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ON A RELATIONSHIP BETWEEN THE
INTEGRABILITIES OF VARIOUS MAXIMAL FUNCTIONS

L. EPHREMIDZE

Abstract. It is shown that the right-sided, left-sided, and symmetric
maximal functions of any measurable function can be integrable only
simultaneously. The analogous statement is proved for the ergodic
maximal functions.

Introduction. We deal with integrable functions on T = [0, 2π) and as-
sume that they are extended to 2π-periodic functions on the whole line R.
The class of such functions will be denoted by L. One can also consider the
functions of L to be defined on the unit circle in the complex plane.

If a measurable set E ⊂ R is such that IE is a 2π-periodic function and
f ∈ L, then we assume that |E| = νE = ν(E ∩ T) and

∫

E

fdν =
∫

E∩π

fdν

(ν denotes the Lebesgue measure on the line).
We shall say that a subset ∆ ⊂ R is a segment of T if it is the preimage

of an open arc of the unit circle by the exponential function. The set of
such segments is denoted by E . If ∆ ∈ E , ∆ 6= R and (a, b) is a connected
component of ∆, then we shall write ∆ = (a, b), which should not cause any
confusion. Obviously, in that case |∆| = b− a.

Let x ∈ T. We introduce the following notations of subsets of E :

E0(x) = {(a, b) ∈ E : a < x < b},
E1(x) = {(a, b) ∈ E : b = x},
E2(x) = {(a, b) ∈ E : a = x},

E3(x) = {(a, b) ∈ E :
a + b

2
= x}.
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10 L. EPHREMIDZE

Consider the maximal operators Mj , j = 0, 1, 2, 3, defined by the equalities

Mj(f)(x) = sup
∆∈Ej(x)

1
|∆|

∣

∣

∣

∫

∆

fdν
∣

∣

∣, f ∈ L.

It is wellknown that f ∈ L lg+ L ⇒ Mj(f) ∈ L, j = 0, 1, 2, 3, and if
f ≥ 0, then the inverse implication is true (see [1], [2]). But, in general, one
cannot write explicitly the set of functions f for which Mj(f) is integrable
(in connection with this see [2], [3]). In this paper we shall show that for an
arbitrary f ∈ L the functions Mj(f), j = 0, 1, 2, 3, can be integrable only
simultaneously. An analogous statement is proved for the ergodic maximal
functions in §2.

The author’s interest in this investigation was due to the question posed
by Prof. L. Gogoladze (personal communication).

§ 1. Obviously, M0(f) ≥ Mj(f), j = 1, 2, 3. We shall prove the following
theorems.

Theorem 1. Let f ∈ L and M1(f) 6∈ L. Then M3(f) 6∈ L.

Theorem 2. Let f ∈ L. Then

M1(f) 6∈ L ⇔ M2(f) 6∈ L.

Since M0(f) ≤ M1(f) + M2(f), Theorems 1 and 2 enable us to conclude
that the functions Mj(f), j = 1, 2, 3, are nonintegrable whenever M0(f) is
nonintegrable.

We begin by proving some lemmas. Their proofs are given in the form
simplifying their extension to the ergodic case.

Let M be the operator

M(f)(x) = sup
a<x

1
x− a

x
∫

a

fdν, f ∈ L.

Evidently, {x ∈ R : M(f)(x) > t} = (M(f) > t) is an open subset of R for
each t.

Lemma 1. Let f ∈ L, t > 0, and let (a, b) be a finite (i.e., a 6= −∞,
b 6= ∞) connected component of (M(f) > t). Then we have

1
x− a

x
∫

a

fdν > t (1)

for each x ∈ (a, b).

This lemma was actually proved in [4] but we give it here for the sake of
completeness.
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Proof. Suppose h(x) =
∫ x

a fdν− t(x−a), x ∈ R. Note that whenever y < x
we have h(y) < h(x) ⇔ 1

x−y

∫ x
y fdν > t. Evidently, h(a) = 0 and h(x) ≥ 0

for x < a, since, by the assumption, M(f)(a) ≤ t. We have to show that
h(x) > 0 for each x ∈ (a, b). Indeed, otherwise there would exist a point
x ∈ (a, b) for which h(x) = infy∈[a,x) h(y). Then we would have h(y) ≤ h(x)
for each y < x, which is impossible, since M(f)(x) > t.

If E is an open subset of R not containing any neighborhood of −∞ and
if the representation of E by the union of disjoint connected components
has the form

E = ∪
n=1

(an, bn), (2)

then we suppose
E− = ∪

n=1
(2an − bn, an)

(each component is rotated with respect to the left origin).

Lemma 2. Let E be an open proper subset of R for which IE is a 2π-
periodic function. Then

|E−| ≥ 1
2
|E|.

Proof. Assume in representation (2) of E that an ∈ [0, 2π) and (an, bn) =
∪k∈Z(an + 2πk, bn + 2πk) (i.e., (an, bn) ∈ E), n = 1, 2, . . . .

If I ⊂ E and ∆I is a segment from E such that ∆I ∈ I and

|∆I | = sup
∆∈I

|∆|,

then we shall say that ∆I = max(I). If there are several segments with
such properties, then one of them (for our proof it does not matter which
one) will be called max(I). Also, I ′ will denote the set of segments from I
which are included in the rotated max(I), i.e.,

∆ ∈ I ′ ⇔ ∆ ∈ I, ∆ ⊂ max(I)−,

and S(I) will denote the subset of I I\(I ′∪{max(I)}). (The case S(I) = ∅
is not excluded.)

Suppose I0 = {(an, bn) : n = 1, 2, . . . }, In = S(In−1), n = 1, 2, . . . and
∆n = max(In). Obviously, I0 ⊃ I1 ⊃ . . . and

I0 = ∪
n=0

({∆n} ∪ I ′n), (3)

since each segment of I0 will at some moment become maximal or be ex-
cluded.

Since each ∆n ∈ I0, we have

∆−
n ⊂ E−, n = 0, 1, . . . . (4)
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If now i < j, then |∆i| ≥ |∆j |, ∆i ∩∆j = ∅ and ∆j 6⊂ ∆−
i , which imply

∆−
i ∩∆−

j = ∅. (5)

Hence {∆−
n : n = 0, 1, . . . } is a set of pairwise disjoint segments.

We also have the inequality

|∆n| ≥
∑

∆∈I′n

|∆|, n = 0, 1, . . . . (6)

Using (4), (5), (6), and (3), we conclude that

|E−| ≥ | ∪
n=0

∆−
n | =

∑

n=0

|∆−
n | =

∑

n=0

|∆n| ≥

≥
∑

n=0

1
2

(

|∆n|+
∑

∆∈I′n

|∆|
)

=
1
2

∑

∆∈I0

|∆| = 1
2
|E|.

Proof of Theorem 1. Let us show that if t is so large that (M(f) > t) 6= R
(for instance, whenever t > 1

2π‖f‖ = 1
2π

∫

T |f |dν), then

ν(M(f) > t) ≤ 2ν(M3(f) > t). (7)

Indeed, if the representation of (M(f) > t) by the union of connected
components has the form

(M(f) > t) = ∪
n=1

(an, bn), (8)

then each x ∈ (an, 1
2 (an + bn)) belongs to (M3(f) > t), since by Lemma 1

1
2(x− an)

2x−an
∫

an

fdν > t.

Hence ∪n=1(an, 1
2 (an + bn)) ⊂ (M3(f) > t) and (7) holds.

If now M1(f) 6∈ L, then we can assume without loss of generality that
M(f) 6∈ L, since

M1(f) ≤ max(M(f),M(−f)).

Thus the left term in inequality (7) will not be integrable as a function of t
in a neighborhood of ∞. This implies that neither will the right term, and
consequently M3(f) 6∈ L.

Proof of Theorem 2. It is enough to show that

M1(f) 6∈ L ⇒ M2(f) 6∈ L, (9)

since the inverse implication will be obtained by applying (9) to the function
x 7−→ f(−x).
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Let us show that

ν(M(f) > t) ≤ 2ν
(

M2(f) > t/4
)

, (10)

for t > 1
2π‖f‖. Indeed, if a < x and (1) holds, then

max
( 1

x− a

∣

∣

∣

a
∫

2a−x

fdν
∣

∣

∣,
1

2(x− a)

∣

∣

∣

x
∫

2a−x

fdν
∣

∣

∣

)

>
t
4
,

since otherwise
x

∫

a

fdν ≤
∣

∣

∣

a
∫

2a−x

fdν
∣

∣

∣ +
∣

∣

∣

x
∫

2a−x

fdν
∣

∣

∣ ≤

≤ t
4
(x− a) +

t
2
(x− a) < t(x− a).

Therefore, taking into account the representation of (M(f) > t) by form
(8) and Lemma 1, we conclude that

(M(f) > t)− ⊂
(

M2(f) > t/4
)

.

Thus (10) holds by Lemma 2.
If now M1(f) 6∈ L, then we we can assume, as in the proof of Theorem

1, that M(f) 6∈ L. Therefore (10) implies M2(f) 6∈ L.

Remark. Theorem 2 shows that the functions t 7−→ ν(Mi(f) > t), t > 0,
i = 1, 2, can be integrable only simultaneously. There naturally arises the
question whether the inequality

∞
∫

0

∣

∣ν(M1(f) > t)− ν(M2(f) > t)
∣

∣dt < ∞ (11)

is satisfied.
The following example shows that (11) may not be valid even for a pos-

itive integrable function f .

Let f ∈ L be a continuous function with the properties: f(x) > 0 for
0 < x ≤ π, f(x) = 0 for π < x ≤ 2π, f is monotonically decreasing on
(0, π], and

π
∫

0

f(x) lg

∫ x
0 fdν
xf(x)

dx = ∞

(the class of such functions is considered in [5]).
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Clearly, M(f)(x) = 1
x

∫ x
0 fdν for each x ∈ (0, 2π). Thus
∫

(f>0)

f lg
M(f)

f
dν = ∞.

For t > l = 1
2π‖f‖ let xt be the point from (0, π] for which f(xt) = t, let

yt be the point from (0, 2π] for which M1(f)(yt) = t, and let zt be the point
from [−π, 0) for which 1

xt−zt

∫ xt

0 fdν = t. Then it is not difficult to show
that (M1(f) > t) = (0, yt) and (M2(f) > t) = (zt, xt). Hence

ν(M1(f) > t) =
1
t

∫

(M(f)>t)

fdν

and

ν(M2(f) > t) =
1
t

∫

(f>t)

fdν.

By Fubini’s theorem we now obtain

∞
∫

l

∣

∣ν(M1(f) > t)− ν(M2(f) > t)
∣

∣dt =

∞
∫

l

dt
t

∫

(M(f)>t)\(f>t)

fdν =

=
∫

(M(f)>l)∩(f≤l)

f lg
M(f)

l
dν +

∫

(f>l)

f lg
M(f)

f
dν = ∞.

§ 2. This section will be devoted to proving analogous theorems for ergodic
maximal operators.

Let (X, S, µ) be a σ-finite measure space and let T : X → X be an
invertible measure-preserving ergodic transformation.

To emphasize the analogues we shall retain the notions of the preceding
section, which should not cause misunderstanding.

Let L be the class of integrable functions (with respect to the measure µ)
on X. As usual, the functions distinct from each other on a set of measure
0 are identified.

By E we shall denote the class of subsets of Z of the type {m,m + 1, . . . ,
m + k}, m ∈ Z, k = 0, 1. . . . . If ∆ ∈ E , then it is assumed that |∆| =
card(∆). Let Ej , j = 0, 1, 2, 3, be the following subclasses of E :

E0 =
{

{m, m + 1, . . . , m + k} : m ≤ 0, m + k ≥ 0
}

,

E1 =
{

{m,m + 1, . . . , m + k} : m + k = 0
}

,

E2 =
{

{m,m + 1, . . . , m + k} : m = 0
}

,

E3 =
{

{m,m + 1, . . . ,m + k} : −m = m + k
}

,
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and let Mj , j = 0, 1, 2, 3, be the corresponding ergodic maximal operators:

Mj(f)(x) = sup
∆∈Ej

1
|∆|

∣

∣

∣

∑

n∈∆

f ◦ Tn(x)
∣

∣

∣.

It is wellknown that if f ≥ 0, then f ∈ L lg+ L ⇔ Mj(f) ∈ L when
µ(X) < ∞ and Mj(f) ∈ L ⇔ f ≡ 0 when µ(X) = ∞ (see [6]). But
a necessary and sufficient condition for Mj(f) to be integrable does not
exist on f in general (in this connection see [7]). We shall show that for
arbitrary f ∈ L the functions Mj(f), j = 0, 1, 2, 3, can be integrable only
simultaneously. To this end, as in Section 1, it is sufficient to prove theorems
which formally look like Theorems 1 and 2. They will be called Theorems
1′ and 2′. It can be said that Lemmas 3 and 4 to be used in proving these
theorems are ergodic analogues of Lemmas 1 and 2.

Let M be the operator

M(f)(x) = sup
N≥0

1
N + 1

N
∑

n=0

f ◦ T−n(x), f ∈ L.

We shall say that a measurable set A ⊂ X is a tower with the base B
if B = ∪∞m=0Bn, the sets TnBm, m = 0, 1, 2, . . . , 0 ≤ n ≤ m, are paiwise
disjoint, and

A =
∞
∪

m=0

m
∪

n=0
TnBm. (12)

Cm = ∪m
n=0T

nBm is said to be a column of height m.

Lemma 3. Let f ∈ L and let (M(f) > t) 6= X. Then the set (M(f) > t)
can be represented as a tower

(M(f) > t) =
∞
∪

m=0

m
∪

n=0
TnBm, (13)

such that

1
N + 1

N
∑

n=0

f ◦ Tn(x) > t, N = 0, 1, . . . , m, (14)

for each x ∈ Bm.

Proof. Let
B = T (M(f) ≤ t) ∩ (M(f) > t).

Since T is ergodic, we have
µ(B) > 0.

For each x ∈ B let m(x) be the maximum value of m for which (14)
holds. (We can easily check, and it also follows from the reasoning below,
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that x ∈ B implies f(x) > t. Therefore m(x) is correctly defined. It can be
formally assumed that m(x) is not defined whenever f(x) ≤ t.) Suppose

Bm = {x ∈ B : m(x) = m}, m = 0, 1, . . . .

Then the set A defined by equality (12) will be the tower with the desired
property. Let us now show that

A = (M(f) > t).

To this end it is sufficient to prove

(M(f) > t) ⊂ A,

since the inverse inclusion directly follows from the construction of A.
Suppose x ∈ (M(f) > t). Let m̄ be a nonnegative integer for which

x, T−1x, . . . , T−m̄x ∈ (M(f) > t) and T−m̄−1x 6∈ (M(f) > t). Then x̄ =
T−m̄(x) ∈ B and

M(f)(T−1x̄) ≤ t. (15)

We shall show that
m(x̄) ≥ m̄,

which, by the definition of A, implies that T m̄x̄ = x ∈ A.
Consider the function

h(k) = sign(k)
(

∑

n∈∆k

f ◦ Tn(x̄)− t|∆k|
)

, k ∈ Z,

where ∆k = {0, 1, . . . , k−1} when k > 0, ∆0 = ∅ and ∆k = {k, k+1, . . . ,−1}
when k < 0. Note that if p < k, then h(p) < h(k) ⇔ 1

p−k

∑p−k
n=1 f ◦

T−n(T kx̄) > t. We have h(0) = 0 and, due to (15), h(k) ≥ 0 when k < 0.
We need to show that the inequality h(k) > 0 holds for each k = 0, 1, . . . , m̄.
Indeed, otherwise there would exist k ∈ {0, 1, . . . , m̄} for which h(k) =
inf1≤p≤k h(p). Then we would have h(k) ≤ h(p) for each p ≤ k, which is
impossible, since M(f)(T kx̄) > t.

Proof of Theorem 1′. As in proving Theorem 1, we assume that M(f) 6∈ L
and it is sufficient to show that

µ(M(f) > t) ≤ 2µ(M3(f) > t) (16)

whenever t is so large that (M(f) > t) 6= X.
Representing, by virtue of Lemma 3, the set (M(f) > t) in the form (13)

and assuming that x ∈ Bm, m = 0, 1, . . . , on account of (14) we have

1
2N + 1

N
∑

n=−N

f ◦ Tn(TNx) > t
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for all nonnegative integers N which do not exceed m
2 . Thus

∞
∪

m=0

m
∪

n=0
TnBm ⊂ (M3(f) > t),

where m denotes m
2 for even m and m+1

2 for odd m, and (16) holds, since
representation (13) has a tower construction.

If A is a tower, then A− will denote the union of rotated columns with
respect to the base, i.e., if A has the form (12), then

A− =
∞
∪

m=0

m
∪

n=0
T−nBm.

Lemma 4. Let A be a tower. Then

µ(A−) ≥ 1
2
µ(A).

(The case where both sides of this inequality are infinite is not excluded.)

Proof. Suppose that A is a tower whose height is finite, i.e., it has the form

A =
k
∪

m=0

m
∪

n=0
TnBm.

The lemma will be obtained if k is made to tend to ∞.
For everyone of such towers A we shall use the following notation. Let

C(A) be a column of the maximum height and C(A)− be its rotation, i.e.,

C(A) =
k
∪

n=0
TnBk, C(A)− =

k
∪

n=0
T−nBk.

Since C(A) is a column, the sets Bk, T−1Bk, . . . , T−kBk will be pairwise
disjoint and hence

µ(C(A)) = µ(C(A)−). (17)

Let A′ be the union of parts of columns of height less than k whose
ground floors are contained in C(A)−, i.e.,

A′ =
k−1
∪

m=0

m
∪

n=0
Tn(Bm ∩ C(A)−),

and let
S(A) = A\(A′ ∪ C(A)).

Obviously, A′ ∩ C(A) = ∅ and

A′ ⊂ C(A)−. (18)

Suppose A0 = A and

An = S(An−1), n = 1, 2, . . . .
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We shall therefore have a sequence of imbedded towers A0 ⊃ A1 ⊃ . . . .
Clearly,

A = ∪
n=0

(C(An) ∪A′n), (19)

since all columns of A will split into several parts everyone of which will, at
some moment, be either maximum or excluded.

Because of C(An) ⊂ A we have

C(An)− ⊂ A−, n = 0, 1, . . . . (20)

If i < j, then the height of C(Ai) exceeds that of C(Aj), C(Ai)∩C(Aj) =
∅ and the intersection of C(Ai)− with the base of C(Aj) is also empty. This
enables us to conclude that

C(Ai)− ∩ C(Aj)− = ∅, (21)

i.e., C(A1)−, C(A2)−, . . . are pairwise disjoint.
By virtue of (18)

µ(A′n) ≤ µ(C(An)), n = 0, 1, . . . . (22)

Taking (20), (21), (17), (22), and (19) into account, we have

µ(A−) ≥ µ( ∪
n=0

C(An)−) =
∑

n=0

µ(C(An)−) =

=
∑

n=0

µ(C(An)) ≥
∑

n=0

1
2

(

µ(C(An)) + µ(A′n)
)

=

=
∑

n=0

1
2
µ
(

C(An) ∪A′n
)

=
1
2
µ(A).

Proof of Theorem 2′. It is sufficient to show that

M1(f) 6∈ L ⇒ M2(f) 6∈ L. (23)

The inverse implication will be obtained by applying (23) to the transfor-
mation T−1.

Assume without loss of generality that M(f) 6∈ L. Then we have
∞
∫

E(f)

µ(M(f) > t)dt = ∞,

where E(f) = 1
µ(X)

∣

∣

∫

X fdµ
∣

∣ for µ(X) < ∞ and E(f) = 0 for µ(X) = ∞.
Thus the proof will be completed as soon as we show that

µ(M(f) > t) ≤ 2µ
(

M2(f) > t/4
)

(24)
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for t > E(f).
First we note that (M(f) > t) 6= X, since by the ergodic theorem

lim sup
N→∞

(
N−1
∑

n=0

f ◦ Tn(x)−Nt
)

≤ 0

for almost all x ∈ X.
If x and N are such that (14) holds, then

max
( 1

N

∣

∣

∣

N−1
∑

n=0

f ◦ Tn(T−Nx)
∣

∣

∣,
1

2N + 1

∣

∣

∣

2N
∑

n=0

f ◦ Tn(T−Nx)
∣

∣

∣

)

>
t
4
,

since otherwise

N
∑

n=0

f ◦ Tn(x) ≤
∣

∣

∣

2N
∑

n=0

f ◦ Tn(T−Nx)
∣

∣

∣ +

+
∣

∣

∣

N−1
∑

n=0

f ◦ Tn(T−Nx)
∣

∣

∣ <
Nt
4

+
(2N + 1)t

4
< Nt.

Hence by Lemma 3

(M(f) > t)− ⊂
(

M2(f) > t/4
)

and by Lemma 4 equality (24) holds.
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