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KNESER-TYPE OSCILLATION CRITERIA FOR
SELF-ADJOINT TWO-TERM DIFFERENTIAL EQUATIONS

ONDREJ DOSLY AND JAN OSICKA

ABSTRACT. It is proved that the even-order equation y(27) +p(t)y =0
is (n,n) oscillatory at oo if

o0
lim (—1)" logt/ s2n—1 (p(s) + %) ds < —Kn,
s
t

t—oo
where K, = (—1)" 1142 Py ()], _2u1, PO = AA = 1)... (A —
- 2
2n + 1), pon, = P (%)

1. INTRODUCTION

In this paper we deal with the oscillation properties of two-term differ-
ential equation of even order

y®) + p(t)y =0, (1.1)

where t € I = [1,00), p(t) € C(I). The literature dealing with this problem
is very voluminous; recall the monographs [1-5] and the references given
therein.

If we study the oscillation properties of (1.1) from the point of view of
the calculus of variations, the following definition plays an important role.

Definition 1.1. Two points ¢, ¢y are said to be (n,n) conjugate relative
to (1.1) if there exists a nontrivial solution of (1.1) such that y®(t;) = 0 =
yD(ty),i=0,...,n—1.

The oscillation properties of linear equations related to this definition are
studied in [3, 5], and recent references concerning this topic may be found
in the survey paper [6].
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If one is interested in factorization of the differential operator on the left-
hand-side of (1.1) and similar problems, another definition of disconjugacy
of (1.1) introduced by Levin and Nehari has to be considered.

Definition 1.2. Equation (1.1) is said to be disconjugate on an interval
Iy C I whenever any nontrivial solution of (1.1) has at most (2n — 1) zeros
on Iy. Equation (1.1) is said to be eventually disconjugate if there exists
¢ € I such that (1.1) is disconjugate on (¢, 00).

To distinquish between the oscillation properties defined by Definition
1.1 and the disconjugacy, oscillation, etc. defined by Definition 1.2, we
shall refer to the latter as LN-disconjugacy, LN-oscillation and to the for-
mer as (n,n) disconjugacy, (n,n) oscillation, etc. Clearly, if (1.1) is LN-
disconjugate on an interval Iy C I it is also (n,n)-disconjugate on this in-
terval. In this paper the principal concern is the oscillation behavior of (1.1)
in the sense of Definition 1.1, but if the function p(¢) does not change sign
for large ¢, the oscillation properties of (1.1) according to Definition 1.1 are
very close to that given by Definition 1.2; for more details see [1].

Recall that Kneser-type oscillation criteria for (1.1) are criteria which
compare equation (1.1) with the Euler equation

ym) %y =0, (1.2)

where o, = Pgn(Q”Z_l) and

Py (z)=z(x—1)...(z —2n+1). (1.3)

Criteria of this kind for (1.1) and a partial differential equation
(—A)"u + p(x)u =0,

where x = (21,...,2,) € R™ and A denotes the Laplace operator, have
been studied in [7-9], among others.

The paper is organized as follows. In the next section we summarize the
properties of solutions of self-adjoint, even-order, differential equations and
their relation to the linear Hamiltonian systems (LHS). The main result
of this paper — the Kneser-type oscillation criterion for (1.1) — is given in
Section 3. Section 4 is devoted to remarks and comments concerning the
results, and the last section contains some technical lemma needed in the
proofs of all the statements given in this paper.

2. PRELIMINARY RESULTS

First of all, recall the basic properties of the Euler equation (1.2). The
algebraic equation Ps,(xz) = 0 has 2n real roots 2; =i — 1,4 =1,...,2n.
The function y = Py,(x) has exactly n local minima and (n — 1) local
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maxima and its graph is symmetric with respect to the line z = 2”2_ L The
equation

Poalh) = P () (2.)

has exactly 2n — 2 simple roots; denote them by A\ < Ao < -+ < A1 <

2n—1— X1 <2n—1—X,,_92 < -+ < 2n — 1 — Ay and one double root
Ap = 2”2_1. The solutions of (1.2) are of the form y; = t*,i = 1,...,n —
]_7 Yn = t2n271’yn+1 = tzn;l logtayn+i+1 = t2n_1_ki7 Z = 1, ey — ].
Observe that these solutions form the so-called Markov system of solutions

on Iy = (1,00), which means that the Wronskians

51 e Yk
W(yla"'vyk): )
k-1 k-1
S
k =1,...,2n, are positive throughout I,. Moreover, these solutions form
the so-called hierarchical system of functions, i.e., y; = o(yi+1) as t —
oo, t=1,...,2n — 1.

Equation (1.1) is the special form of the self-adjoint even-order differential
equation

S0 (™) o, (22

k=0

which is closely related to the linear Hamiltonian system
u' = Au+ B(t)v, o =C(t)u— ATv, (2.3)

where w,v : [ — R", A, B,C : I — R™*", the superscript T' stands for
the transpose of the matrix indicated and the matrices B, C' are symmetric,
ie.,, B = BT ,C = CT. More precisely, let y be a solution of (2.2). Set
up =y i =100 n, vy = pay™, vns = vl + Py,
i=1,...,n—1,u=(uy,...,un)", v = (v1,...,v,)7. The n-dimensional
vectors u, v are solutions of the LHS of (2.3), where

B(t) = diag{O,...,O,pgl(t)} ,
C(t) = diag{po(t), ..., pn-1(t)} ,
A:{l for j=i+1,i=1,....,n—1

0 otherwise.

We say that the solution y of (2.2) generates the solution (u,v) of (2.3).
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Now consider the matrix analogy of (2.3)
U =AU+ BV, V' =Ct)U-ATV. (2.4)

A self-conjugate solution (U,V) of (2.4) (i.e. UT(2)V(z) = VT (2)U(2);
alternative terminology is self-conjoined [11] or isotropic [2]; our terminology
is due to [13]) is said to be principal (nonprincipal) at a point b if the matrix
U is nonsingular near b and

lim (/: U1(5)B(s)UT1(s)ds)1 =0

(iiinb (/d U‘l(s)B(s)UT_l(s)ds)l = M) ,

M being a nonsingular n X n matrix, for some d € I which is sufficiently close
to b. A principal solution of (2.4) at b is determined uniquely up to a right

multiple by a nonsingular n x n matrix. Let yi,...,y, be solutions of (2.2)
and let (u1,v1), ..., (Un, vy) be the solutions of (2.3) generated by y1, . .., Yn.
If the vectors uy, ..., un, v1,..., v, form the columuns of the solution (U, V)

of (2.4) we say that this solution is generated by the solutions y1,...,y, of
(2.2). Solutions yi,...,y, of (2.2) are said to form the principal system of
solutions if the solution (U, V') of the associated LHS generated by y1,...,yn
is principal.

Using the concept of principal system of solutions of a self-adjoint even
order differential equation, the following oscillation criterion was proved
in [10].

Theorem A. Let y1,...,yn be a principal system of solutions of the
equation

(n)
=0

(r(t)y(")) (2.5)

at b and let (U, V) be the solution of the matriz linear Hamiltonian sys-
tem corresponding to (2.5) generated by y1,...,yn. If there exists ¢ =
(c1,...,cn)T € R™ such that for h = ciy1 + -+ + caYn

. 1) qh?
lim sup 7
b CT(f U—lBUT—l)—lc

< -1 (2.6)

where B = diag{0,...,0,771(t)}, then the equation

0 (r™) "™ + atty =0 (27)

is (n,n)-oscillatory at the right end point b of the interval (a,b).
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(Recall that equation (2.7) is said to be (n,n)-oscillatory at b if in any
neighborhood of b there exists at least one pair of conjugate points.) In
this paper we prove an oscillation criterion for (1.1) which is principally
similar to the criterion for equation (2.7) given by Theorem A. In Theorem
A equation (2.7) is viewed as a perturbation one-term equation (2.5), and it
is proved that if the function ¢ is sufficiently negative (i.e., (2.6) holds), then
(2.7) is oscillatory. Here we apply this idea in a modified form to equation
(1.1); this equation is considered as a perturbation of the two-term Euler
equation (1.2). Comparing Theorem A with our criterion, here we are able
to compute explicitly the term whose analog in Theorem A is the term

21
t o _ o .
cr (f U-'BUT 1) ¢, hence our criterion is more practical.

3. OSCILLATION CRITERION

The key idea of the proof of the following oscillation criterion for (1.1)
consists in application of the variational principle given in Lemma 5.1. In
particular, for arbitrarily large tg € R, we construct a nontrivial function
y € W2 (tg,00), suppy C (tg,00) such that

Iyitooo) = [ [0+ 100 de <o (3)
to
Theorem 3.1. Suppose that
; n * onc1 H2
tlirgo(—l) logt/t s (p(s) + ST:) ds < —K,, (3.2)
where
o1l d?
K,=(-1) 1§wP2n(/\)|)\:%. (3.3)

Then equation (1.1) is (n,n)-oscillatory at co.

Proof. Let ty € (1,00) be arbitrary and define the test function as follows

07 te [1,t0],
[, t € [to, ta],
2n—1

y(t) = tT7 te [t17t2]7
g(t), t € [ta,ts],
0, t e [tg,OO),

where f, g are the solutions of (1.2) satisfying the boundary conditions

2n—1

, , —1\ () . n-1 (9)
FOt) =0, fO@) = (57) iz 90 (t2) = (1557) 7 izt
gD (ts) =0, i=0,...,n—1.
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These solutions exist uniquely in view of Lemma 5.3. The points 1 < t5 <
t1 < to < t3 will be specified later. We shall show that I(y;tg,00) < 0 if
t1,t9, t3 are sufficiently large.

Let \j,i=1,...,n—1,\, = 221 be the first n roots (ordered by size)

2
2n—1

of the equation (2.1). Denote y; = t*,i=1,...,n—1, y, =t~ 7, and

Y1 e Yn
v=| : 2P
ygn—l) . yr(zn_l)
L

V= . :

n+1 n

—y% +1) —yr(L +1)
ygn) . y,(ln)
Then by Lemma 5.6 yi,...,y, form the principal system of solutions of

(1.2) at oo, and (U, V) is the principal solution of the LHS of the associated
matrix LHS. By Lemma 5.2

—1

t t1
ui(t) = U(t) UlBUTlds</ UlBUTlds) en,

to tO
t t1 -1
vy (t) = (V(t)/ U 'BUT tds + UTl(t)> </ UlBUTlds) en,
to to
" & B 3.4
s (t) = U(t)/ U BUT 1 ds (/ U—lBUTlds> en, (3.4)
t 12
ts ts -1
vy (t) = (V(t)/ U 'BUTtds — UT—l(t)) (/ U—lBUT—1d5> en,
t to
where e,, = (0,...,0,1)7 € R", are solutions of the vector LHS correspond-

ing to (1.2) and according to Lemma 5.2 f(t) = efuy(t), g(t) = eTus(t),
e1 = (1,0,...,00T € R™,
Using Lemma 5.4 we have

[ ™2 = bz o] de = () -

to
—1

t1
=elV(t)U(t))en +€f </ UlBUT—lds> en

to
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and by Lemma 5.9
-1

t1 K
el ( U-lBUT—lds) en = -
to

logty + M’

where M is a positive real constant (its value may be computed explicitly,
but it is not important and K, is given by (3.3)). Similarly,

| [y - (i Ei] de= VU, - v Ue,.

{2n Yn

th¢mmf<1wiﬁz<ﬂﬁ

ts
=el (/ UlBUTlds) en — eV (t2)U(ta)e, .
to

Computing the integrals
t1 ts
H2n H2n
Lo+ ] o [+ ] o

we proceed as follows. The function f is a solution of (1.2), hence it can
be expressed in the form f = ciy1 + -+ + ch¥Yn + Cng1Yn+1 + - - + C2nYon,
¢ €R, i=1,...,2n. It follows that

f / li li
(o () v (2
Yn Yn Yn
Yn+1 ' Yan '
+cn+1< . ) +~-~+ch() =
Yn Yn
=c1(A1—2n2_1)tA1‘%+---+

2n —1 A _2n41
tAn—1 5
) +

2n — n_
+Cn+1(10gt)/+"'+c2n( 2 _/\1) o )\1

+ Cn-1 (An—l -

Since the functions (y1/yn)’s- - Un-1/Yn)"s Yn+t1/Yn), - -, (Y2n/yn) form
the Markov system of solutions of certain (2n — 1)-order linear differential
equation, by Lemma 5.5 this equation is LN-disconjugate on (1,00). As
(f/yn)’ has zeros of multiplicity (n — 1) both at ¢t = ¢y and ¢ = ¢1, this
function does not vanish in the interval (to,%1), i.e., the function f/y, is
increasing in this interval. By the second mean value theorem of integral
calculus there exists & € (to,?1) such that

/ () + ) (1) dt / (o) + 220 20 (ynf;t)f it =
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=/§fl(<>+§§:‘)yi<t>dt.

Similarly, the function g/y,, is decreasing on (t2,t3) and there exists & €
(t2,t3) such that

/t“ (pit) + 222 g2 (t)dt:/t“ (p()+ 532 ) 20 (yg((tt))f dt =

=/:2( (1) + 12) g2 1) .

Using these computations and Lemma 5.9 we get

Ii00) = ito.ts) = [ [0 = (1" e+

to t2n
+ / t2[<y£ﬁ>< 0= iz 2 () et / t?’[(g(n)(t))z_(_Un%gz(t)} e
+ (=" /;1 {p( )+ IZEZ] FA)dt+ (—=1)" /ttz {p(t) + %] ya(t) dt +

+ (-1 /tg [p( )+ %} g (t)dt = X (/tl UlBUTldt) en +

ta to

t3 -1 &2 7
+ el </ UlBUTldt) en + (—1)”/ [ (t) + tTﬂ y2(t)dt =
to 1

£2 2n
— T (/t U'BUT- 1dt> _pynJa (p(t) + 52) ya(t) dt
_ T :
eT( L U-1BUT- 1dt) en

+

1
j; 1BUT 1d

t1 -1
= ) (/ U‘lBUT‘ldt) en X
[ U-1BUT- 1dt) to

1
l2m) g2 (4) dt el ftBU’lBUT’ldt en
x| 14(-1)" 1 (P0+ ) 1 0) +"(t2 ) -

et (JivBUT dt)_l — (ftleleUTfldt)_len -

&2
1+(71)nlog§1+M10gf1/ (p( )Jr/iﬂ) V2 (8) di+

p— Kn
- logty + M

log &1 K, t2n

-1

logti + M 1 /t?’ 1 T—1 K, logé1 + M
e T BUT-Ydt) en| =

e\, Y “l T logh+ M log&
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log &1 log & /52 Pon\ o
—_— -1 t —_— t)dt
TR ol A () + 52 ) w2 t) e+

1 M 1 ts !
N ogti + M log& T (/ UlBUTldt> €n] .
to

log&t+M K, "

The inequality in this computation is justified by the fact that according
to (3.2)

(=" /52 [p(t) + ';%ﬂ y2(t)dt <0

if & and &, are sufficiently large and hence

(D" e o) + el wa ) dt (1" S [p(r) + ]

e (fi) U*lBUTfldt>_1en e (g U*lBUTfldt)_len

n to

for & < t;. Now let € > 0 be such that the limit in (3.2) is less than
—K,, — 4e. Since lim; o (Kp logt + M) /K, logt = 1, we have

log §1

—— < 1+4e€
log& + M

if ¢y is sufficiently large. According to (3.2) t2 > ¢1 can be chosen such that

1 &2 .
%&/ [p(t) + %} y2(t)dt < —1 — 2e,
n 1

-1
whenever & > t5. Finally, since limy, (ftt; U_lBUT—ldt> =0, t3 can
be chosen such that

logti + M logé&i  r <

ts -1
U-'BUT 14 n < E.
logét+M K, " / o) s

to
Summarizing all estimates, we have

_ K, log& + M
logti + M log &1

I(y; to, t3) (I1+e—1—2e4+¢)<0

and according to Lemma 5.1 equation (1.1) is (n,n)-oscillatory at co. O
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4. REMARKS

i) In [11] we studied the problem of existence of (n,n)-conjugate points
in an interval (a,b) and proved the following theorem.

Theorem B. Let y1,...,Ym, 1 < m <n, be solutions of (2.5) which are
contained in principal systems of solutions both at a and b. If there exist
C1,---,Cm € R such that

to

timsup [ g(t) (n(®) + -+ enyn(®)? dt <0
tila,t2Th t1

then equation (2.7) is (n,n)-conjugate on (a,b).

A slight modification of the proof of this theorem applies also to equation
(1.1) considered as a perturbation of (1.2) for ¢ € (0,00). Observe that
Yn = t¥7 is the only solution (up to a multiple by a nonzero real constant)
of (1.2) which is contained in the principal systems of solutions both at ¢ = 0
and t = oo; hence we have the following statement.

Theorem 4.1. Suppose that

. n 2 2n—1 H2n
limsup (—1) t7r |p(t) + 5| dt <O.
t110,t2100 t ¢

Then (1.1) is (n,n) conjugate on the interval (0, 00).

(ii) Taking into consideration more general test functions which are linear
combinations of the principal solutions, we have the following more general
statement whose proof is analogous to that of Theorem 3.1.

Theorem 4.2. Let A1, ..., \,—1 be the first (ordered by size) (n—1) roots
of (2.1),

2n—1
)

h(t) =it + -+ cp1t™ et 2 (4.1)

where ¢1,...,¢, €R and l = maz{j € {1,...,n},¢; #0}. If

lim (—1)"¢2n—1=2N / {p(s) + M"} h%(s)ds < —K,,
t

t—o0 82"

where

1/2n-1 =
2 2
K"_Q( 5 —)\l>k||1(2n—1—>\k—)\l)

in the case | < n, and

t—o0o

lim (—1)" logt/ [p(s) + %} h*(s)ds < —K,,
t



KNESER-TYPE OSCILLATION CRITERIA 251

where K, is the same as in Theorem 3.1 for | = n, then (1.1) is (n,n)-
oscillatory at co.

(iil) In [1] the following LN-oscillation criterion for (1.1) has been proved.

Theorem C [1, Theorem 2.3, Theorem 2.4]. Let one of the following
two conditions be satisfied:

(1)

(o) *
tlim logt/ skt [—p(s) + Tkk] ds = oo, (4.29)
—00 t -
/ sF71 log? s [—p(s) + mkk} ds < 00, (4.25)
1 S +
(ii) o0
lim logt / skl {—p(s) — mzk] ds = oo, (4.31)
t—o0 t S +
/ sF1 log? s [fp(s) - mzk} ds < o0, (4.32)
1 % 4=

where mj, myy are the least local mazima of the polynomials
PrAN)==-2xA=-1)...(A=k), PAN=XxA-1)...(A=k+1)

respectively, and [f(t)]+ = maz{£f(t),0}. Then the equation y* +p(t)y =
0 ¢s LN-oscillatory.

If £ = 2n, Theorem 3.1 gives a sufficient condition even for the (n,n)-

oscillation of (1.1) which is weaker than given by Theorem C. Indeed, for

n even fo, = Pk (%) is the least local minimum of P,(\) and for n odd

lon, is the greatest local minimum of Py, (A) = —P*()\), i.e., the least local
maximum of P*(\) = — Py, (A). Hence, for n even (4.21) reads

: % o1 - _ Hen _
tlirgo logt /t s [ p(s) S } - ds =
. o o2m—1 Han
= lim logt / s [p(s) + ?} ds = o0. (4.4)
t—o0 ¢ §4m |4
On the other hand, (4.25) gives
> H2 > K2
oo>/ s> Llog? s [—p(s)—?n] ds>logt/ g2t [p(s)—&—?n} ds.
1 514 ¢ sl
Consequently, this inequality and (4.4) give

* 0
lim logt / g2t {p(s) + %} ds = —00
t S

t—oo

which is a stronger condition than (3.2). (Under the assumption p(t)+43e <
0 for large ¢, this condition is proved to be sufficient for oscillation of (1.1)
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in [3].) If n is odd, we get a similar conclusion from (4.31), (4.2). Note also
that if the function p(t) does not change sign for large ¢, the LN-oscillation
properties and (n,n)-oscillation properties of (1.1) are essentially the same
(see [1]).

(iv) Ideas similar to those used here for ordinary differential equations
may be used in a modified form in order to investigate oscillation and spec-
tral properties of the singular differential operators associated with the par-
tial differential equation

(=A)"u+ a(x)u =0,

where x = (z1,...,7,) € R™ and A ="
explore this idea elsewhere.

; 69: ; of. [7-9, 12]. We hope to

5. TECHNICAL LEMMAS

In this section we give some technical lemmas needed in the previous
sections. We start with the fundamental variational lemma.

Lemma 5.1 ([7]). Equation (2.2) is conjugate on Iy = (¢,d) C I if and
2 o

o
only if there exists a nontrivial function y € W, (Io) (W,, is the Sobolev
space of functions for which y, ...,y Y are absolutely continuous on Iy,
yn € L2(1y) and supp y C Iy) such that

I(y;c,d) = / Zpk (y (¢ ]dtgo.

Lemma 5.2 ([2]). Let (U, V) be a self-conjugate solution of (2.4) such
that U is nonsingular on some subinterval Iy C I. Then

t t
(U, V1) = <U/ U 'BUT L at, V/ U'BUT 1 dt + UT1> ,del,
d d
is also a self-conjugate solution of (2.3) and W = VU1 is a solution of the
Riccati matriz differential equation
W'+ A"W + WA+ WBHW —C(t) =

Lemma 5.3 ([2]). Let (1.1) be disconjugate on Iy = (¢,d) C I and let
ti,t0 € Iy, @ = (a1,...,ap), B = (B1,...,0n) € R™ be arbitrary. There
exists a unique solution y of (2.2) such that

y(iq)(tl) —a, y(ifl)(tQ) =6, i=1,...,n.
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Lemma 5.4 ([5]). Lety be a solution of (2.2) and (u,v) be the solution
of the associated LHS of (2.3) generated by y. Then

b[ n 9
/ [Z pe(t) (y(k)(t) ] dt = uT (b)v(b) — uT (a)v(a).
a k=0

Now recall briefly the oscillation properties of the linear differential equa-
tion

Y™+ g (y Y -+ oty = 0. (5.1)
The proofs of these statements may be found in [2, Chap. III].

Lemma 5.5. Equation (5.1) is LN-disconjugate on I = (b,00) if and
only if there exists a Markov system of solutions of (5.1) on I. This system
can be found in such a way that it satisfies the additional conditions

y; >0 forlarge t, i=1,...,n, -
Yr—1 =o(yg) for t—oo, k=2,...,n, (5.2)

i.e., it forms a hierarchical system as t — oo.

Lemma 5.6. Let equation (2.2) be eventually LN -disconjugate at oo and
let y1,...,y2n be a Markov system of solutions of this equation satisfying
(5.2) (with n replaced by 2n). Then yi,...,yn form a principal system of
solutions of (2.2) at oo.

Lemma 5.7. Let y1,...,y, € C", r € C", and r # 0. Then

W(ryr,...,ryn) =7"W(y1, ..., yn) -
In particular, if y1 # 0, we have

Wy, yn) = 0 W ((y2/y1)' -+ (yn/y1)") -

Lemma 5.8. Let ug =t*,... ;u, =t*, o € R, 1 =1,...,n. Then
n i ak_n,(nz—l)
W(yl, C ,yn) = H (Otj — ai)tkzl . (53)
1<i<y

Proof. Using Lemma 5.7 we have
!
W (to, ... t%) :t”“lW((t”*“l)’,...,(t%*al)’) =
= t”al_("_l)(ag —ay)...(ap —a)W (to‘"‘_o‘l yeon ,t‘““_al)

and repeating the same argument (n — 1)-times we get (5.3). O
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We finish this paper with an evaluation of the constants K, K,, in Theo-
rems 3.1 and 4.2. Let pt1,..., fn, V1,...,vn €ER, pi+v; #0, 4,5 =1,...,n.
Denote

(i +v)™h o ()Tt

D(uy oy fnVis ey V) = : 1
(b +11)7 o (g vm)

Then by a direct computation we have

T (e — ) (ve —u1)

1<k<i<n
D(p1y oy fni Vi, e oy Vpy) = —— . (5.4)

[T (ux +w1)
k=1

Lemma 5.9. Let yi =t , ..., yn_1 =t =1, yp=t"5 ", i.e., Y1s. .., Yn i3

the principal system of solutions of (1.2) at oo and let B=diag{0,...,0,1}
e R™*".  If U denotes the Wronski matriz of y1,...,Yn, then

-1 ()il 2
(/tUlBUT1d$> _ ) pidm Pz

n logt + M
t - o —1-2)\ T
(/ U—lBUT—ldS> ~ t27l—1—2)\1, #ﬁ H(Qn —_1= )\k _ )\i)Q
i k=1
as t — oo. Here the relation f(t) ~ g(t) as t — oo means tlim % =1.

Proof. We have (U~'BUT™1); ; = (U™1); n(U™1);n, and using the rule for
computation of the entries of the inverse matrix, we obtain

n+iW(y17"‘7gia~"7yn) (55)
Wyt osyn)

where the circumflex " means that the denoted component is missing, i.e.,
Wty iy ey Yn) = W(%l, s YimL Vil ,Yn). Substituting y; =
N Ypo =t Yy, =t 7 into (5.5) and using Lemma 5.8, we have

(Ui = (-1)

(U BUT1),; = (—1)7+ Wy, sy Y)W Wi, oo 85y, Yn) _

W (Y1, yn)]?
— (1) i
IT = Xel TT [N =Ml
1<k<n 1<k<n

ki k£j
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Denote
A= T =l
1<k<n
ki
Then

t A-2logt, if i+j=2n
</ U—lBUT—1d8> = {(_1)i+j%2n—1—ki—kj . . .
i,j A A 2n—1-2—x;)° if i+j<2n

(since ft U~'BUT~1ds — oo as t — oo, for computation of its inverse the
lower limit in the integral is immaterial). Further denote

n—1 n
2n—1
a; = 3 — iy ’y:;ak, Azkli[lAk.

We have
1 1 (—1)n+1
e 2a; a1+asz e ay+an
D = ‘ft U BUTds| = | : :
=™ty log
an+tay ap+taz o8
Let
1 1 (_1)n+l
Ky v1 H1tv2 e H1+vn
D(pa, ooy s V1, esvn) = | : : :
(_1)n,+1 (_1)n+2 1
Hntr1 Hntv2 T Matvn
and let D(p1, ..., flis s s V15 - s Uj,...,vy) denote the subdeterminant
of D(p1, ...y fhn;V1,--.,Vy), where the ith row and the jth column are su-

pressed. Then

D(Nl,---a,un?Vh--an) :D(le"aun;yla"'ayn)?
D(Mh“7lai7"7Mn;yl>"7ﬁj7"7yn) = (_1)i+jD(,u'17"7ﬂia "7Mn;1/17"7ﬁj7"71/’n)
and

Y -
D= " {1ogtD(a1,...,an_l;al,...,an_l) +M]

(the precise value of the constant M is not important).
Now compute the entries of the matrix (ft U-lBUT-1ds)~1L.

1 n—1

t - t
</ UlBUTlds> :%det (/ UlBUTlds> =
n,n 1,7=1
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n—1
—9 .
tY H Ak: D(al,...,an,l,ah...,an,l) A2
k=1 n

- t’YA—2(D(a1,...,an_1;a1,...,an_l)logt+M) ~logt+ M’

Further,
t -1 t
(/ U—lBUT—lds) = </ U—lBUT—lds> =
1 _a-AiAn~ A
zﬁt"’ 'lTD(ah...,an,l;al,...7ai,...,an):
D(al,...,an,l;al,...,di,...,an)

= A At ()T

D(ai,...,an-1;01,...,an_1)logt + M
and for 7,5 <n

1

t - — i — QL
B B 1 t7-9=a5 A A
U 'BUT lds =—— "I
., D A
»J
1 (=1’ (=17*2 (=p*t
2a, e a1+aj_1 ai1+a;41 T ai+an
(7.1)1. : : : : (_1)7;“71
x |@i-1tar T T aj—1tan _
(—1)i+2 (—1)ntitl
a;y1+a; e e ait1t+an
_qyntt _q1ynti—1 _qyntitt
(-1) Lo (- logt
an+tai antaj—1 an+ajy1
_ (_1)i+inAjt>\i+Aj72n+l %
logtD(al,...,A s Ay — 1,a1,...,&j,...,an_1)+L

logtD(al, ey Q1AL ey A1) + M

For computation of the diagonal entries, using (5.4) we have

n—1
IT (ax + a:)*A?
k=1

AZD(al,...,di,...,an_l;al,...,&i,...,an) _ _
' D(ay,...,apn_1;01,...,0n_1) 2a; I (agp —a;)?
1<k<n—1
ki

(2n —1— A — \y)?

l\Dn—
\
\
N
N
[\
N]
L
—_
\
>/
\/
3
L
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Finally,

n—1 n—1 o 1 2
2 _ 2 _ — _
4= I len —H( . —)\k> _

k=1
n—1
=D [ = —2n+ 1+ M) yozn =
k=1

1 Py(N) — 1 d?
— (1)L Z2n) T P2 2 @
=D Hh—glg‘l (A= 2212 sz enMhez . O
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