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WEIGHTED REVERSE WEAK TYPE INEQUALITY FOR
GENERAL MAXIMAL FUNCTIONS

J. GENEBASHVILI

Abstract. Necessary and sufficient conditions are found to be im-
posed on a pair of weights, for which a weak type two-weighted reverse
inequality holds, in the case of general maximal functions defined in
homogeneous type spaces.

§ 1. Definition and Formulation of the Basic Results

By a homogeneous type space (X, ρ, µ) we mean a topological space X
with measure µ and a quasimetric, i.e., a function ρ : X×X → R1

+ satisfying
the conditions

(1) ρ(x, y) = 0 ⇐⇒ x = y;
(2) ρ(x, y) = ρ(y, x) for all x, y ∈ X;
(3) ρ(x, y)≤η(ρ(x, z)+ρ(z, y)), where η>0 does not depend on x, y, z∈ X.
Furthermore, it is assumed that
(4) all balls B(x, r) = {y ∈ X : ρ(x, y) < r} are µ-measurable and the

measure µ satisfies the doubling condition

0 < µB(x, 2r) ≤ d2µB(x, r) < ∞, x ∈ X, 0 < r < ∞;

(5) for any open set U ⊂ X and point x ∈ U there exists a ball B(x, r)
with the condition B(x, r) ⊂ U ;

(6) continuous functions with compact support are dense in L1(X, dµ).
In addition to this, it is required that the space X have no atoms, i.e.,

µ{x} = 0 for any point x from X.
Let f be a locally summable function, x ∈ X and t ≥ 0. We introduce

the following maximal function:

Mf(x, t) = sup
1

µB

∫

B

|f | dµ,
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where the lowest upper bound is taken over all balls B containing the point
x and having a radius greater than t/2.

If X = Rn, µ is the Lebesgue measure, ρ is the Euclidean metric, and
t = 0, then Mf(x, 0) transforms to the classical Hardy–Littlewood maximal
function and for n = 1 and t ≥ 0 it transforms to the maximal function
considered by Carleson when estimating the Poisson integrals.

By a weight function w we shall mean a locally summable nonnegative
function w : X → R1

+ and by a measure β a measure in X × [0,∞) defined
in the product of σ-algebras generated by balls in X and by intervals in
[0,∞).

The merit of this paper is in finding the criterion for the existence of
a weak type reverse two-weighted inequality for the maximal functions
Mf(x, t). We thereby generalize the results obtained by K. Anderson and
W.-S. Young [1] and B. Muckenhoupt [2] for the classical Hardy–Littlewood
maximal function and improve the result obtained in [3].

It should also be noted that the criterion for straight two-weighted in-
equalities of the weak type was obtained by F. Ruiz and J. Torrea [4].

In what follows ̂B will denote a cylinder B× [0, 2 rad B), N the absolute
constant N = η(1 + 2η), NB the ball NB = NB(x, r) = B(x,Nr), and dN

a minimal constant for which µ(NB) ≤ dN µB; c, c1, c2, . . . are positive
constants.

This paper gives the proofs of the following theorems.

Theorem 1. Let B0 be some ball in X. The following conditions are
equivalent:

(1) for any function f ∈ L1(X, w dµ), supp f ⊂ B0, and any λ, λ ≥ λ0 =
dN
µB0

∫

B0
|f | dµ,

β{(x, t) ∈ ̂B0 : Mf(x, t) > λ} ≥ c1

λ

∫

{x∈B0:|f(x)|>λ}

|f |w dµ; (1)

(2) for any ball B such that B ∩B0 6= ∅ and B ⊂ NB0

β(̂NB ∩ ̂B0)
µB

≥ c2 ess sup
x∈B∩B0

w(x). (2)

Theorem 2. Let µX = ∞. The following conditions are equivalent:
(1) for any function f ∈ L1(X, w dµ) and any λ > 0

β{(x, t) ∈ X × [0,∞) : Mf(x, t) > λ} ≥ c3

λ

∫

{x∈X:|f(x)|>λ}

|f |w dµ; (3)
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(2) for any ball B

β(̂NB)
µB

≥ c4 ess sup
x∈B

w(x). (4)

Theorem 3. Let B0, w, and β satisfy condition (2). Then if
∫

B̂0

Mf(x, t)dβ < ∞

for the function f , we have
∫

B0

|f |(1 + log+ |f |)w dµ < ∞.

Theorem 4. Let w and β satisfy condition (4). Then if

∫

{(x,t):Mf(x,t)≥1}

Mf(x, t)dβ < ∞

for the function f ∈ L1(X, w dµ), we have
∫

X

|f | log+ |f |w dµ < ∞.

.

Corollary. For nontrivial w and β the pair of inequalities

c5

λ

∫

{x∈X:|f(x)|>λ}

|f |w dµ ≤ β{(x, t) ∈ X × [0,∞) : Mf(x, t) > λ} ≤

≤ c6

λ

∫

{x∈X:|f(x)|> λ
2 }

|f |w dµ

hold for all f ∈ L1(x,w dµ) if and only if

β ̂B ∼ µB, 0 < c7 ≤ w(x) ≤ c8 < ∞

for any ball B and any point x ∈ X.
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§ 2. The Covering Lemma

In the first place note that the following statement holds in quasimetric
spaces: from any covering of a set E ⊂ X we can find at most a countable
subcovering. Further we have (see [5])

Lemma 1. Let E be a bounded set from X and a ball Bx = B(x, rx)
(with center at x) be given for any point x ∈ E. Then from the covering
{Bx}x∈E we can find at most a countable subfamily of nonintersecting balls
(Bk)k≥1 such that

∪
k≥1

NBk ⊃ E.

The essence of the requirement that µ{x} = 0, x ∈ X, mentioned in §1
becomes clear after formulating

Lemma 2. A homogeneous type space has no atoms if and only if for
any δ > 0 an arbitrary set E with positive measure has a subset Eδ ⊂ E
with the condition 0 < µEδ < δ.

Proof. Let µ{x0} > 0. Then the set E = {x0} does not contain a subset of
a positive measure smaller than µE. One aspect of the proof of the lemma
becomes thereby obvious.

Let, conversely, µ{x} = 0 for all x ∈ X and E be an arbitrary set of
positive measure. The continuity of measure implies that for each x ∈ E
there exists a ball Bx with center at x such that µBx < δ. According to
the remark made at the beginning of this section, from the system of balls
{Bx}x∈E we can find a countable subfamily (Bk)k≥1 covering B0. Hence
we have

µE = µ( ∪
k≥1

(Bk ∩ E)) ≤
∑

k≥1

µ(Bk ∩ E).

Therefore there exists k0 ≥ 1 such that µ(Bk0 ∩ E) > 0. So, assuming
Eδ = Bk0 ∩ E, we obtain Eδ ⊂ E and

0 < µEδ ≤ µBk0 < δ.

Lemma 3. Let Ω ⊂ X × [0,∞) be a set such that if (x, t) ∈ Ω, then
(x, τ) ∈ Ω for all τ , 0 ≤ τ < t. Let the projection ΩX of the set Ω on X be
a bounded set and Ω0 ⊂ ΩX be a set of all x from ΩX for which ̂B(x, r) ⊂ Ω
with some radius r > 0. Then there exists a sequence of balls (Bi)i≥1 such
that

(1) 1
N Bi ∩ 1

N Bj = ∅, i 6= j;
(2) Ω0 = ∪

i
Bi = ∪

i
NBi;

(3) ∪
i

̂NBi ⊂ Ω;

(4) 3̂ηNBi ∩ (X × [0,∞)\Ω) 6= ∅, i = 1, 2, . . . ;
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(5)
∑

i χ
N̂Bi

(x, t) ≤ θχΩ(x, t),

where θ ≥ 1 does not depend on x ∈ X and t ≥ 0.

Proof. Let F = X × [0,∞)\Ω. We introduce the value

dist(x, F ) def= sup{r : ̂B(x, r) ⊂ Ω}, x ∈ ΩX .

It is clear that
0 < dist(x, F ) < ∞

for any point x ∈ Ω0.
Let us take

rx =
dist(x, F )

2ηN2

for any x ∈ Ω0. The system of balls {B(x, rx)}x∈Ω0 covers Ω0. By Lemma
1 there exists a sequence (B(xi, rxi))i≥1 of nonintersecting balls such that

Ω0 ⊂ ∪
i≥1

B(xi, Nrxi).

Setting ri = Nrxi , Bi = B(xi, ri), we shall have

Ω0 ⊂ ∪
i≥1

Bi and
1
N

Bi ∩
1
N

Bj = ∅ for i 6= j.

Statement (1) is thereby proved.
To prove statement (3) note that

Nri = N2rxi =
dist(xi, F )

2η
< dist(xi, F ).

Therefore, by definition of the value “dist,” we shall have

N̂Bi ⊂ Ω

for each i ≥ 1.
Further, for the cylinder 3̂ηNBi we obtain

rad(3ηNBi) = 3ηN2rxi =
3
2

dist(xi, F ) > dist(xi, F ).

Therefore statement (4) is true.
Now we shall prove statement (2). Since Ω0 ⊂ ∪

i≥1
Bi, it is sufficient for

us to prove that NBi ⊂ Ω0 for all i = 1, 2, . . . .
Let us fix NBi and show that dist(x, F ) > 0 for any point x ∈ NBi.
Assume the opposite: dist(x, F ) = 0. Then ̂B(x, α) ∩ F 6= ∅ for any

α > 0. Therefore there is (y, t) ∈ ̂B(x, α) ∩ F . We shall consider two cases:
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(a) t ≥ 2 dist(xi, F ); then

Nri =
dist(xi, F )

2η
≤ t

4η
<

α
2η

< α.

(b) t < 2 dist(xi, F ); then y 6∈ B(xi, dist(xi, F )), since otherwise (y, t) ∈
̂B(xi, dist(xi, F )) ⊂ Ω.

Thus we have

2ηNri = dist(xi, F ) ≤ ρ(xi, y) ≤ η(ρ(xi, x) + ρ(x, y)) < η(Nri + α).

Therefore Nri < α.
So in both cases we find that if x ∈ NBi, then rad NBi < α for any

α > 0, i.e., rad NBi = 0, which leads to the contradiction.
We have thereby proved that dist(x, F ) > 0 for any x ∈ NBi and there-

fore x ∈ Ω0.
Finally, we shall prove the validity of statement (5).
Let x ∈ NBi. As shown above, dist(x, F ) > 0. Consider the cylinder

̂B(x, 2 dist(x, F )). By the definition of the value “ dist ” we have
̂B(x, 2 dist(x, F )) ∩ F 6= ∅ and therefore there exists

(y, t) ∈ ̂B(x, 2 dist(x, F )) ∩ F.

We shall consider two cases:
(a) t ≥ 2 dist(xi, F ); then

Nri =
dist(xi, F )

2η
≤ t

4η
<

dist(x, F )
η

< 2 dist(x, F );

(b) t < 2 dist(xi, F ); then y 6∈ B(xi, dist(xi, F )), since otherwise (y, t) ∈
̂B(xi, dist(xi, F )) ⊂ Ω.

Thus we have

2ηNri = dist(xi, F ) ≤ ρ(xi, y) ≤ η(ρ(xi, x) + ρ(x, y)) <

< η(Nri + 2dist(x, F )).

Therefore Nri < 2 dist(x, F ).
So in both cases we find that if x ∈ NBi, then

Nri < 2 dist(x, F ).

Fix an arbitrary point x. Let NBi 3 x and y ∈ NBi. Then

ρ(x, y) ≤ η(ρ(x, xi) + ρ(xi, y)) ≤ 2ηNri < 4η dist(x, F )

from which we conclude that

NBi ⊂ B(x, 4η dist(x, F )) (5)

for any ball NBi such that NBi 3 x.
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Taking now y ∈ B(xi, 2 dist(xi, F )), we obtain

ρ(x, y) ≤ η(ρ(x, xi) + ρ(xi, y)) ≤ η(Nri + 2 dist(xi, F )) =

= η
(dist(xi, F )

2η
+ 2 dist(xi, F )

)

=
(

2η +
1
2
)

dist(xi, F ).

Therefore

B
(

x,
(

2η +
1
2
)

dist(xi, F )
)

⊃ B
(

xi, 2 dist(xi, F )
)

.

Hence
B

(

x,
(

2η +
1
2
)

dist(xi, F )
)

∩ F 6= ∅.

Thus
dist(x, F ) <

(

2η +
1
2
)

dist(xi, F ) = (4η2 + η)Nri.

Therefore

rad NBi >
1

4η2 + η
dist(x, F ). (6)

From (5) and (6) we conclude that balls NBi containing the fixed point x
are included in the fixed ball B(x, 4η dist(x, F )) and their radii are bounded
from below by the fixed positive value 1

4η2+η dist(x, F ). Therefore, since
1
N Bi do not intersect pairwise, the number of such balls NBi is bounded
from above by some absolute constant θ. As a result,

∑

i

χN̂Bi
(x, t) ≤ θχΩ(x, t).

§ 3. Proof of the Main Results

Proof of Theorem 1. Let us show that (1) ⇒ (2).
Take an arbitrary ball B ⊂ NB0, B ∩B0 6= ∅. Let y 6∈ NB = B(x,Nr)

and some ball B′ = B(x′, r′) contain the point y and intersect with B. We
shall prove that then r′ > r.

Assume the opposite: r′ ≤ r. Let z ∈ B ∩B′. Then

ρ(x, y) ≤ η(ρ(x, z) + ρ(z, y)) < η(r + η(ρ(z, x′) + ρ(x′, y)) <

< η(r + 2ηr′) ≤ η(1 + 2η)r = Nr,

which leads to the contradiction. Therefore r′ > r.
If now y ∈ B and z ∈ B ∩B′, then

ρ(x′, y) ≤ η(ρ(x′, z) + ρ(z, y)) < η(r′ + η(ρ(z, x) + ρ(x, y)) <

< η(r′ + 2ηr) < η(1 + 2η)r′ = Nr′.
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Therefore B ⊂ NB′.
Fix an arbitrary ε > 0. There is a set Eε ⊂ B ∩ B0 such that w(x) >

ess supt∈B∩B0
w(t)−ε for any point x ∈ Eε. By Lemma 2 it can be assumed

that

0 < µEε <
µB
d2

N
.

Let f(x) = χEε
(x) and λ = d2

N µEε

µB . Then λ < 1 and

λ0 =
dN

µB0

∫

B0

|f | dµ = dN
µEε

µB0
≤ d2

N
µEε

µNB0
≤ d2

N
µEε

µB
= λ.

Let further (y, t) 6∈ ̂NB. Consider two cases:
(a) y 6∈ NB; then

Mf(y, t) = sup
B′3y

rad B′> t
2

1
µB′

∫

B′

|f | dµ ≤ sup
B′3y

B′∩B 6=∅

µEε

µB′ ≤

≤ sup
B′∩B 6=∅

r′>r

dN
µEε

µNB′ ≤ dN
µEε

µB
< d2

N
µEε

µB
= λ.

(b) y ∈ NB, t ≥ 2Nr; then

Mf(y, t) = sup
B′3y

B′∩B 6=∅
rad B′> t

2

1
µB′

∫

B′

|f | dµ ≤ sup
B′3y

r′>Nr
B′∩B 6=∅

µEε

µB′ ≤

≤ sup
r′>r

B′∩B 6=∅

dN
µEε

µNB′ ≤ λ.

Thus
̂NB ⊃ {(y, t) : Mf(y, t) > λ}.

Now in view of the above reasoning condition (1) leads to

β( ̂B0 ∩ ̂NB) ≥ β{(x, t) ∈ ̂B0 : Mf(x, t) > λ} ≥

≥ c1

d2
N

µB
µEε

∫

{x∈B∩B0:χEε (x)>λ}

χEε(x)w(x) dµ =

= c2
µB
µEε

∫

Eε

w dµ ≥ c2µB(ess sup
x∈B∩B0

w(x)− ε).

By making ε → 0 we get (2).
Now we shall prove that (2) ⇒ (1).
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Fix f and assume that supp f ⊂ B0 and λ ≥ λ0 = dN
µB0

∫

B0
|f | dµ. Con-

sider the sets

Ω = {(x, t) ∈ X × [0,∞) : Mf(x, t) > λ},
Ωc = {x ∈ X : Mcf(x) > λ},

where

Mcf(x) = sup
r>0

1
µB(x, r)

∫

B(x,r)

|f | dµ.

The set Ω satisfies the conditions of Lemma 3. Indeed, if (x, t) ∈ Ω, then
it is obvious that (x, τ) ∈ Ω, 0 ≤ τ < t. Moreover, by familiar arguments
Ω ⊂ ̂NB0. Therefore ΩX is the bounded set.

Let x ∈ Ωc. Then there exists r > 0 such that

1
µB(x, r)

∫

B(x,r)

|f | dµ > λ.

Obviously, Mf(y, t) > λ for any (y, t) ∈ ̂B(x, r) and therefore ̂B(x, r) ⊂
Ω. Thus Ωc ⊂ Ω0, where Ω0 is the set mentioned in Lemma 3. By the latter
lemma there exists a sequence of balls (Bk)k≥1 satisfying the statements of
the lemma. Since Bk ⊂ Ω0 ⊂ NB0 for each k ≥ 1, from the condition (2)
we get

β(Ω ∩ ̂B0) =
∫

B̂0

χΩ(x, t)dβ ≥ 1
θ

∑

k≥1

∫

B̂0

χN̂Bk
(x, t)dβ =

=
1
θ

∑

k≥1

β(̂NBk ∩ ̂B0) ≥ c
∑

k≥1

µBk ess sup
x∈Bk∩B0

w(x). (7)

Since ̂3ηNBk ∩ (X × [0,∞)\Ω) 6= ∅, there exists (x, t) ∈ ̂3ηNBk such that
Mf(x, t) ≤ λ. Therefore

1
µBk

∫

Bk

|f | dµ ≤ d3ηN

(3ηNBk)

∫

3ηNBk

|f | dµ < d3ηNλ.

Now (7) takes the form

β(Ω ∩ ̂B0) ≥
c1

λ

∑

k≥1

ess sup
x∈Bk∩B0

w(x)
∫

Bk

|f | dµ =

=
c1

λ

∑

k≥1

ess sup
x∈Bk∩B0

w(x)
∫

Bk∩B0

|f | dµ ≥ c1

λ

∑

k≥1

∫

Bk∩B0

|f |w dµ ≥
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≥ c1

λ

∫

∪k≥1(Bk∩B0)

|f |w dµ =
c1

λ

∫

Ω0∩B0

|f |w dµ ≥ c1

λ

∫

Ωc∩B0

|f |w dµ =

=
c1

λ

∫

{x∈B0:Mcf(x)>λ}

|f |w dµ ≥ c1

λ

∫

{x∈B0:|f(x)|>λ}

|f |w dµ.

Proof of Theorem 2. First of all note that the implication (3) ⇒ (4) can be
proved in the same manner as the implication (1) ⇒ (2) in the preceding
theorem. So we shall prove that (4) ⇒ (3).

Fix an arbitrary ball B′ and assume that f ∈ L1(X, w dµ). For l > 0 we
introduce the function

fl(x) =











f(x) · χlB′(x), if |f(x)| < l,
l · sign f(x) · χlB′(x), if |f(x)| ≥ l,
0 · χ

X\lB′ (x).

Let λ > 0. Then there exists a number R > Nl such that

d2
N

µ(RB′)

∫

X

|fl| dµ ≤ λ.

Let B0 = NRB′, βRE = βE for E ⊂ ̂RB′, and βR{(x, t)} = ∞ for any
point (x, t) 6= ̂RB′.

We shall show that if β and w satisfy (4), then B0, βR, and w satisfy
condition (2) of Theorem 1.

Indeed, consider an arbitrary ball B ⊂ NB0, B∩B0 6= ∅. If ̂NB ⊂ ̂RB′,
then

βR(̂NB ∩ ̂B0)
µB

=
βR(̂NB)

µB
=

β ̂NB
µB

≥ c4 ess sup
x∈B

w(x) = c2 ess sup
x∈B∩B0

w(x).

Let ̂NB 6⊂ ̂RB′. If ̂NB ⊂ ̂B0, then

βR(̂NB ∩ ̂B0)
µB

=
βR(̂NB)

µB
= ∞ ≥ c2 ess sup

x∈B∩B0

w(x).

Thus it remains for us to consider the case with ̂NB 6⊂ ̂B0. We shall
show that βR(̂NB ∩ ̂B0) = ∞ in that case, too. To this end we have to
prove that

(̂NB ∩ ̂B0)\̂RB′ 6= ∅. (8)

If there exists a point z ∈ (NB ∩ B0)\RB′, then (8) holds. If such a point
does not exists, i.e., NB ∩ (B0\RB′) = ∅, then, since NB ∩B0 6= ∅, there
is a point y ∈ NB ∩RB′.
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On the other hand, since ̂NB 6⊂ ̂B0, we have either NB ⊂ B0 and then

rad(NB) > radB0 > rad(NB′)

or NB 6⊂ B0, which together with the condition NB∩ 1
N B0 = NB∩RB′ 6=

∅, by familiar arguments, gives

rad(NB) > rad
( 1
N

B0
)

= rad(NB′).

Therefore, if ̂NB 6⊂ ̂B0, there exists a point y∈NB∩RB′ and rad(NB) >
rad(NB′). Then

(y, 2R rad B′) ∈ ̂NB\̂RB′.

Since (y, 2R rad B′) ∈ ̂B0, we have (8).
We have thereby shown that B0, βR, and w satisfy the condition (2) of

Theorem 1.
As to λ, we have

λ0 =
dN

µB0

∫

B0

|fl| dµ <
d2

N

µ(RB′)

∫

B0

|fl| dµ ≤ λ.

Now according to Theorem 1 we have

βR{(x, t) ∈ ̂B0 : Mfl(x, t) > λ} ≥ c3

λ

∫

{x∈B0:|fl(x)|>λ}

|fl|w dµ. (9)

But since supp fl ⊂ R
N B′, for (x, t) 6∈ ̂RB′ we shall have

Mfl(x, t) ≤ dN

µ( R
N B′)

∫

R
N B′

|fl| dµ ≤ d2
N

µ(RB′)

∫

X

|fl| dµ ≤ λ.

Hence (9) takes the form

β{(x, t) ∈ X × [0,∞) : Mfl(x, t) > λ} ≥ c3

λ

∫

{x∈X:|fl(x)|>λ}

|fl|w dµ.

The more so

β{(x, t) ∈ X × [0,∞) : Mf(x, t) > λ} ≥ c3

λ

∫

{x∈X:|fl(x)|>λ}

|fl|w dµ.

By making l tend to infinity we obtain the required inequality (3).
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Proof of Theorem 3. Let w(x) > 0 on some subset B0 of positive measure
(otherwise there is nothing to prove). Then from (2) we conclude that
β̂B0 > 0. If f 6= 0 almost everywhere on B0, then

Mf(x, t) ≥ 1
µB0

∫

B0

|f | dµ > 0

for each (x, t) ∈ ̂B0. Hence from the condition

∫

B̂0

Mf(x, t)dβ < ∞

we obtain f ∈ L(B0, dµ) and β̂B0 < ∞. Therefore again from (2) we
conclude that w is bounded on B0 and f ∈ L(B0, w dµ).

Now we have

∫

B0

|f | log+ |f |w dµ =
∫

{|f |>1}

|f | log |f |w dµ =

=
∫

{|f |>λ0}

|f | log
|f |
λ0

w dµ +
∫

{1<|f |≤λ0}

|f | log |f |w dµ+log λ0

∫

{|f |>λ0}

|f |w dµ,

where λ0 is taken from condition (1) of Theorem 1. (If λ0 < 1, then the
latter expansion is unnecessary.)

By virtue of the above reasoning we see that the last two integrals are
finite. Applying Theorem 1, we shall show the finiteness of the first integral:

∫

{|f |>λ0}

|f | log
|f |
λ0

w dµ =
∫

{|f |>λ0}

|f |
|f |
∫

λ0

dλ
λ

w dµ =

∞
∫

λ0

1
λ

∫

{|f |>λ}

|f |w dµdλ ≤

≤ c

∞
∫

λ0

β{(x, t) ∈ ̂B0 : Mf(x, t) > λ}dλ ≤

≤ c

∞
∫

0

β{(x, t) ∈ ̂B0 : Mf(x, t) > λ}dλ = c
∫

B̂0

Mf(x, t) dµ < ∞.
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Proof of Theorem 4. The proof follows from Theorem 2 and the estimate

∫

X

|f | log+ |f |w dµ =
∫

{|f |>1}

|f | log |f |w dµ =
∫

{|f |>1}

|f |
|f |
∫

1

dλ
λ

w dµ =

=

∞
∫

1

1
λ

∫

{|f |>λ}

|f |w dµdλ ≤ c

∞
∫

1

β{(x, t) ∈ X × [0,∞) : Mf(x, t) > λ}dλ =

= c
∫

{(x,t):Mf(x,t)>1}

Mf(x, t)dβ < ∞.

Proof of the Corollary. Following the result of F. Ruiz and J. Torrea [4] and
Theorem 2 of this paper, for the inequalities

c1

λ

∫

{|f |>λ}

|f |w dµ ≤ β{(x, t) : Mf(x, t) > λ} ≤ c2

λ

∫

{f |> λ
2 }

|f |w dµ

to hold, it is necessary and sufficient that the inequalities

β ̂B
µB

≤ c3 ess inf
x∈B

w(x) and
β(̂NB)

µB
≥ c4 ess sup

x∈B
w(x)

be fulfilled simultaneously. Hence for any ball B we have

c5 ess sup
x∈ 1

N B
w(x) ≤ β ̂B

µB
≤ c3 ess inf

x∈B
w(x).

From here on the proof of the corollary is clear.
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