# THE CAUCHY-NICOLETTI PROBLEM WITH POLES 

T. WERNER


#### Abstract

The Cauchy-Nicoletti boundary value problem for a system of ordinary differential equations with pole-type singularities is investigated. The conditions of the existence, uniqueness, and nonuniqueness of a solution in the class of continuously differentiable functions are given. The classical Banach contraction principle is combined with a special transformation of the original problem.


## Introduction

This paper deals with the Cauchy-Nicoletti problem for a system of differential equations with poles, i.e., with the problem

$$
\begin{align*}
\left(t-a_{i}\right)^{r_{i}} x_{i}^{\prime} & =\left(\sum_{j=0}^{r_{i}-1} A_{i, j} \cdot\left(t-a_{i}\right)^{j}\right) x_{i}+ \\
& +f_{i}\left(t, x_{1}, \ldots, x_{n}\right)+g_{i}(t), \quad t \in I_{i}  \tag{1}\\
x_{i}\left(a_{i}\right) & =0, \quad i=1, \ldots, n \tag{2}
\end{align*}
$$

where $x_{i}$ are unknown vector variables, $A_{i, j}$ are constant matrices, $f_{i}, g_{i}$ are given vector functions, $a_{i}$ are given real numbers, and $I_{i}$ are intervals of real numbers, all specified below.

The systematic research of singular problems for ordinary defferential equations (ODE) with nonsummable right-hand side was started by Czeczik [1]. The first monograph on some classes of singular boundary value problems was written by Kiguradze [2]. There are very general results on the Cauchy and especially the Cauchy-Nicoletti problems in this monograph (see [2], Part II). Recently many different properties and applications of singular problems have been investigated. In [3] three boundary value problems arising in gas dynamics are investigated. In [4] the question of when solutions of singular equations are bounded in some general sense is discussed.

[^0]In [5] the existence theorems for nonlinear problems with a singularity "less" than pole of degree 1 but with a "great" nonlinearity are given. In [6] the existence, the uniqueness and also the absence of solutions of the two-point boundary value problem of second order with one pole of degree 2 is investigated. The investigation of the general local Cauchy initial value problem with poles at infinity was carried out by Konyuchova [7]. The boundary value problems with poles are investigated in different ways. For example, in [8] the topological method is used while in [9] formal fundamental solutions are calculated at poles using formal power series. This paper uses the Laurent expansion method similarly to $[7,9]$. The main result shows how the existence and uniqueness of the solution of the problem (1), (2) depends on the real parts of the eigenvalues of matrices $A_{i, j}$ in (1) if suitable restrictions are imposed on functions $f_{i}$ and $g_{i}$.

Notation. The letters $\mathbb{R}, \mathbb{C}, \mathbb{N}$ denote the sets of real, complex, and natural numbers, respectively. Let $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$ and $N:=\{1, \ldots, n\} . C[X, Y]$ (resp. $\left.C^{1}[X, Y]\right)$ stand for spaces of continuous and continuously differentiable mappings from the normed space $X$ into the normed space $Y$. The scalar product of two vectors $u, v \in \mathbb{K}^{m}$ will be denoted by

$$
(u \mid v)=\sum_{i=1}^{m} u_{i} \bar{v}_{i} .
$$

For $i \in N, m_{i} \in \mathbb{N}$, and $x_{i} \in \mathbb{K}^{m_{i}}$ put $m=\sum_{i \in N} m_{i}$ and $x=\left(x_{1}, \ldots, x_{n}\right) \in$ $\mathbb{K}^{m}$. For real $a_{1}<a_{2}<\cdots<a_{n}$ we denote $I_{i}=\left(a_{1}, a_{i}\right) \cup\left(a_{i}, a_{n}\right), \quad I=$ [ $\left.a_{1}, a_{n}\right]$. The symbols $A_{i, j}$ will stand for constant $\left(m_{i} \times m_{i}\right)$ matrices, $f_{i} \in$ $C\left[I_{i} \times \mathbb{K}^{m}, \mathbb{K}^{m_{i}}\right]$, and $g_{i} \in C\left[I_{i}, \mathbb{K}^{m_{i}}\right]$. We will use the following norms:

$$
\begin{aligned}
\left\|x_{i}\right\| & :=\sqrt{\left(x_{i} \mid x_{i}\right)} \\
\|A\| & :=\sqrt{\sum_{i, j=1}^{m_{i}}\left|a_{i, j}\right|}
\end{aligned}
$$

for any matrix $A=\left(a_{i, j}\right)_{i, j=1}^{m_{i}}$,

$$
\left\|\varphi_{i}\right\|:=\max _{t \in I}\left\|\varphi_{i}(t)\right\|
$$

for $\varphi_{i} \in C\left[I, \mathbb{K}^{m_{i}}\right]$ and

$$
\|\varphi\|:=\sum_{i \in N}\left\|\varphi_{i}\right\|
$$

for $\varphi=\left(\varphi_{1}, \ldots, \varphi_{n}\right) \in C\left[I, \mathbb{K}^{m}\right]$.

## Definitions and lemmas

Definition 1. We say that
i) the function $\varphi=\left(\varphi_{1}, \ldots, \varphi_{n}\right) \in C\left[I, \mathbb{K}^{m}\right]$ is a solution of system (1) if $\varphi_{i} \in C^{1}\left[I_{i}, \mathbb{K}^{m_{i}}\right]$ and if (1) is satisfied for $x_{i}=\varphi_{i}(t), i=1, \ldots, n$;
ii) the solution $\varphi$ of system (1) is a solution of problem (1), (2) if $\varphi_{i}\left(a_{i}\right)=0(i=1, \ldots, n)$.
Consider the homogeneous part of system (1):

$$
\begin{equation*}
\left(t-a_{i}\right)^{r_{i}} y_{i}^{\prime}=\left(\sum_{j=0}^{r_{i}-1} A_{i, j} \cdot\left(t-a_{i}\right)^{j}\right) y_{i}, \quad t \in I_{i}, i=1, \ldots, n \tag{3}
\end{equation*}
$$

which consists of $n$ independent subsystems.
The following lemma on local transformation is an easy reformulation of the basic lemma in [10].

Lemma 1. There exist $T_{i}, S_{i} \in \mathbb{R}, S_{1}=a_{1}, T_{1}>a_{1}, S_{n}<a_{n}, T_{n}=a_{n}$, $S_{i}<a_{i}<T_{i}, i=2, \ldots, n-1$, and transformations

$$
\begin{equation*}
z_{i}=P_{i}(t) y_{i}, \quad i=1, \ldots, n, t \in\left(S_{i}, T_{i}\right) \backslash\left\{a_{i}\right\} \tag{4}
\end{equation*}
$$

with continuously differentiable matrices $P_{i}(t)$, which transform the subsystems of (3) into systems of the following special form:

$$
\begin{gather*}
\left(t-a_{i}\right)^{r_{i}} z_{i}^{\prime}=\left(\sum_{j=0}^{r_{i}-1} B_{i, j} \cdot\left(t-a_{i}\right)^{j}+C_{i}(t)\right) z_{i}, t \in\left(S_{i}, T_{i}\right) \backslash\left\{a_{i}\right\}  \tag{5}\\
i=1, \ldots, n
\end{gather*}
$$

where $B_{i, j}$ are quasidiagonal constant matrices with non-zero blocks $B_{i, j}^{1}, \ldots, B_{i, j}^{k_{i}}$,

$$
B_{i, 0}^{k}=\left(\begin{array}{cccccc}
\lambda_{i 0}^{k} & \gamma_{i} & 0 & \cdots & 0 & 0 \\
0 & \lambda_{i 0}^{k} & \gamma_{i} & \cdots & 0 & 0 \\
\cdot & \cdot & \cdot & \cdots & \cdot & \cdot \\
0 & 0 & 0 & \cdots & \lambda_{i 0}^{k} & \gamma_{i} \\
0 & 0 & 0 & \cdots & 0 & \lambda_{i 0}^{k}
\end{array}\right), \quad k=1, \ldots, k_{i}
$$

$\gamma_{i}, i=1, \ldots, n$, are arbitrary small pozitive numbers,

$$
\operatorname{rank} B_{i, j}^{k}=\operatorname{rank} B_{i, 0}^{k} \quad \text { for } j \neq 0
$$

and $C_{i}(i=1, \ldots, n)$ are continuous and bounded remainder terms such that there exist limits

$$
\lim _{t \rightarrow a_{i}}\left\|\frac{C_{i}(t)}{\left(t-a_{i}\right)^{r_{i}}}\right\|<+\infty, \quad i=1, \ldots, n
$$

Remark 1. As the proof of the basic lemma in [10] shows, the transformation matrix-functions $P_{i}(t), i=1, \ldots, n$, can be constructed in the polynomial form

$$
P_{i}(t)=\sum_{j=0}^{r_{i}-1} P_{i, j} \cdot\left(t-a_{i}\right)^{j}
$$

with the constant matrices $P_{i, j}$. It is the classical result that the matrices $P_{i 0}$ transforming $A_{i 0}$ to the modified Jordan matrices are regular (see, for example, [11]).

Definition 2. We say that system (1) satisfies the condition
CO1: if $f_{i}(t, 0, \ldots, 0) \equiv 0$ on the interval $I$ and if there exist functions $\mu_{i} \in C\left[I_{i}, \mathbb{R}^{+}\right]$such that

$$
\left\|f_{i}(t, x)-f_{i}(t, \tilde{x})\right\| \leqq \mu_{i}(t)\|x-\tilde{x}\|, \quad \text { for each }(t, x),(t, \tilde{x}) \in I_{i} \times \mathbb{K}^{m}
$$

and

$$
\int_{I_{i}} \mu_{i}(t)\left|t-a_{i}\right|^{-r_{i}} d t=M_{i}<\infty, \quad i=1, \ldots, n
$$

CO2: if

$$
\int_{I_{i}}\left\|g_{i}(t)\right\|\left|t-a_{i}\right|^{-r_{i}} d t=G_{i}<\infty, \quad i=1, \ldots, n
$$

Definition 3. We say that the $i$ th subsystem of the transformed system (5)

$$
\left(t-a_{i}\right)^{r_{i}} z_{i}^{\prime}=\left(\sum_{j=0}^{r_{i}-1} B_{i, j} \cdot\left(t-a_{i}\right)^{j}+C_{i}(t)\right) z_{i}, t \in\left(S_{i}, T_{i}\right) \backslash\left\{a_{i}\right\}
$$

satisfies the condition
CO3: if all eigenvalues of the matrix $B_{i, 0}$ have nonpositive real parts and those of them which lie on the imaginary axis of $\mathbb{C}$ are simple, i.e.,

$$
\operatorname{Re} \lambda_{i 0}^{k} \leqq 0
$$

and if $\operatorname{Re} \lambda_{i 0}^{k}=0$ then mult $\lambda_{i 0}^{k}=1, \quad l=1, \ldots, k_{i}$;
CO4: if for each $k$ such that $\lambda_{i 0}^{k}$ is simple and $\operatorname{Re} \lambda_{i 0}^{k}=0$ there exists $j_{k} \in\left\{1, \ldots, r_{i}-1\right\}$ such that

$$
\begin{equation*}
\operatorname{Re} \lambda_{i 0}^{k}=\operatorname{Re} B_{i, 1}^{k}=\cdots=\operatorname{Re} B_{i, j_{k}-1}^{k}=0, \operatorname{Re} B_{i, j_{k}}^{k}>0 \tag{6}
\end{equation*}
$$

CO5: if for each $k$ such that $\lambda_{i 0}^{k}$ is simple and $\operatorname{Re} \lambda_{i 0}^{k}=0$ there is no $j_{k} \in\left\{1, \ldots, r_{i}-1\right\}$ with property (6);

CO3': if all eigenvalues of the matrix $B_{i, 0}$ have nonnegative real parts and those which lie on the imaginary axis of $\mathbb{C}$ are simple, i.e.,

$$
\operatorname{Re} \lambda_{i 0}^{k} \geqq 0
$$

and if

$$
\operatorname{Re} \lambda_{i 0}^{k}=0 \text { then mult } \lambda_{i 0}^{k}=1, \quad l=1, \ldots, k_{i}
$$

CO4': if for each $k$ such that $\lambda_{i 0}^{k}$ is simple and $\operatorname{Re} \lambda_{i 0}^{k}=0$ there exists $j_{k} \in\left\{1, \ldots, r_{i}-1\right\}$ such that

$$
\begin{equation*}
\operatorname{Re} \lambda_{i 0}^{k}=\operatorname{Re} B_{i, 1}^{k}=\cdots=\operatorname{Re} B_{i, j_{k}-1}^{k}=0, \operatorname{Re} B_{i, j_{k}}^{k}<0 \tag{7}
\end{equation*}
$$

CO5': if for each $k$ such that $\lambda_{i 0}^{k}$ is simple and $\operatorname{Re} \lambda_{i 0}^{k}=0$ there is no $j_{k} \in\left\{1, \ldots, r_{i}-1\right\}$ with property (7).

Definition 4. Let system (1) satisfy conditions CO1 and CO2. We say that the $i$ th equation of (1)

$$
\left(t-a_{i}\right)^{r_{i}} x_{i}^{\prime}=\left(\sum_{j=0}^{r_{i}-1} A_{i, j} \cdot\left(t-a_{i}\right)^{j}\right) x_{i}+f_{i}(t, x)+g_{i}(t), \quad t \in I_{i}
$$

has:
a) property $U_{R}$,
b) property $\bar{U}_{R}$,
c) property $U_{L}$,
d) property $\bar{U}_{L}$,
if its transformed homogeneous part, i.e., the $i$ th subsystem of (5) satisfies the conditions
a) $\mathrm{CO} 3 \wedge \mathrm{CO} 5$
b) $\mathrm{CO}^{\prime} \wedge \mathrm{CO}_{4}$
c) (CO3 for $r_{i}$ odd $\vee \mathbf{C O}{ }^{\prime}$, for $r_{i}$ even) $\wedge\left(\mathbf{C O} 5\right.$ with $j_{k}$ odd $\vee \mathbf{C O} 5^{\prime}$ with $j_{k}$ even),
d) $\left(\mathbf{C O} 3^{\prime}\right.$ for $r_{i}$ odd $\vee \mathbf{C O 3}$ for $r_{i}$ even $) \wedge\left(\mathbf{C O 4}\right.$ with $j_{k}$ odd $\vee \mathbf{C O 4}{ }^{\prime}$ with $j_{k}$ even).

The following lemma summarizes some local topics of [7].
Lemma 2. Let the $i$ th equation of (1) have property $U_{R}$ for some fixed $i \in\{1, \ldots, n-1\}\left[\right.$ resp. have property $U_{L}$ for some fixed $\left.i \in\{2, \ldots, n\}\right]$. Then for $T_{i}$ (resp. $S_{i}$ ) sufficiently close to $a_{i}\left(T_{i}>a_{i}\right.$, resp. $\left.S_{i}<a_{i}\right)$ there exist constants $L_{i}^{+}$(resp. $L_{i}^{-}$) such that for any fundamental matrix $\Psi_{i}$ of the ith transformed subsystem of (5) we have

$$
\left\|\Psi_{i}(t) \Psi_{i}^{-1}(s)\right\| \leqq L_{i}^{+}, \quad \text { for } a_{i}<s \leqq t \leqq T_{i}
$$

resp.

$$
\left\|\Psi_{i}(t) \Psi_{i}^{-1}(s)\right\| \leqq L_{i}^{-}, \quad \text { for } S_{i} \leqq t \leqq s<a_{i}
$$

Moreover, there are only trivial solutions of the ith subsystem of (5) on the intervals $\left(a_{i}, T_{i}\right]$ resp. $\left.\left[S_{i}, a_{i}\right)\right)$ which vanish at the singular point $a_{i}$.

Corollary 1. Let the assumptions of Lemma 2 hold. Then there exists a constant $K_{i}^{+}$(resp. $K_{i}^{-}$) such that for any fundamental matrix $\Phi_{i}$ of the $i$ th subsystem of (3) we have

$$
\left\|\Phi_{i}(t) \Phi_{i}^{-1}(s)\right\| \leqq K_{i}^{+}, \quad \text { for } a_{i}<s \leqq t \leqq a_{n}
$$

resp.

$$
\left\|\Phi_{i}(t) \Phi_{i}^{-1}(s)\right\| \leqq K_{i}^{-}, \quad \text { for } a_{1} \leqq t \leqq s<a_{i}
$$

Moreover, there are only trivial solutions of the ith subsystem of (3) on the intervals $\left(a_{i}, a_{n}\right)\left[\right.$ resp. $\left.\left(a_{1}, a_{i}\right)\right]$ which vanish at the singular point $a_{i}$.

Proof. Lemma 2 implies that

$$
\left\|\Phi_{i}(t) \Phi_{i}^{-1}(s)\right\| \leqq\left\|P_{i}^{-1}(t)\right\| \cdot\left\|P_{i}(s)\right\| L_{i}^{+}, \quad \text { for } a_{i}<s \leqq t \leqq T_{i}
$$

resp.

$$
\left\|\Phi_{i}(t) \Phi_{i}^{-1}(s)\right\| \leqq\left\|P_{i}^{-1}(t)\right\| \cdot\left\|P_{i}(s)\right\| L_{i}^{-}, \quad \text { for } S_{i} \leqq t \leqq s<a_{i}
$$

where the terms on the right-hand sides are bounded for $T_{i}$ (resp. $S_{i}$ ) sufficiently close to $a_{i}$, because $P_{i 0}$ in Remark 1 is regular. For each fixed $s$ the columns of $\Phi_{i}(t) \Phi_{i}^{-1}(s)$ are the solutions of the $i$ th subsystem of (3) with their norms bounded by $\sup _{t \in\left(a_{i}, T_{i}\right]}\left\|P_{i}^{-1}(t)\right\| \cdot\left\|P_{i}(s)\right\| L_{i}^{+}=$: $Q_{i}^{+}$(resp. $\left.\sup _{t \in\left[S_{i}, a_{i}\right)}\left\|P_{i}^{-1}(t)\right\| \cdot\left\|P_{i}(s)\right\| L_{i}^{-}=: Q_{i}^{-}\right)$at some point of the interval $\left[T_{i}, a_{n}\right)$ $\left(\operatorname{resp} . \quad\left(a_{1}, S_{i}\right]\right)$. Since $\left\|\sum_{j=0}^{r_{i}-1} A_{i, j} \cdot\left(t-a_{i}\right)^{j-r_{i}}\right\|$ is bounded on the interval $\left[T_{i}, a_{n}\right]\left(\right.$ resp. $\left.\left[a_{1}, S_{i}\right]\right)$, we have

$$
\left\|\varphi_{i}(t)\right\| \leqq Q_{i}^{+} e^{A_{i}^{+}\left(a_{n}-T_{i}\right)} \operatorname{resp} . Q_{i}^{-} e^{A_{i}^{-}\left(S_{i}-a_{1}\right)}
$$

for any column $\varphi_{i}$ of $\Phi_{i}(t) \Phi_{i}^{-1}(s)$. Here

$$
A_{i}^{+} \text {denote } \sup \left\|\sum_{j=0}^{r_{i}-1} A_{i, j} \cdot\left(t-a_{i}\right)^{j-r_{i}}\right\|, \quad t \in\left[T_{i}, a_{n}\right]
$$

resp.

$$
A_{i}^{-} \text {denote } \sup \left\|\sum_{j=0}^{r_{i}-1} A_{i, j} \cdot\left(t-a_{i}\right)^{j-r_{i}}\right\|, \quad t \in\left[a_{1}, S_{i}\right]
$$

Consequently,
$\left\|\Phi_{i}(t) \Phi_{i}^{-1}(s)\right\| \leqq \sqrt{m_{i}} Q_{i}^{+} e^{A_{i}^{+}\left(a_{n}-T_{i}\right)}=: K_{i}^{+}\left(\operatorname{resp} \cdot \sqrt{m_{i}} Q_{i}^{-} e^{A_{i}^{-}\left(S_{i}-a_{1}\right)}=: K_{i}^{-}\right)$
for $a_{i}<s \leqq t \leqq a_{n}$ (resp. $a_{1} \leqq t \leqq s<a_{i}$ ). The nonexistence of any nontrivial solution vanishing at the point $a_{i}$ directly follows, as in Lemma 2, from the regularity of $P_{i 0}$ and from the uniqueness of solutions of the $i$ th subsystem of (3) on the intervals $\left[T_{i}, a_{n}\right]$ (resp. $\left[a_{1}, S_{i}\right]$ ).

Lemma 3. Let the ith equation of (1) has property $U_{R}$ for some fixed $i \in\{1, \ldots, n-1\}$ (resp. has property $U_{L}$ for some fixed $\left.i \in\{2, \ldots, n\}\right)$. Then for any $(n-1)$-tuple of functions $\varphi_{j} \in C\left[I, \mathbb{K}^{m_{i}}\right], j=1, \ldots, n, j \neq i$, all solutions of the equation

$$
\begin{gather*}
\left(t-a_{i}\right)^{r_{i}} x_{i}^{\prime}=\left(\sum_{j=0}^{r_{i}-1} A_{i, j} \cdot\left(t-a_{i}\right)^{j}\right) x_{i}+ \\
+f_{i}\left(t, \varphi_{1}(t), \ldots, \varphi_{i-1}(t), x_{i}, \varphi_{i+1}(t), \ldots, \varphi_{n}(t)\right)+g_{i}(t), t \in I_{i}, \tag{8}
\end{gather*}
$$

satisfy the ith subcondition of (2), i.e., $x_{i}\left(a_{i}\right)=0$.

Proof. Without loss of generality, we can consider only the case of property $U_{R}$. Let us consider the mentioned $i$ th equation of (1) transformed by the the $i$ th transformation from (4):

$$
\begin{gather*}
\left(t-a_{i}\right)^{r_{i}} z_{i}^{\prime}=\left(\sum_{j=0}^{r_{i}-1} B_{i, j} \cdot\left(t-a_{i}\right)^{j}\right) z_{i}+ \\
+\tilde{f}_{i}\left(t, \varphi_{1}(t), \ldots, \varphi_{i-1}(t), z_{i}, \varphi_{i+1}(t), \ldots, \varphi_{n}(t)\right)+\tilde{g}_{i}(t), \quad t \in\left(a_{i}, T_{i}\right),(9 \tag{9}
\end{gather*}
$$

where $\tilde{f}_{i}$ contain also the remainder term $C_{i}(t) z_{i}$ from (5):

$$
\begin{gathered}
\tilde{f}_{i}\left(t, \varphi_{1}(t), \ldots, \varphi_{i-1}(t), z_{i}, \varphi_{i+1}(t), \ldots, \varphi_{n}(t)\right) \equiv \\
\equiv P_{i}(t) f_{i}\left(t, \varphi_{1}(t), \ldots, \varphi_{i-1}(t), P_{i}^{-1} z_{i}, \varphi_{i+1}(t), \ldots, \varphi_{n}(t)\right)+C_{i}(t) z_{i}
\end{gathered}
$$

and

$$
\tilde{g}_{i}(t) \equiv P_{i}(t) g_{i}(t)
$$

Due to the behavior of the $i$ th transformation from (4), the continuity of $f_{i}, g_{i}$ and conditions $\mathbf{C O 1}$ and $\mathbf{C O 2}$ are invariant with respect to this transformation. Let $\psi_{i}$ be any solution of (9). If $T_{i}$ is sufficiently close to
$a_{i}$, then for the derivative of the norm of $\psi_{i}$ we have

$$
\begin{gathered}
\frac{d}{d t}\left\|\psi_{i}(t)\right\|^{2}=2 \operatorname{Re}\left(\psi_{i}(t) \mid\left(\sum_{j=0}^{r_{i}-1} B_{i, j}\left(t-a_{i}\right)^{j-r_{i}}\right) \psi_{i}(t)+\right. \\
\left.+\tilde{f}_{i}\left(t, \varphi_{1}(t), \ldots, \varphi_{i-1}(t), \psi_{i}(t), \varphi_{i+1}(t), \ldots, \varphi_{n}(t)\right)+\tilde{g}_{i}(t)\right) \geqq \\
\geqq\left((2 \operatorname{Re} \lambda-\epsilon)\left(t-a_{i}\right)^{L-r_{i}}-\tilde{\mu}_{i}(t)\left(\sum_{j \in N \backslash\{i\}}\left\|\varphi_{j}(t)\right\|\right)\right) \cdot\left\|\psi_{i}(t)\right\|^{2}- \\
-\left\|\tilde{g}_{i}(t)\right\| \cdot\left\|\psi_{i}(t)\right\|,
\end{gathered}
$$

where $\epsilon>0$ is arbitrarily small, the term $\tilde{\mu}_{i}(t) \cdot\left(\sum_{j \in N \backslash\{i\}}\left\|\varphi_{j}(t)\right\|\right)$ is bounded on the considered interval, $L \leqq r_{i}-1$ is a greater value of $j_{k}$-s in the condition CO 4 or $L=0$ if no $j_{k}$ exists, and $\operatorname{Re} \lambda$ is the smallest value of $\operatorname{Re} \lambda_{j_{k}}^{k}$ for $j_{k}=L$, i.e.,

$$
\operatorname{Re} \lambda=\min \left\{\operatorname{Re} \lambda_{j_{k}}^{k}, j_{k}=L\right\}>0 .
$$

Consequently,

$$
\left\|\psi_{i}(t)\right\|^{\prime} \geqq \frac{\operatorname{Re} \lambda}{2}\left(t-a_{i}\right)^{L-r_{i}}\left\|\psi_{i}(t)\right\|-\left\|\tilde{g}_{i}\right\| \geqq \frac{\operatorname{Re} \lambda}{2\left(t-a_{i}\right)}\left\|\psi_{i}(t)\right\|-\left\|\tilde{g}_{i}\right\|
$$

for $T_{i}$ sufficiently close to $a_{i}$; hence

$$
\begin{gathered}
\left\|\psi_{i}(t)\right\| \leqq\left(\left(\frac{\left\|\psi_{i}\left(T_{i}\right)\right\|}{\left(T_{i}-a_{i}\right)^{\frac{\operatorname{Re} \lambda}{2}}}+\frac{\left(T_{i}-a_{i}\right)^{1-\frac{\operatorname{Re} \lambda}{2}}}{1-\frac{\operatorname{Re} \lambda}{2}}\left\|\tilde{g}_{i}\right\|\right)\left(t-a_{i}\right)^{\frac{\mathrm{Re} \lambda}{2}}-\right. \\
\left.-\frac{\left\|\tilde{g}_{i}\right\|}{1-\frac{\operatorname{Re} \lambda}{2}}\left(t-a_{i}\right)\right)
\end{gathered}
$$

where the last term tends to zero as $t \rightarrow a_{i}+$. This implies that each solution $\varphi_{i}=P_{i}^{-1} \psi_{i}$ of (8) on $\left(a_{i}, T_{i}\right)$ vanishes at the point $a_{i}$, too.

Corollary 2. Let the assumptions of Lemma 3 hold. Then there exists a constant $K_{i}^{+}>0\left(\right.$ resp. $\left.K_{i}^{-}>0\right)$ such that any fundamental matrix $\Phi_{i}$ of the ith subsystem of (3) satisfies

$$
\left\|\Phi_{i}(t) \Phi_{i}^{-1}(s)\right\| \leqq K_{i}^{+} \quad \text { resp. } K_{i}^{-}
$$

for

$$
a_{i}<t \leqq s<a_{n} \quad \text { resp. } a_{1}<s \leqq t<a_{i} .
$$

Proof. Each column of $\Phi_{i}(t) \Phi_{i}^{-1}(s)$ is a solution of the $i$ th equation of (1) for $f_{i} \equiv g_{i} \equiv 0$ on some interval $\left(a_{i}, T_{i}\right)$ (resp. $\left(S_{i}, a_{i}\right)$ ). Such a solution vanishes at the point $a_{i}$ and its extension on the interval ( $s, a_{n}$ ) (resp. $\left.\left(a_{1}, s\right)\right)$ is bounded because $\sum_{j=0}^{r_{i}-1} A_{i, j} \cdot\left(t-a_{i}\right)^{j-r_{i}}$ is bounded there, too. Thus $\left\|\Phi_{i}(t) \Phi_{i}^{-1}(s)\right\|$ is bounded on the interval $\left[a_{i}, a_{n}\right]$ (resp. $\left[a_{1}, a_{i}\right]$ ) (and vanishes at $a_{i}$ ), too.

## Main Results

Let us consider system (1). Denote by $N_{L}$ and $N_{R}$ the sets of all indices $i$ for which the $i$ th equation of (1) has property $\bar{U}_{L}$ or $\bar{U}_{R}$, respectively, and by $N_{L}^{0}, N_{R}^{0}$ the sets of all indices $i$ for which the $i$ th equation of (1) has property $U_{L}$ or $U_{R}$, respectively. Then we have

Theorem 1. Let

$$
\operatorname{card} N_{L}+\operatorname{card} N_{R}+\operatorname{card} N_{L}^{0}+\operatorname{card} N_{R}^{0}=2(n-1)
$$

and let the inequality

$$
\begin{equation*}
\sum_{i=1}^{n} K_{i} M_{i}<1 \tag{10}
\end{equation*}
$$

hold.
Then there exists just a $\left(\sum_{i \in N_{L}} m_{i}+\sum_{i \in N_{R}} m_{i}\right)$-parametric family of solutions of problem (1), (2).

Proof. Let $\varphi=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ be a solution of problem (1), (2). Then its $i$ th component $\varphi_{i}$ can be written in one of the following forms. If $i \in$ $N \backslash\left(N_{L} \cup N_{R}\right)$, then

$$
\begin{equation*}
\varphi_{i}(t)=\int_{a_{i}}^{t} \Phi_{i}(t) \Phi_{i}^{-1}(s)\left[f_{i}(s, \varphi(s))+g_{i}(s)\right]\left(s-a_{i}\right)^{-r_{i}} d s, \quad t \in I \tag{11}
\end{equation*}
$$

if $i \in N \backslash\left(N_{L}^{0} \cup N_{R}^{0}\right)$, then

$$
\varphi_{i}(t)=\left\{\begin{array}{c}
\Phi_{i}(t) \Phi_{i}^{-1}\left(a_{1}\right) \varphi_{i}\left(a_{1}\right)+\int_{a_{1}}^{t} \Phi_{i}(t) \Phi_{i}^{-1}(s)\left[f_{i}(s, \varphi(s))+\right.  \tag{12}\\
\left.+g_{i}(s)\right]\left(s-a_{i}\right)^{-r_{i}} d s, \quad t \in\left[a_{1}, a_{i}\right] \\
\Phi_{i}(t) \Phi_{i}^{-1}\left(a_{n}\right) \varphi_{i}\left(a_{n}\right)+\int_{a_{n}}^{t} \Phi_{i}(t) \Phi_{i}^{-1}(s)\left[f_{i}(s, \varphi(s))+\right. \\
\left.+g_{i}(s)\right]\left(s-a_{i}\right)^{-r_{i}} d s, \quad t \in\left[a_{i}, a_{n}\right]
\end{array}\right.
$$

if $i \in N_{R}^{0} \cap\left(N \backslash N_{L}^{0}\right)$, then

$$
\begin{gather*}
\varphi_{i}(t)=\Phi_{i}(t) \Phi_{i}^{-1}\left(a_{1}\right) \varphi_{i}\left(a_{1}\right)+ \\
+\int_{a_{1}}^{t} \Phi_{i}(t) \Phi_{i}^{-1}(s)\left[f_{i}(s, \varphi(s))+g_{i}(s)\right]\left(s-a_{i}\right)^{-r_{i}} d s, \quad t \in I \tag{13}
\end{gather*}
$$

and, finally, if $i \in N_{L}^{0} \cap\left(N \backslash N_{R}^{0}\right)$, then

$$
\begin{gather*}
\varphi_{i}(t)=\Phi_{i}(t) \Phi_{i}^{-1}\left(a_{n}\right) \varphi_{i}\left(a_{n}\right)+ \\
+\int_{a_{n}}^{t} \Phi_{i}(t) \Phi_{i}^{-1}(s)\left[f_{i}(s, \varphi(s))+g_{i}(s)\right]\left(s-a_{i}\right)^{-r_{i}} d s, \quad t \in I \tag{14}
\end{gather*}
$$

Here $\varphi_{i}\left(a_{1}\right) \in \mathbb{K}^{m_{i}}, i \in N_{L}, \varphi_{i}\left(a_{n}\right) \in \mathbb{K}^{m_{i}}, i \in N_{R}$, are arbitrary constants. Lemma 3 and Corollaries 1 and 2 ensure that the above integrations are correct. On the other hand, the solutions of the system of integral equations (11)-(14) are the solutions of problem (1), (2) which satisfy the boundary conditions

$$
\begin{align*}
& x_{i}\left(a_{1}\right)=\varphi_{i}\left(a_{1}\right), \quad i \in N_{L}, \\
& x_{i}\left(a_{n}\right)=\varphi_{i}\left(a_{n}\right), \quad i \in N_{R} . \tag{15}
\end{align*}
$$

Thus for any fixed values of $\varphi_{i}\left(a_{1}\right) \in \mathbb{K}^{m_{i}}, i \in N_{L}, \varphi_{i}\left(a_{n}\right) \in \mathbb{K}^{m_{i}}, i \in N_{R}$, problem (1), (2), (15) is equivalent to the system of integral equations (11)(14). Define the integral operator $F$ by means of the right sides of (11)-(14), which maps $C\left[I, \mathbb{K}^{m}\right]$ into itself and denote

$$
\mathcal{I}_{i}(\zeta, \xi):=\int_{\zeta}^{\xi} \Phi_{i}(t) \Phi_{i}^{-1}(s)\left[f_{i}(s, \varphi(s))+g_{i}(s)\right]\left(s-a_{i}\right)^{-r_{i}} d s
$$

Denote by $\mathcal{B}(c, R)$ a ball in the space $C\left[I, \mathbb{K}^{m}\right]$ with radius $R$ and center at the fundamental solution of the homogeneous part of (1) $c=\left(c_{1}, \ldots, c_{n}\right)$, where

$$
c_{i}(t)= \begin{cases}0, & t \in I, \quad i \in N \backslash\left(N_{L} \cup N_{R}\right) \\ \Phi_{i}(t) \Phi_{i}^{-1}\left(a_{1}\right) \varphi_{i}\left(a_{1}\right), & t \in I, \quad i \in N_{L} \backslash N_{R} \\ \Phi_{i}(t) \Phi_{i}^{-1}\left(a_{1}\right) \varphi_{i}\left(a_{1}\right), & t \in\left[a_{1}, a_{i}\right], \quad i \in N_{L} \cap N_{R} \\ \Phi_{i}(t) \Phi_{i}^{-1}\left(a_{n}\right) \varphi_{i}\left(a_{n}\right), & t \in\left[a_{i}, a_{n}\right], \quad i \in N_{L} \cap N_{R} \\ \Phi_{i}(t) \Phi_{i}^{-1}\left(a_{n}\right) \varphi_{i}\left(a_{n}\right), & t \in I, \quad i \in N_{R} \backslash N_{L}\end{cases}
$$

For any $\varphi \in \mathcal{B}(c, R)$ we get

$$
\begin{gather*}
\|F \varphi-c\| \leqq \sum_{i \in N \backslash\left(N_{L} \cup N_{R}\right)} \sup _{t \in I_{i}}\left\|\mathcal{I}_{i}\left(a_{i}, t\right)\right\|+ \\
+\sum_{i \in\left(N_{L} \cap N_{R}\right)} \max \left\{\sup _{t \in\left(a_{1}, a_{i}\right)}\left\|\mathcal{I}_{i}\left(a_{1}, t\right)\right\|, \sup _{t \in\left(a_{i}, a_{n}\right)}\left\|\mathcal{I}_{i}\left(a_{n}, t\right)\right\|\right\}+ \\
+\sum_{i \in\left(N_{L} \backslash N_{R}\right)} \sup _{t \in I_{i}}\left\|\mathcal{I}_{i}\left(a_{1}, t\right)\right\|+\sum_{i \in\left(N_{R} \backslash N_{L}\right)} \sup _{t \in I_{i}}\left\|\mathcal{I}_{i}\left(a_{n}, t\right)\right\| \leqq \\
\leqq \sum_{i \in N} K_{i}\left(M_{i}\|\varphi\|+G_{i}\right) \leqq \\
\quad \leqq\left(\sum_{i \in N} K_{i} M_{i}\right)\|\varphi-c\|+\sum_{i \in N} K_{i}\left(M_{i}\|c\|+G_{i}\right) \tag{16}
\end{gather*}
$$

Since $\sum_{i \in N} K_{i} M_{i}<1$, we can select a radius $R$ such that

$$
\left(1-\sum_{i \in N} K_{i} M_{i}\right) R>\left(\sum_{i \in N} K_{i}\left(M_{i}\|c\|+G_{i}\right)\right) .
$$

The last inequality implies that the operator $F$ maps the ball $\mathcal{B}(c, R)$ into itself.

Similarly, we obtain the estimate

$$
\begin{equation*}
\|F \varphi-F \tilde{\varphi}\| \leqq\left(\sum_{i \in N} K_{i} M_{i}\right)\|\varphi-\tilde{\varphi}\| \text { for any pair } \varphi, \tilde{\varphi} \in \mathcal{B}(c, R) \tag{17}
\end{equation*}
$$

hence $F$ is a contraction. The Banach theorem gives the existence of a unique solution of the system of integral equations (11)-(14) satisfying condition (15). This solution is simultaneously the solution of problem (1), (2) which satisfies the condition (15). The values $\varphi_{i}\left(a_{1}\right), i \in N_{L}$, $\varphi_{i}\left(a_{n}\right), i \in N_{R}$ occurring in (15) can be selected arbitrarily and the total dimension of (15) is $\sum_{i \in N_{L}} m_{i}+\sum_{i \in N_{R}} m_{i}$.

Remark 2. Condition (10) is substantial in view of the following example.

Example. Consider a linear problem

$$
\begin{align*}
& x_{1}^{\prime}=-\frac{x_{1}}{t}+2\left(x_{1}-x_{2}\right), t \in(0,1),  \tag{18}\\
& x_{2}^{\prime}=-\frac{x_{2}}{t-1}+2\left(x_{1}-x_{2}\right), t \in(0,1),  \tag{19}\\
& x_{1}(0)=x_{2}(1)=0 \tag{20}
\end{align*}
$$

Equation (18) has property $U_{R}$ at its singular point $a_{1}=0$ and equation (19) has property $U_{L}$ at the singular point $a_{2}=1$. However, there exists a one-parametric system of solutions of problem (18), (19), (20)

$$
x_{1}=c t, x_{2}=c(t-1), c \in \mathbb{K}
$$

where $c$ is arbitrary. This happens because condition (10) does not hold. In fact, we have

$$
K_{1} M_{1}+K_{2} M_{2} \geqq 4>1
$$

where

$$
\begin{aligned}
& K_{1} \geqq \sup _{0<s \leq t \leq 1} \frac{s}{t}=1 \\
& K_{2} \geqq \sup _{0 \leq t \leq s<1} \frac{s-1}{t-1}=1, \\
& \mu_{1} \geqq 2, \quad \mu_{2} \geqq 2 \\
& \text { and so } \quad M_{1} \geqq \int_{0}^{1} 2 d t=2, \quad M_{2} \geqq 2
\end{aligned}
$$

The next Theorem 2 indicates the special case where condition (10) can be omitted.

Theorem 2. Let

$$
\operatorname{card} N_{L}=\operatorname{card} N_{R}^{0}=n-1,
$$

or

$$
\operatorname{card} N_{L}^{0}=\operatorname{card} N_{R}=n-1
$$

Then there exists just a $\left(\sum_{i \in N_{L}} m_{i}\right)$-parametric [resp. a $\left(\sum_{i \in N_{R}} m_{i}\right)$-parametric] family of solutions of problem (1), (2).

Proof. The system of integral equations in the proof of Theorem 1 reduces to (13) in the first case or to (14) in the second case. Let us consider the first case and define a new norm in the space $C\left[I, \mathbb{K}^{m}\right]$ :

$$
\|\varphi\|_{p}:=\max _{t \in I}\left(\|\varphi(t)\| e^{-p\left(t-a_{1}\right)}\right)
$$

The following estimates hold:

$$
\begin{gathered}
\left\|\mathcal{I}_{i}\left(a_{1}, t\right)\right\| e^{-p\left(t-a_{1}\right)} \leqq \\
\leqq K_{i}\left(M_{i} \int_{a_{1}}^{t}\|\varphi(s)\| e^{-p\left(s-a_{1}\right)} e^{p\left(s-a_{1}\right)} d s+G_{i}\right) e^{-p\left(t-a_{1}\right)} \leqq
\end{gathered}
$$

$$
\begin{gathered}
\leqq K_{i}\left(M_{i}\|\varphi\|_{p} \int_{a_{1}}^{t} e^{p\left(s-a_{1}\right)} d s+G_{i}\right) e^{-p\left(t-a_{1}\right)} \leqq \\
\leqq K_{i}\left(M_{i} \frac{\|\varphi\|_{p}}{p}\left(e^{p\left(t-a_{1}\right)}-1\right)+G_{i}\right) e^{-p\left(t-a_{1}\right)} \leqq \\
\leqq K_{i}\left(M_{i} \frac{\|\varphi\|_{p}}{p}+G_{i}\right), \quad i \in N
\end{gathered}
$$

So estimate (16) has the form

$$
\begin{gathered}
\|F \varphi-c\|_{p} \leqq \sum_{i \in N} K_{i}\left(M_{i} \frac{\|\varphi\|_{p}}{p}+G_{i}\right) \leqq \\
\leqq \frac{\sum_{i \in N} K_{i} M_{i}}{p}\|\varphi-c\|_{p}+\sum_{i \in N} K_{i}\left(M_{i} \frac{\|c\|_{p}}{p}+G_{i}\right) .
\end{gathered}
$$

Similarly we obtain the modification of estimate (17)

$$
\|F \varphi-F \tilde{\varphi}\|_{p} \leqq \frac{\sum_{i \in N} K_{i} M_{i}}{p}\|\varphi-\tilde{\varphi}\|_{p}
$$

When we select $p$ such that

$$
p>\sum_{i \in N} K_{i} M_{i}
$$

the proof can be completed as that of Theorem 1.

## References

1. B. A. Czeczik, Investigation of systems of ordinary differential equations with a singularity. Trudy Moskov. Matem. obsch. 8(1959), 155-197.
2. I. T. Kiguradze, Some singular boundary value problems for ordinary differential equations. (Russian) Tbilisi University Press, Tbilisi, 1975.
3. M. M. Ad'yutov, Yu. A. Klokov, and A. P. Mikhailov, Some problems for an ordinary differential equation that arise in gas dynamics. (Russian) Differentsial'nye Uravneniya 26(1990), No. 7, 1107-1110, 1284; English transl.: Differential Equations 26(1990), No. 7, 803-805.
4. J. Diblík, On existence of $\delta$-bounded solutions of a nonhomogeneous linear system of differential equations. Funkcial. Ekvac. $\mathbf{3 4}(1991)$, No. 1, 1-18.
5. A. G. O'Farrel and D. O'Regan, Existence results for initial and boundary value problems. Proc. Amer. Math. Soc. $\mathbf{1 1 0}(1990)$, No. 3, 661-673.
6. G. P. Grizans, A boundary value problem for an equation with nonsummable singularity. (Russian) Latv. Mat. Ezhegodnik 29(1985), 22-35.
7. N. B. Konyukhova, Singular Cauchy problems for systems of ordinary differential equations. (Russian) Zh. Vychisl. Mat. i Mat. Fiz. 23(1983), No. 3, 629-645.
8. J. Diblík, The singular Cauchy-Nicoletti problem for system of two ordinary differential equations. Math. Bohemica 117(1992), No. 1, 55-67.
9. E. Wagenführer, On the computation of formal fundamental solutions of linear differential equations at a singular point. Analysis 9 (1989), No. 4, 389-405.
10. E. S. Birger and N. B. Ljalikova, On determining the solutions of certain systems of ordinary differential equations with a given condition at infinity. (Russian) Zh. Vychisl. Mat. i Mat. Fiz. 5(1965), 979-990; 3(1966), 446-453.
11. W. Wasow, Asymptotic expansions for ordinary differential equations. Wiley, New York, 1965.
(Received 20.10.1993)
Author's address:
Department of Mathematics
Czech Academy of Sciences
Žižkova 22, 61662 Brno
Czech Republic

[^0]:    1991 Mathematics Subject Classification. 34B10, 34B15.
    Key words and phrases. Differential inequalities, global structure of solutions, oscillatory solution.

