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KNESER-TYPE OSCILLATION CRITERIA FOR
SELF-ADJOINT TWO-TERM DIFFERENTIAL EQUATIONS

ONDŘEJ DOŠLÝ AND JAN OSIČKA

Abstract. It is proved that the even-order equation y(2n)+p(t)y = 0
is (n, n) oscillatory at ∞ if

lim
t→∞

(−1)n log t

∫ ∞

t

s2n−1
(

p(s) +
µ2n

s2n

)

ds < −Kn,

where Kn = (−1)n−1 1
2

d2

dλ2 P2n(λ)|λ= 2n−1
2

, P (λ) = λ(λ− 1) . . . (λ−

2n + 1), µ2n = P
(

2n−1
2

)

.

1. INTRODUCTION

In this paper we deal with the oscillation properties of two-term differ-
ential equation of even order

y(2n) + p(t)y = 0, (1.1)

where t ∈ I = [1,∞), p(t) ∈ C(I). The literature dealing with this problem
is very voluminous; recall the monographs [1–5] and the references given
therein.

If we study the oscillation properties of (1.1) from the point of view of
the calculus of variations, the following definition plays an important role.

Definition 1.1. Two points t1, t2 are said to be (n, n) conjugate relative
to (1.1) if there exists a nontrivial solution of (1.1) such that y(i)(t1) = 0 =
y(i)(t2), i = 0, . . . , n− 1.

The oscillation properties of linear equations related to this definition are
studied in [3, 5], and recent references concerning this topic may be found
in the survey paper [6].
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If one is interested in factorization of the differential operator on the left-
hand-side of (1.1) and similar problems, another definition of disconjugacy
of (1.1) introduced by Levin and Nehari has to be considered.

Definition 1.2. Equation (1.1) is said to be disconjugate on an interval
I0 ⊆ I whenever any nontrivial solution of (1.1) has at most (2n− 1) zeros
on I0. Equation (1.1) is said to be eventually disconjugate if there exists
c ∈ I such that (1.1) is disconjugate on (c,∞).

To distinquish between the oscillation properties defined by Definition
1.1 and the disconjugacy, oscillation, etc. defined by Definition 1.2, we
shall refer to the latter as LN-disconjugacy, LN-oscillation and to the for-
mer as (n, n) disconjugacy, (n, n) oscillation, etc. Clearly, if (1.1) is LN-
disconjugate on an interval I0 ⊆ I it is also (n, n)-disconjugate on this in-
terval. In this paper the principal concern is the oscillation behavior of (1.1)
in the sense of Definition 1.1, but if the function p(t) does not change sign
for large t, the oscillation properties of (1.1) according to Definition 1.1 are
very close to that given by Definition 1.2; for more details see [1].

Recall that Kneser-type oscillation criteria for (1.1) are criteria which
compare equation (1.1) with the Euler equation

y(2n) − µ2n

t2n y = 0, (1.2)

where µ2n = P2n( 2n−1
2 ) and

P2n(x) = x(x− 1) . . . (x− 2n + 1) . (1.3)

Criteria of this kind for (1.1) and a partial differential equation

(−∆)nu + p(x)u = 0,

where x = (x1, . . . , xm) ∈ Rm and ∆ denotes the Laplace operator, have
been studied in [7–9], among others.

The paper is organized as follows. In the next section we summarize the
properties of solutions of self-adjoint, even-order, differential equations and
their relation to the linear Hamiltonian systems (LHS). The main result
of this paper – the Kneser-type oscillation criterion for (1.1) – is given in
Section 3. Section 4 is devoted to remarks and comments concerning the
results, and the last section contains some technical lemma needed in the
proofs of all the statements given in this paper.

2. PRELIMINARY RESULTS

First of all, recall the basic properties of the Euler equation (1.2). The
algebraic equation P2n(x) = 0 has 2n real roots xi = i − 1, i = 1, . . . , 2n.
The function y = P2n(x) has exactly n local minima and (n − 1) local
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maxima and its graph is symmetric with respect to the line x = 2n−1
2 . The

equation

P2n(λ) = P2n

(

2n− 1
2

)

(2.1)

has exactly 2n − 2 simple roots; denote them by λ1 < λ2 < · · · < λn−1 <
2n − 1 − λn−1 < 2n − 1 − λn−2 < · · · < 2n − 1 − λ1 and one double root
λn = 2n−1

2 . The solutions of (1.2) are of the form yi = tλi , i = 1, . . . , n −
1, yn = t

2n−1
2 , yn+1 = t

2n−1
2 log t, yn+i+1 = t2n−1−λi , i = 1, . . . , n − 1.

Observe that these solutions form the so-called Markov system of solutions
on I0 = (1,∞), which means that the Wronskians

W (y1, . . . , yk) =

∣

∣

∣

∣

∣

∣

∣

y1 . . . yk
...

...
y(k−1)
1 . . . y(k−1)

k

∣

∣

∣

∣

∣

∣

∣

,

k = 1, . . . , 2n, are positive throughout I0. Moreover, these solutions form
the so-called hierarchical system of functions, i.e., yi = o(yi+1) as t →
∞, i = 1, . . . , 2n− 1.

Equation (1.1) is the special form of the self-adjoint even-order differential
equation

n
∑

k=0

(−1)k
(

pk(t)y(k)
)(k)

= 0 , (2.2)

which is closely related to the linear Hamiltonian system

u′ = Au + B(t)v, v′ = C(t)u−AT v, (2.3)

where u, v : I → Rn, A, B, C : I → Rn×n, the superscript T stands for
the transpose of the matrix indicated and the matrices B, C are symmetric,
i.e., B = BT , C = CT . More precisely, let y be a solution of (2.2). Set
ui = y(i−1), i = 1, . . . , n, vn = pny(n), vn−i = −v′n−i+1 + pn−iy(n−i),
i = 1, . . . , n − 1, u = (u1, . . . , un)T , v = (v1, . . . , vn)T . The n-dimensional
vectors u, v are solutions of the LHS of (2.3), where

B(t) = diag{0, . . . , 0, p−1
n (t)} ,

C(t) = diag{p0(t), . . . , pn−1(t)} ,

A =

{

1 for j = i + 1, i = 1, . . . , n− 1
0 otherwise .

We say that the solution y of (2.2) generates the solution (u, v) of (2.3).
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Now consider the matrix analogy of (2.3)

U ′ = AU + B(t)V, V ′ = C(t)U −AT V. (2.4)

A self-conjugate solution (U, V ) of (2.4) (i.e. UT (x)V (x) ≡ V T (x)U(x);
alternative terminology is self-conjoined [11] or isotropic [2]; our terminology
is due to [13]) is said to be principal (nonprincipal) at a point b if the matrix
U is nonsingular near b and

lim
x→b

(∫ x

d
U−1(s)B(s)UT−1(s)ds

)−1

= 0
(

lim
x→b

(∫ x

d
U−1(s)B(s)UT−1(s)ds

)−1

= M

)

,

M being a nonsingular n×n matrix, for some d ∈ I which is sufficiently close
to b. A principal solution of (2.4) at b is determined uniquely up to a right
multiple by a nonsingular n× n matrix. Let y1, . . . , yn be solutions of (2.2)
and let (u1, v1), . . . , (un, vn) be the solutions of (2.3) generated by y1, . . . , yn.
If the vectors u1, . . . , un, v1, . . . , vn form the columns of the solution (U, V )
of (2.4) we say that this solution is generated by the solutions y1, . . . , yn of
(2.2). Solutions y1, . . . , yn of (2.2) are said to form the principal system of
solutions if the solution (U, V ) of the associated LHS generated by y1, . . . , yn

is principal.
Using the concept of principal system of solutions of a self-adjoint even

order differential equation, the following oscillation criterion was proved
in [10].

Theorem A. Let y1, . . . , yn be a principal system of solutions of the
equation

(

r(t)y(n)
)(n)

= 0 (2.5)

at b and let (U, V ) be the solution of the matrix linear Hamiltonian sys-
tem corresponding to (2.5) generated by y1, . . . , yn. If there exists c =
(c1, . . . , cn)T ∈ Rn such that for h = c1y1 + · · ·+ cnyn

lim sup
t→b

∫ b
t qh2

cT (
∫ t U−1BUT−1)−1c

< −1 (2.6)

where B = diag{0, . . . , 0, r−1(t)}, then the equation

(−1)n
(

r(t)y(n)
)(n)

+ q(t)y = 0 (2.7)

is (n, n)-oscillatory at the right end point b of the interval (a, b).
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(Recall that equation (2.7) is said to be (n, n)-oscillatory at b if in any
neighborhood of b there exists at least one pair of conjugate points.) In
this paper we prove an oscillation criterion for (1.1) which is principally
similar to the criterion for equation (2.7) given by Theorem A. In Theorem
A equation (2.7) is viewed as a perturbation one-term equation (2.5), and it
is proved that if the function q is sufficiently negative (i.e., (2.6) holds), then
(2.7) is oscillatory. Here we apply this idea in a modified form to equation
(1.1); this equation is considered as a perturbation of the two-term Euler
equation (1.2). Comparing Theorem A with our criterion, here we are able
to compute explicitly the term whose analog in Theorem A is the term

cT
(

∫ t U−1BUT−1
)−1

c, hence our criterion is more practical.

3. OSCILLATION CRITERION

The key idea of the proof of the following oscillation criterion for (1.1)
consists in application of the variational principle given in Lemma 5.1. In
particular, for arbitrarily large t0 ∈ R, we construct a nontrivial function
y ∈ W 2,n(t0,∞), supp y ⊂ (t0,∞) such that

I(y; t0,∞) =
∫ ∞

t0

[

(y(n))2 + (−1)np(t)y2(t)
]

dt ≤ 0 . (3.1)

Theorem 3.1. Suppose that

lim
t→∞

(−1)n log t
∫ ∞

t
s2n−1

(

p(s) +
µ2n

s2n

)

ds < −Kn, (3.2)

where

Kn = (−1)n−1 1
2

d2

dλ2 P2n(λ)|λ= 2n−1
2

. (3.3)

Then equation (1.1) is (n, n)-oscillatory at ∞.

Proof. Let t0 ∈ (1,∞) be arbitrary and define the test function as follows

y(t) =































0, t ∈ [1, t0],
f(t), t ∈ [t0, t1],
t

2n−1
2 , t ∈ [t1, t2],

g(t), t ∈ [t2, t3],
0, t ∈ [t3,∞),

where f, g are the solutions of (1.2) satisfying the boundary conditions

f (i)(t0) = 0, f (i)(t1) =
(

t
2n−1

2

)(i)
|t=t1 , g(i)(t2) =

(

t
2n−1

2

)(i)
|t=t2 ,

g(i)(t3) = 0, i = 0, . . . , n− 1 .
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These solutions exist uniquely in view of Lemma 5.3. The points 1 < t0 <
t1 < t2 < t3 will be specified later. We shall show that I(y; t0,∞) < 0 if
t1, t2, t3 are sufficiently large.

Let λi, i = 1, . . . , n − 1, λn = 2n−1
2 be the first n roots (ordered by size)

of the equation (2.1). Denote yi = tλi , i = 1, . . . , n− 1, yn = t
2n−1

2 , and

U =







y1 . . . yn
...

...
y(n−1)
1 . . . y(n−1)

n





 ,

V =













(−1)n−1y(2n−1)
1 . . . (−1)n−1y(2n−1)

n
...

...
−y(n+1)

1 . . . −y(n+1)
n

y(n)
1 . . . y(n)

n













.

Then by Lemma 5.6 y1, . . . , yn form the principal system of solutions of
(1.2) at ∞, and (U, V ) is the principal solution of the LHS of the associated
matrix LHS. By Lemma 5.2

u1(t) = U(t)
∫ t

t0
U−1BUT−1ds

(∫ t1

t0
U−1BUT−1ds

)−1

en,

v1(t) =
(

V (t)
∫ t

t0
U−1BUT−1ds + UT−1(t)

) (∫ t1

t0
U−1BUT−1ds

)−1

en,

u2(t) = U(t)
∫ t3

t
U−1BUT−1ds

(∫ t3

t2
U−1BUT−1ds

)−1

en,

v2(t) =
(

V (t)
∫ t3

t
U−1BUT−1ds− UT−1(t)

) (∫ t3

t2
U−1BUT−1ds

)−1

en,

(3.4)

where en = (0, . . . , 0, 1)T ∈ Rn, are solutions of the vector LHS correspond-
ing to (1.2) and according to Lemma 5.2 f(t) = eT

1 u1(t), g(t) = eT
1 u2(t),

e1 = (1, 0, . . . , 0)T ∈ Rn.
Using Lemma 5.4 we have

∫ t1

t0

[

(f (n)(t))2 − (−1)n µ2n

t2n f2(t)
]

dt = vT
1 (t1)u1(t1) =

= eT
nV (t1)U(t1)en + eT

n

(∫ t1

t0
U−1BUT−1ds

)−1

en
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and by Lemma 5.9

eT
n

(∫ t1

t0
U−1BUT−1ds

)−1

en =
Kn

log t1 + M
,

where M is a positive real constant (its value may be computed explicitly,
but it is not important and Kn is given by (3.3)). Similarly,
∫ t2

t1

[

(y(n)
n (t))2 − (−1)n µ2n

t2n y2
n(t)

]

dt = eT
nV (t2)U(t2)en − eT

nV (t1)U(t1)en ,

∫ t3

t2

[

(g(n)(t))2 − (−1)n µ2n

t2n g2(t)
]

dt =

= eT
n

(∫ t3

t2
U−1BUT−1ds

)−1

en − eT
nV (t2)U(t2)en .

Computing the integrals
∫ t1

t0

[

p(t) +
µ2n

t2n

]

f2(t) dt,
∫ t3

t2

[

p(t) +
µ2n

t2n

]

g2(t) dt,

we proceed as follows. The function f is a solution of (1.2), hence it can
be expressed in the form f = c1y1 + · · · + cnyn + cn+1yn+1 + · · · + c2ny2n,
ci ∈ R, i = 1, . . . , 2n. It follows that

(

f
yn

)′

= c1

(

y1

yn

)′

+ · · ·+ cn−1

(

yn−1

yn

)′

+

+ cn+1

(

yn+1

yn

)′

+ · · ·+ c2n

(

y2n

yn

)′

=

= c1

(

λ1 −
2n− 1

2

)

tλ1− 2n+1
2 + · · ·+

+ cn−1

(

λn−1 −
2n− 1

2

)

tλn−1− 2n+1
2 +

+ cn+1(log t)′ + · · ·+ c2n

(2n− 1
2

− λ1

)

t
2n−3

2 −λ1 .

Since the functions (y1/yn)′, . . . , (yn−1/yn)′, (yn+1/yn)′, . . . , (y2n/yn)′ form
the Markov system of solutions of certain (2n − 1)-order linear differential
equation, by Lemma 5.5 this equation is LN-disconjugate on (1,∞). As
(f/yn)′ has zeros of multiplicity (n − 1) both at t = t0 and t = t1, this
function does not vanish in the interval (t0, t1), i.e., the function f/yn is
increasing in this interval. By the second mean value theorem of integral
calculus there exists ξ1 ∈ (t0, t1) such that

∫ t1

t0

(

p(t) +
µ2n

t2n

)

f2(t) dt =
∫ t1

t0

(

p(t) +
µ2n

t2n

)

y2
n(t)

(

f
yn(t)

)2

dt =
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=
∫ t1

ξ1

(

p(t) +
µ2n

t2n

)

y2
n(t) dt.

Similarly, the function g/yn is decreasing on (t2, t3) and there exists ξ2 ∈
(t2, t3) such that

∫ t3

t2

(

p(t) +
µ2n

t2n

)

g2(t) dt =
∫ t3

t2

(

p(t) +
µ2n

t2n

)

y2
n(t)

(

g(t)
yn(t)

)2

dt =

=
∫ ξ2

t2

(

p(t) +
µ2n

t2n

)

y2
n(t) dt.

Using these computations and Lemma 5.9 we get

I(y; 1,∞) = I(y; t0, t3) =
∫ t1

t0

[

(f (n)(t))2 − (−1)n µ2n

t2n f2(t)
]

dt +

+
∫ t2

t1

[

(y(n)
n (t))2−(−1)n µ2n

t2n y2
n(t)

]

dt+
∫ t3

t2

[

(g(n)(t))2−(−1)n µ2n

t2n g2(t)
]

dt+

+ (−1)n
∫ t1

t0

[

p(t) +
µ2n

t2n

]

f2(t) dt + (−1)n
∫ t2

t1

[

p(t) +
µ2n

t2n

]

y2
n(t) dt +

+ (−1)n
∫ t3

t2

[

p(t) +
µ2n

t2n

]

g2(t) dt = eT
n

(∫ t1

t0
U−1BUT−1dt

)−1

en +

+ eT
n

(∫ t3

t2
U−1BUT−1dt

)−1

en + (−1)n
∫ ξ2

ξ1

[

p(t) +
µ2n

t2n

]

y2
n(t) dt =

= eT
n

(∫ t1

t0
U−1BUT−1dt

)−1

en





1+(−1)n

∫ ξ2
ξ1

(

p(t) + µ2n
t2n

)

y2
n(t) dt

eT
n

(

∫ t1
t0

U−1BUT−1 dt
)−1

en

+

+
eT
n

(

∫ t3
t2

U−1BUT−1 dt
)−1

en

eT
n

(

∫ t1
t0

U−1BUT−1 dt
)−1

en





 ≤ eT
n

(∫ t1

t0
U−1BUT−1dt

)−1

en ×

×





1+(−1)n

∫ ξ2
ξ1

(

p(t)+ µ2n
t2n

)

y2
n(t) dt

eT
n

(

∫ ξ1

t0
U−1BUT−1 dt

)−1
en

+
eT
n

(

∫ t3
t2

U−1BUT−1dt
)−1

en

eT
n

(

∫ t1
t0

U−1BUT−1dt
)−1

en





=

=
Kn

log t1 + M

[

1 + (−1)n log ξ1 + M
log ξ1

log ξ1

Kn

∫ ξ2

ξ1

(

p(t) +
µ2n

t2n

)

y2
n(t) dt+

+
log t1 + M

Kn
eT
n

(∫ t3

t2
U−1BUT−1 dt

)−1

en

]

=
Kn

log t1 + M
log ξ1 + M

log ξ1
×
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×

[

log ξ1

log ξ1 + M
+ (−1)n log ξ1

Kn

∫ ξ2

ξ1

(

p(t) +
µ2n

t2n

)

y2
n(t) dt+

+
log t1 + M
log ξ1 + M

· log ξ1

Kn
· eT

n

(∫ t3

t2
U−1BUT−1dt

)−1

en

]

.

The inequality in this computation is justified by the fact that according
to (3.2)

(−1)n
∫ ξ2

ξ1

[

p(t) +
µ2n

t2n

]

y2
n(t) dt < 0

if ξ1 and ξ2 are sufficiently large and hence

(−1)n
∫ ξ2

ξ1

[

p(t) + µ2n
t2n

]

y2
n(t) dt

eT
n

(

∫ t1
t0

U−1BUT−1dt
)−1

en

≤
(−1)n

∫ ξ2

ξ1

[

p(t) + µ2n
t2n

]

dt

eT
n

(

∫ ξ1

t0
U−1BUT−1dt

)−1
en

for ξ1 ≤ t1. Now let ε > 0 be such that the limit in (3.2) is less than
−Kn − 4ε. Since limt→∞(Kn log t + M)/Kn log t = 1, we have

log ξ1

log ξ1 + M
< 1 + ε

if t0 is sufficiently large. According to (3.2) t2 > t1 can be chosen such that

log ξ1

Kn

∫ ξ2

ξ1

[

p(t) +
µ2n

t2n

]

y2
n(t) dt < −1− 2ε,

whenever ξ2 > t2. Finally, since limt3→∞

(

∫ t3
t2

U−1BUT−1dt
)−1

= 0, t3 can
be chosen such that

log t1 + M
log ξ1 + M

· log ξ1

Kn
· eT

n

(∫ t3

t2
U−1BUT−1ds

)−1

en < ε .

Summarizing all estimates, we have

I(y; t0, t3) <
Kn

log t1 + M
· log ξ1 + M

log ξ1
(1 + ε− 1− 2ε + ε) ≤ 0

and according to Lemma 5.1 equation (1.1) is (n, n)-oscillatory at ∞.
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4. REMARKS

i) In [11] we studied the problem of existence of (n, n)-conjugate points
in an interval (a, b) and proved the following theorem.

Theorem B. Let y1, . . . , ym, 1 ≤ m ≤ n, be solutions of (2.5) which are
contained in principal systems of solutions both at a and b. If there exist
c1, . . . , cm ∈ R such that

lim sup
t1↓a,t2↑b

∫ t2

t1
q(t) (c1y1(t) + · · ·+ cmym(t))2 dt < 0

then equation (2.7) is (n, n)-conjugate on (a, b).

A slight modification of the proof of this theorem applies also to equation
(1.1) considered as a perturbation of (1.2) for t ∈ (0,∞). Observe that
yn = t

2n−1
2 is the only solution (up to a multiple by a nonzero real constant)

of (1.2) which is contained in the principal systems of solutions both at t = 0
and t = ∞; hence we have the following statement.

Theorem 4.1. Suppose that

lim sup
t1↓0,t2↑∞

(−1)n
∫ t2

t1
t

2n−1
2

[

p(t) +
µ2n

t2n

]

dt < 0.

Then (1.1) is (n, n) conjugate on the interval (0,∞).

(ii) Taking into consideration more general test functions which are linear
combinations of the principal solutions, we have the following more general
statement whose proof is analogous to that of Theorem 3.1.

Theorem 4.2. Let λ1, . . . , λn−1 be the first (ordered by size) (n−1) roots
of (2.1),

h(t) = c1tλ1 + · · ·+ cn−1tλn−1 + cnt
2n−1

2 , (4.1)

where c1, . . . , cn ∈ R and l = max {j ∈ {1, . . . , n}, cj 6= 0}. If

lim
t→∞

(−1)nt2n−1−2λl

∫ ∞

t

[

p(s) +
µ2n

s2n

]

h2(s) ds < −K̃n,

where

K̃n =
1
2

(

2n− 1
2

− λl

) n−1
∏

k=1

(2n− 1− λk − λl)2

in the case l < n, and

lim
t→∞

(−1)n log t
∫ ∞

t

[

p(s) +
µ2n

s2n

]

h2(s) ds < −Kn,
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where Kn is the same as in Theorem 3.1 for l = n, then (1.1) is (n, n)-
oscillatory at ∞.

(iii) In [1] the following LN-oscillation criterion for (1.1) has been proved.

Theorem C [1, Theorem 2.3, Theorem 2.4]. Let one of the following
two conditions be satisfied:

(i)
lim

t→∞
log t

∫ ∞

t
sk−1

[

−p(s) +
m∗

k

sk

]

−
ds = ∞, (4.21)

∫ ∞

1
sk−1 log2 s

[

−p(s) +
m∗

k

sk

]

+
ds < ∞, (4.22)

(ii)
lim

t→∞
log t

∫ ∞

t
sk−1

[

−p(s)− m∗k

sk

]

+
ds = ∞, (4.31)

∫ ∞

1
sk−1 log2 s

[

−p(s)− m∗k

sk

]

−
ds < ∞, (4.32)

where m∗
k,m∗k are the least local maxima of the polynomials

P ∗(λ) = −λ(λ− 1) . . . (λ− k), P∗(λ) = λ(λ− 1) . . . (λ− k + 1)

respectively, and [f(t)]± = max{±f(t), 0}. Then the equation y(k) + p(t)y =
0 is LN-oscillatory.

If k = 2n, Theorem 3.1 gives a sufficient condition even for the (n, n)-
oscillation of (1.1) which is weaker than given by Theorem C. Indeed, for
n even µ2n = P∗

( 2n−1
2

)

is the least local minimum of P∗(λ) and for n odd
µ2n is the greatest local minimum of P2n(λ) = −P ∗(λ), i.e., the least local
maximum of P ∗(λ) = −P2n(λ). Hence, for n even (4.21) reads

lim
t→∞

log t
∫ ∞

t
s2n−1

[

−p(s)− µ2n

s2n

]

−
ds =

= lim
t→∞

log t
∫ ∞

t
s2n−1

[

p(s) +
µ2n

s2n

]

+
ds = ∞ . (4.4)

On the other hand, (4.22) gives

∞>
∫ ∞

1
s2n−1 log2 s

[

−p(s)−µ2n

s2n

]

+
ds> log t

∫ ∞

t
s2n−1

[

p(s)+
µ2n

s2n

]

−
ds.

Consequently, this inequality and (4.4) give

lim
t→∞

log t
∫ ∞

t
s2n−1

[

p(s) +
µ2n

s2n

]

ds = −∞

which is a stronger condition than (3.2). (Under the assumption p(t)+ µ2n
t2n ≤

0 for large t, this condition is proved to be sufficient for oscillation of (1.1)
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in [3].) If n is odd, we get a similar conclusion from (4.31), (4.2). Note also
that if the function p(t) does not change sign for large t, the LN-oscillation
properties and (n, n)-oscillation properties of (1.1) are essentially the same
(see [1]).

(iv) Ideas similar to those used here for ordinary differential equations
may be used in a modified form in order to investigate oscillation and spec-
tral properties of the singular differential operators associated with the par-
tial differential equation

(−∆)nu + a(x)u = 0,

where x = (x1, . . . , xm) ∈ Rm and ∆ =
∑m

i
∂2

∂x2
i

; cf. [7–9, 12]. We hope to
explore this idea elsewhere.

5. Technical Lemmas

In this section we give some technical lemmas needed in the previous
sections. We start with the fundamental variational lemma.

Lemma 5.1 ([7]). Equation (2.2) is conjugate on I0 = (c, d) ⊆ I if and

only if there exists a nontrivial function y ∈
◦

W
2

n(I0) (
◦

W
2

n is the Sobolev
space of functions for which y, . . . , y(n−1) are absolutely continuous on I0,
yn ∈ L2(I0) and supp y ⊂ I0) such that

I(y; c, d) =
∫ d

c

[

n
∑

k=0

pk(t)(y(k)(t))2
]

dt ≤ 0 .

Lemma 5.2 ([2]). Let (U, V ) be a self-conjugate solution of (2.4) such
that U is nonsingular on some subinterval I0 ⊆ I. Then

(U1, V1) =
(

U
∫ t

d
U−1BUT−1 dt, V

∫ t

d
U−1BUT−1 dt + UT−1

)

, d ∈ I,

is also a self-conjugate solution of (2.3) and W = V U−1 is a solution of the
Riccati matrix differential equation

W ′ + AT W + WA + WB(t)W − C(t) = 0 .

Lemma 5.3 ([2]). Let (1.1) be disconjugate on I0 = (c, d) ⊂ I and let
t1, t2 ∈ I0, α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Rn be arbitrary. There
exists a unique solution y of (2.2) such that

y(i−1)(t1) = αi , y(i−1)(t2) = βi , i = 1, . . . , n .
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Lemma 5.4 ([5]). Let y be a solution of (2.2) and (u, v) be the solution
of the associated LHS of (2.3) generated by y. Then

∫ b

a

[

n
∑

k=0

pk(t)
(

y(k)(t
)2

]

dt = uT (b)v(b)− uT (a)v(a) .

Now recall briefly the oscillation properties of the linear differential equa-
tion

y(n) + qn−1(t)y(n−1) + · · ·+ q0(t)y = 0 . (5.1)

The proofs of these statements may be found in [2, Chap. III].

Lemma 5.5. Equation (5.1) is LN-disconjugate on I = (b,∞) if and
only if there exists a Markov system of solutions of (5.1) on I. This system
can be found in such a way that it satisfies the additional conditions

yi > 0 for large t, i = 1, . . . , n ,

yk−1 = o(yk) for t →∞ , k = 2, . . . , n,
(5.2)

i.e., it forms a hierarchical system as t →∞.

Lemma 5.6. Let equation (2.2) be eventually LN -disconjugate at ∞ and
let y1, . . . , y2n be a Markov system of solutions of this equation satisfying
(5.2) (with n replaced by 2n). Then y1, . . . , yn form a principal system of
solutions of (2.2) at ∞.

Lemma 5.7. Let y1, . . . , yn ∈ Cn, r ∈ Cn, and r 6= 0. Then

W (ry1, . . . , ryn) = rnW (y1, . . . , yn) .

In particular, if y1 6= 0, we have

W (y1, . . . , yn) = yn
1 W ((y2/y1)′, . . . , (yn/y1)′) .

Lemma 5.8. Let u1 = tα1 , . . . , un = tαn , αi ∈ R, i = 1, . . . , n. Then

W (y1, . . . , yn) =
n

∏

1≤i<j

(αj − αi)t

n
∑

k=1

αk−n(n−1)
2

. (5.3)

Proof. Using Lemma 5.7 we have

W (tα1 , . . . , tαn) = tnα1W
(

(

tα2−α1
)′

, . . . ,
(

tαn−α1
),

)′
=

= tnα1−(n−1)(α2 − α1) . . . (αn − α1)W
(

tα2−α1 , . . . , tαn−α1
)

and repeating the same argument (n− 1)-times we get (5.3).
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We finish this paper with an evaluation of the constants Kn, K̃n in Theo-
rems 3.1 and 4.2. Let µ1, . . . , µn, ν1, . . . , νn ∈ R, µi +νj 6= 0, i, j = 1, . . . , n.
Denote

D(µ1, . . . , µn; ν1, . . . , νn) =

∣

∣

∣

∣

∣

∣

∣

(µ1 + ν1)−1 . . . (µ1 + νn)−1

...
...

(µn + ν1)−1 . . . (µn + νn)−1

∣

∣

∣

∣

∣

∣

∣

.

Then by a direct computation we have

D(µ1, . . . , µn; ν1, . . . , νn) =

∏

1≤k<l≤n
(µk − µl)(νk − νl)

n
∏

k,l=1
(µk + νl)

. (5.4)

Lemma 5.9. Let y1 = tλ1 , . . . , yn−1 = tλn−1 , yn = t
2n−1

2 , i.e., y1, . . . , yn is
the principal system of solutions of (1.2) at ∞ and let B=diag{0, . . . , 0, 1}
∈ Rn×n. If U denotes the Wronski matrix of y1, . . . , yn, then

(∫ t

U−1BUT−1ds
)−1

n,n
=

(−1)n−1 1
2

d2

dλ2 P2n(λ)|λ= 2n−1
2

log t + M
(∫ t

U−1BUT−1ds
)−1

i,i
∼ t2n−1−2λi

2n− 1− 2λi

4

n−1
∏

k=1

(2n− 1− λk − λi)2

as t →∞. Here the relation f(t) ∼ g(t) as t →∞ means lim
t→∞

f(t)
g(t) = 1.

Proof. We have (U−1BUT−1)i,j = (U−1)i,n(U−1)j,n, and using the rule for
computation of the entries of the inverse matrix, we obtain

(U−1)i,n = (−1)n+i W (y1, . . . , ŷi, . . . , yn)
W (y1, . . . , yn)

, (5.5)

where the circumflexˆmeans that the denoted component is missing, i.e.,
W (y1, . . . , ŷi, . . . , yn) = W (y1, . . . , yi−1, yi+1, . . . , yn). Substituting y1 =
tλ1 , . . . , yn−1 = tλn−1 , yn = t

2n−1
2 into (5.5) and using Lemma 5.8, we have

(U−1BUT−1)i,j = (−1)i+j W (y1, . . . , ŷi, . . . , yn)W (y1, . . . , ŷj , . . . , yn)
[W (y1, . . . , yn)]2

=

= (−1)i+j t2n−2−λi−λj

∏

1≤k≤n
k 6=i

|λi − λk|
∏

1≤k≤n
k 6=j

|λj − λk|
.
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Denote
Ai =

∏

1≤k≤n
k 6=i

|λi − λk| .

Then
(∫ t

U−1BUT−1ds
)

i,j
=

{

A−2
n log t, if i + j = 2n

(−1)i+jt2n−1−λi−λj

AiAj(2n−1−λi−λj)
, if i + j < 2n

(since
∫ t U−1BUT−1ds → ∞ as t → ∞, for computation of its inverse the

lower limit in the integral is immaterial). Further denote

ai =
2n− 1

2
− λi, γ =

n−1
∑

k=1

ak, A =
n

∏

k=1

Ak .

We have

D =
∣

∣

∣

∫ t U−1BUT−1ds
∣

∣

∣ =
tγ

A2

∣

∣

∣

∣

∣

∣

∣

∣

1
2a1

−1
a1+a2

. . . (−1)n+1

a1+an
...

...
...

...
(−1)n+1

an+a1

(−1)n+2

an+a2
. . . log t

∣

∣

∣

∣

∣

∣

∣

∣

.

Let

D̃(µ1, . . . , µn; ν1, . . . , νn) =

∣

∣

∣

∣

∣

∣

∣

∣

1
µ+ν1

−1
µ1+ν2

. . . (−1)n+1

µ1+νn

...
...

...
...

(−1)n+1

µn+ν1

(−1)n+2

µn+ν2
. . . 1

µn+νn

∣

∣

∣

∣

∣

∣

∣

∣

and let D̃(µ1, . . . , µ̂i, . . . , µn; ν1, . . . , ν̂j , . . . , νn) denote the subdeterminant
of D̃(µ1, . . . , µn; ν1, . . . , νn), where the ith row and the jth column are su-
pressed. Then

D̃(µ1, . . . , µn; ν1, . . . , νn) = D(µ1, . . . , µn; ν1, . . . , νn),

D̃(µ1, .., µ̂i, .., µn; ν1, .., ν̂j , .., νn) = (−1)i+jD(µ1, .., µ̂i, .., µn; ν1, .., ν̂j , .., νn)

and

D =
tγ

A

[

log tD(a1, . . . , an−1; a1, . . . , an−1) + M̃
]

(the precise value of the constant M̃ is not important).
Now compute the entries of the matrix (

∫ t U−1BUT−1ds)−1.

(∫ t

U−1BUT−1ds
)−1

n,n
=

1
D

det
(∫ t

U−1BUT−1ds
)n−1

i,j=1
=
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=
tγ

n−1
∏

k=1
A−2

k D(a1, . . . , an−1; a1, . . . , an−1)

tγA−2(D(a1, . . . , an−1; a1, . . . , an−1) log t + M̃)
=

A2
n

log t + M
.

Further,

(∫ t

U−1BUT−1ds
)−1

i,n
=

(∫ t

U−1BUT−1ds
)

n,i
=

=
1
D

tγ−ai
AiAn

A
D̃(a1, . . . , an−1; a1, . . . , âi, . . . , an) =

= AiAntλi− 2n−1
2 (−1)n+i D(a1, . . . , an−1; a1, . . . , âi, . . . , an)

D(a1, . . . , an−1; a1, . . . , an−1) log t + M

and for i, j < n

(∫ t

U−1BUT−1ds
)−1

i,j
=

1
D

tγ−ai−aj AiAj

A
×

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
2a1

. . . (−1)j

a1+aj−1

(−1)j+2

a1+aj+1
. . . (−1)n+1

a1+an

...
...

...
...

...
...

(−1)i

ai−1+a1
. . . . . . (−1)n+i−1

ai−1+an
(−1)i+2

ai+1+a1
. . . . . . (−1)n+i+1

ai+1+an

...
...

...
...

...
...

(−1)n+1

an+a1
. . . (−1)n+j−1

an+aj−1

(−1)n+j+1

an+aj+1
. . . log t

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

= (−1)i+jAiAjtλi+λj−2n+1 ×

× log t D(a1, . . . , âi, . . . , an−1; a1, . . . , âj , . . . , an−1) + L
log tD(a1, . . . , an−1; a1, . . . , an−1) + M

.

For computation of the diagonal entries, using (5.4) we have

A2
i
D(a1, . . . , âi, . . . , an−1; a1, . . . , âi, . . . , an)

D(a1, . . . , an−1; a1, . . . , an−1)
=

n−1
∏

k=1
(ak + ai)2A2

i

2ai
∏

1≤k≤n−1
k 6=i

(ak − ai)2
=

=
1
2

a2
i

2ai

n−1
∏

k=1

(ak + ai)2 =
1
2

(

2n− 1
2

− λi

) n−1
∏

k=1

(2n− 1− λk − λi)2 .
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Finally,

A2
n =

n−1
∏

k=1

|an − ak|2 =
n−1
∏

k=1

(

2n− 1
2

− λk

)2

=

= (−1)n−1
n−1
∏

k=1

(λ− λk)(λ− 2n + 1 + λk)|λ= 2n−1
2

=

= (−1)n−1 lim
λ→ 2n−1

2

P2n(λ)− µ2n

(λ− 2n−1
2 )2

=
1
2

d2

dλ2 P2n(λ)|λ= 2n−1
2

.
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10. O. Došlý, Oscillation criteria and the discreteness of the spectrum of
self-adjoint, even order, differential operators. Proc. Roy. Soc. Edinburgh
119A(1991), 219-232.
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