}(f) \notin L \Rightarrow M_{2}(f) \notin L \tag{23}
\end{equation*}
$$

The inverse implication will be obtained by applying (23) to the transformation T^{-1}.

Assume without loss of generality that $M(f) \notin L$. Then we have

$$
\int_{E(f)}^{\infty} \mu(M(f)>t) d t=\infty
$$

where $E(f)=\frac{1}{\mu(X)}\left|\int_{X} f d \mu\right|$ for $\mu(X)<\infty$ and $E(f)=0$ for $\mu(X)=\infty$. Thus the proof will be completed as soon as we show that

$$
\begin{equation*}
\mu(M(f)>t) \leq 2 \mu\left(M_{2}(f)>t / 4\right) \tag{24}
\end{equation*}
$$

for $t>E(f)$.
First we note that $(M(f)>t) \neq X$, since by the ergodic theorem

$$
\limsup _{N \rightarrow \infty}\left(\sum_{n=0}^{N-1} f \circ T^{n}(x)-N t\right) \leq 0
$$

for almost all $x \in X$.
If x and N are such that (14) holds, then

$$
\max \left(\frac{1}{N}\left|\sum_{n=0}^{N-1} f \circ T^{n}\left(T^{-N} x\right)\right|, \quad \frac{1}{2 N+1}\left|\sum_{n=0}^{2 N} f \circ T^{n}\left(T^{-N} x\right)\right|\right)>\frac{t}{4}
$$

since otherwise

$$
\begin{gathered}
\sum_{n=0}^{N} f \circ T^{n}(x) \leq\left|\sum_{n=0}^{2 N} f \circ T^{n}\left(T^{-N} x\right)\right|+ \\
+\left|\sum_{n=0}^{N-1} f \circ T^{n}\left(T^{-N} x\right)\right|<\frac{N t}{4}+\frac{(2 N+1) t}{4}<N t
\end{gathered}
$$

Hence by Lemma 3

$$
(M(f)>t)^{-} \subset\left(M_{2}(f)>t / 4\right)
$$

and by Lemma 4 equality (24) holds.

References

1. E. M. Stein, Note on the class $L \log L$. Studia Math. $\mathbf{3 2}(1969)$, 305310.
2. O. D. Tsereteli, On the inversion of some Hardy-Littlewood theorems. (Russian) Bull. Acad. Sci. Georgian SSR 56(1969), 269-271.
3. O. D. Tsereteli, A metric characterization of the set of functions whose maximal functions are summable. (Russian) Trudy Tbiliss. Mat. Inst. Razmadze 42(1972), 103-118.
4. L. N. Ephremidze, On the majorant of ergodic means (continuous case). (Russian) Trudy Tbiliss. Mat. Inst. Razmadze 98(1990), 112-124.
5. O. D. Tsereteli, On the distribution of the conjugate function of a nonnegative Borel measure. (Russian) Trudy Tbiliss. Mat. Inst. Razmadze 89(1989), 60-82.
6. D. Ornstein, A remark on the Birkhoff ergodic theorem. Illinois J. Math. 15(1971), 77-79.
7. B. Davis, On the integrability of the ergodic maximal function. Studia Math. 73(1982), 153-167.
(Received 27.09.1993)
Author's address:
A. Razmadze Mathematical Institute

Georgian Academy of Sciences
1, Z. Rukhadze St., Tbilisi 380093
Republic of Georgia

[^0]: 1991 Mathematics Subject Classification. 42B25, 28D05.
 Key words and phrases. One-sided maximal functions, ergodic maximal function.

