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SOME NEGATIVE RESULTS CONCERNING THE
PROCESS OF FEJÉR TYPE TRIGONOMETRIC

CONVOLUTION

G. ONIANI

Abstract. The process of Fejér type trigonometric convolution and
its discrete analogue have equivalent uniform residues. The situation
changes under pointwise comparison. In this direction negative results
have been obtained by different authors. One result of such a type
is given in the present paper. In particular, a counter-example is
constructed for which both comparisons diverge on the set of complete
measure. The smoothness of the counter-example as well as some
other problems are investigated.

1. Let C2π denote a Banach space of 2π-periodic functions continuous on
R, with sup-norm ‖ · ‖c.

Let for every n ∈ N

χn(x) :=
n

∑

k=−n

ρk,neikx, (1.1)

where ρ−k,n = ρk,n, ρ0,n = 1.
Fn denotes an operator of trigonometric convolution

Fnf(x) :=
1
2π

2π
∫

0

f(u)χn(x− u)du (1.2)

and Jn is its discrete analogue

Jnf(x) :=
1

2n + 1

2n
∑

j=0

f(uj,n)χn(x− uj,n), (1.3)
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where uj,n = 2πj / (2n + 1), 0 ≤ j ≤ 2n.
The following theorem on the operators {Fn} and {Jn} is valid (see [2]-

[5]).

Theorem 1.1. Let {χn} be a sequence of even polynomial kernels (1.1)
satisfying the conditions

‖χn‖1 = O(1) (n →∞), (1.4)

1− ρk,n = ok(1) (k ∈ N, n →∞). (1.5)

Then for every f ∈ C2π we have

‖Fnf − f‖c = o(1) and ‖Jnf − f‖c = o(1) (n →∞), (1.6)

‖Jnf − f‖c = O(‖Fnf − f‖c),

‖Fnf − f‖c = O(‖Jnf − f‖c) (n ∈ N).
(1.7)

Note also that (1.6) is equivalent to the pair of conditions (1.4) and
(1.5), i.e., the sequences (processes) of the operators {Fn} and {Jn} ensure
uniform approximation of continuous functions (such sequences of operators
are called Fejér) and their residues are equivalent with respect to the norm
in C2π.

Pointwise comparison changes the situation. In this case residues of the
operators {Fn} and {Jn} may turn out to be nonequivalent on the set of
complete measure. In particular, the following theorems are valid (see resp.
[2] and [1]):

Theorem 1.2. Let {χn} be a sequence of even polynomial kernels satis-
fying the conditions (1.4) and

1− ρk,n = Ok

( 1
n

)

(k ∈ N, n →∞). (1.8)

Let Ω denote a class of functions continuous on [0,∞) with the following
properties:

0 = ω(0) < ω(s) ≤ ω(s + t) ≤ ω(s) + ω(t) (s, t > 0)

and lim
t→0

ω(t) / t = ∞

and let f ∈ Lip1 ω denote that |f(x) − f(y)| ≤ c[ω(|x − y|)], x, y ∈ [0, 2π]
(c > 0 is a constant).

Then for every ω ∈ Ω there is a counter-example fω ∈ Lip1 ω such that
for n →∞

|Jnfω(x)− fω(x)| 6= O(|Fnfω(x)− fω(x)|) for a.e. x ∈ R. (1.9)
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Theorem 1.3. Let {χn} be a sequence of even polynomial kernels (1.1)
satisfying the conditions (1.4) and (1.8). Then there is a counter-example
f ∈ C2π such that as n →∞

|Fnf(x)− f(x)| 6= O(|Jnf(x)− f(x)|) for a.e. x ∈ R. (1.10)

Comparing Theorems 1.2 and 1.3 there naturally arises the question:
Is there a function f ∈ C2π with properties (1.9) and (1.10) when the
conditions (1.4) and (1.8) are fulfilled, i.e., is there a continuous function
with two-sided divergence?

2. The theorem below gives a positive answer to the above question.

Theorem 2.1. Let {χn} be a sequence of even polynomial kernels (1.1)
satisfying the conditions (1.4) and (1.8). Then there is a counter-example
f ∈ C2π such that as n →∞

|Fnf(x)− f(x)| 6= O(|Jnf(x)− f(x)|),
|Jnf(x)− f(x)| 6= O(|Fnf(x)− f(x)|) (2.1)

simultaneously almost for all x ∈ R.

Proof. Let {sk} ⊂ N be an arbitrary sequence and

n1 = 4, nk+1 =
1
2
[

(4sk + 1)(2nk + 1)− 1
]

, k = 2, 3, . . . . (2.2)

For natural numbers n and k we introduce the notation

gn(x) := cos(2n + 1)x,

Hk :=
⋃

j∈Z

π
2(2nk + 1)

[

2j + 1− 1
k + 1

, 2j + 1 +
1

k + 1

]

,

Dk := [0, 2π] ∩
⋃

j∈Z

π
2(2nk + 1)

[

2j − 1
2
, 2j +

1
2

]

.

(2.3)

The following lemma is valid.

Lemma 2.1. (See [2].) Let x ∈ Hk− yk, yk ∈ Dk. Then for every k ∈ N

|Jnkgnk(x + yk)− gnk(x + yk)| ≥ C1 − εk

(C1 = 1/
√

2, εk = π/2(k + 1)),

|Fnkgnk(x + yk)− gnk(x + yk)| ≤ εk.

(2.4)

There is also a sequence {yk} (yk ∈ Dk, k ∈ N) such that

lim sup
k→∞

(Hk − yk)

is a set of full measure.



316 G. ONIANI

Let

Mn := ‖χn‖c (n ∈ N),

En :=
2n
⋃

j=0

( 2πj
2n + 1

+
1

2n
√

Mn
,
2π(j + 1)
2n + 1

)

(n ∈ N).
(2.5)

The following assertions are valid (see [1]).

Lemma 2.2. Let the sequence {χn} satisfy the conditions (1.4) and (1.5).
Then ‖χn‖c →∞ (n →∞).

Lemma 2.3. Let the sequence {χn} satisfy the conditions (1.4) and (1.8).
Then for every n ≥ n0 there is a trigonometric polynomial Pn(x) and a set
An ⊂ [0, 2π] such that for n ∈ N

‖Pn‖c ≤ 2, (2.6)

An ⊂ En, (2.7)

µAn ≥ C2, (2.8)

where µ is the Lebesgue measure,

|FnPn(x)− Pn(x)| ≥ C3

√
Mn

n
(x ∈ An), (2.9)

|Pn(x)| ≤ 1
nMn

(x ∈ En), (2.10)

where n0, C2, C3 are positive constants.

Consider the series

f(x) =
∞
∑

k=1

[ 1
√

nk
gnk(x + yk) +

1
4
√

Mmk

Pmk(x + tk)
]

(here
∑∞

k=1

[

1√
nk

+ 1
4
√

Mmk

]

< ∞, whence f ∈ C2π). The sequences nk ↑ ∞,

mk ↑ ∞, {yk}, and {tk} will be constructed later on.



FEJÉR TYPE TRIGONOMETRIC CONVOLUTION 317

Let for k ≥ N

αk(x) :=
k−1
∑

j=1

1
√nj

gnj (x + yj) +
k−1
∑

j=1

1
4
√

Mmj

Pmj (x + tj),

γk(x) :=
∞
∑

j=k+1

1
√nj

gnj (x + yj) +
∞
∑

j=k

1
4
√

Mmj

Pmj (x + tj),

α′k(x) :=
k

∑

j=1

1
√nj

gnj (x + yj) +
k−1
∑

j=1

1
4
√

Mmj

Pmj (x + tj),

γ′k(x) :=
∞
∑

j=k+1

1
√nj

gnj (x + yj) +
∞
∑

j=k+1

1
4
√

Mmj

Pmj (x + tj).

(2.11)

We can easily conclude from (1.8) that as n →∞

|Jnαk(x)− αk(x)| ≤ Sk−1/n, |Fnαk(x)− αk(x)| ≤ Sk−1/n

|Jnα′k(x)− α′k(x)| ≤ Sk−1/n, |Fnα′k(x)− α′k(x)| ≤ Sk−1/n,
(2.12)

where Sk−1 depends on k − 1 only.
It is not difficult to see that for k ∈ N

|Jnkf(x)− f(x)| ≥ 1
√

nk
|Jnkgnk(x + yk)− gnk(x + yk)| −

−|Jnkαk(x)− αk(x)| − |Jnγk(x)− γk(x)|,

|Fnkf(x)− f(x)| ≤ 1
√

nk
|Fnkgnk(x + yk)− gnk(x + yk)|+

+|Fnkαk(x)− αk(x)| − |Fnkγk(x)− γk(x)|,

(2.13)

|Fmkf(x)− f(x)| ≥ 1
4
√

Mmk

|FmkPmk(x + tk)− Pmk(x + tk)| −

−|Fmkα′k(x)− α′k(x)| − |Fmkγ′k(x)− γ′k(x)|,

|Jmkf(x)− f(x)| ≤ 1
4
√

Mmk

|JmkPmk(x + tk)−

−Pmk(x + tk)|+ |Jmkα′k(x)− α′k(x)|+ |Jmkγ′k(x)− γ′k(x)|

(2.14)

and for C4 = const and n ∈ N

|Fnf(x)− f(x)| ≤ C4‖f‖c, |Jnf(x)− f(x)| ≤ C4‖f‖c. (2.15)
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Let us construct the sequences {nk} and {mk} such that for k ∈ N

n0 < n1 < m1 < · · · < nk < mk < nk+1 < mk+1 < . . . ,
√

nk > kSk−1,
4
√

Mmk > kSk−1,
1

4
√

Mmk

<
1

2nk
,

1
√

nk+1
<

1
2mk

.

(2.16)

Put

Tk :=
2mk
⋃

j=0

[ 2πj
2mk + 1

+
1

2mk
√

Mmk

,
2π(j + 1)
2mk + 1

− 1
2mk

√

Mmk

]

.

Let A∗mk
and E∗

mk
be 2π-periodic extensions of the sets Amk and Emk ,

respectively.
We can easily show that

2πj
2mk + 1

+ tk ∈ E∗
mk

(k ∈ N, tk ∈ Tk),

whence by Lemma 2.3 we have

∣

∣

∣Pmk

( 2πj
2mk + 1

+ tk
)∣

∣

∣ ≤
1

mkMmk

(k ∈ N, tk ∈ Tk, j = 0, 1, . . . , 2n).
(2.17)

From (2.17) we obtain that if x ∈ A∗mk
− tk, tk ∈ Tk, then for every k ∈ N

|JmkPmk(x + tk)− Pmk(x + tk)| ≤

≤ |JmkPmk(x + tk)|+ |Pmk(x + tk)| ≤ 1
mk

+
1

mkMmk

. (2.18)

We can prove that (see [1]) there is a sequence {tk} (tk ∈ Tk, k ∈ N)
such that

lim sup
k→∞

(A∗mk
− tk) (2.19)

is the set of full measure.
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From Lemma 2.3 and relations (2.13)–(2.16) and (2.18) we get that if
x ∈ A∗mk

− tk, tk ∈ Tk, then for every k ∈ N

|Fmkf(x)− f(x)| ≥ 1
4
√

Mmk

C3

√

Mmk

mk
− Sk−1

mk
−

−C4‖γ′k‖c =
4
√

Mmk

mk
(C3 − o(1)),

|Jmkf(x)− f(x)| ≤ 1
4
√

Mmk

( 1
mk

+
1

mkMmk

)

+

+
Sk−1

mk
+ C4‖γ′k‖c =

4
√

Mmk

mk
o(1).

(2.20)

From (2.19) and (2.20) we obtain that as n →∞

|Fnf(x)− f(x)| 6= O(|Jnf(x)− f(x)|) for a.e. x ∈ R. (2.21)

On the other hand, from Lemma 2.1 and conditions (2.13)–(2.15) we
easily see that if x ∈ Hk − yk, yk ∈ Dk, then for k ∈ N

|Jnkf(x)−f(x)| ≥ 1
√

nk
C1 −

Sk−1

nk
− C4‖γk‖c =

1
√

nk
(C1 − o(1)),

|Fnkf(x)−f(x)| ≤ 1
√

nk
εk +

Sk−1

nk
+ C4‖γk‖c =

1
√

nk
o(1)). (2.22)

It follows from (2.22) that as n →∞

|Jnf(x)− f(x)| 6= O(|Fnf(x)− f(x)|) for a.e. x ∈ R. (2.23)

With the help of (2.21) and (2.23) we can conclude that f is the sought
for counter-example.

Here without proof we shall give the result concerning the smoothness of
the counter-example constructed in Theorem 2.1.

Theorem 2.2. Let the sequence {χn} satisfy the conditions (1.4) and

1− ρk,n = Ok

(Mn

n+

)

(k ∈ N, n →∞).

Then for every ω ∈ Ω there is a counter-example fω ∈ Lip1 ω such that

|Fnfω(x)− fω(x)| 6= O(|Jnfω(x)− fω(x)|) (n →∞),

|Jnfω(x)− fω(x)| 6= O(|Fnfω(x)− fω(x)|) (n →∞)

simultaneously for a.e. x ∈ R.
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3. As we have mentioned, if the sequence (1.1) is of Fejér type (i.e.,
‖χn‖1 = O(1) and 1 − ρk,n = ok(1) (k ∈ N, n → ∞)), then ‖χn‖c → ∞
(n →∞) (see Lemma 2.2).

In this section we shall investigate the rate of the above-mentioned con-
vergence.

Does any condition of the type 1−ρk,n = Ok(εn) (k ∈ N, εn ↓ 0, n →∞)
improve the rate of convergence of ‖χn‖c to ∞? Theorem below gives a
negative answer to this question.

Theorem 3.1. For every sequence αn → ∞ there is a sequence of ker-
nels {χn} such that as n →∞

‖χn‖1 = O(1),

1− ρk,n = 0 (k ∈ N, n > nk), (3.1)

‖χn‖c = O(αn) (3.2)

(i.e., convergence to infinity can be arbitrarily slow).

Proof. Let

Kn(x) :=
1
2

+
n

n + 1
cos x + · · ·+ n + 1− k

n + 1
cos kx +

+ · · ·+ 1
n + 1

cosnx (Fejér type kernel), (3.3)

Rk,n(x) :=
1

n + 1
cos x +

2
n + 1

cos 2x +

+ · · ·+ k
n + 1

cos kx (k ≤ n). (3.4)

Clearly,

|Rk,n(x)| ≤ k2

n + 1
(k, n ∈ N). (3.5)

Consider the sequence nk ↑ ∞ with the following properties:

nk ≥ 2k2 (k ∈ N), (3.6)

αn ≥ 2k2 (n ≥ nk). (3.7)

Let χn(x) = 1 (n ∈ [1, n1]), and

χn(x)
2

:= Kk2(x) + Rk,k2(x) (n ∈ [nk + 1, nk+1]), (3.8)

i.e.,

χn(x)/2 =
1
2

+
k2

k2 + 1
cos x + · · ·+ k2 + 1− k

k2 + 1
cos kx +
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+ · · ·+ 1
k2 + 1

cos k2x +
( 1

k2 + 1
cos x + · · ·+ k

k2 + 1
cos kx

)

=

1
2

+ cos x + · · ·+ cos kx +
(k2 − k

k2 + 1
cos(k + 1)x + · · ·+

+
1

k2 + 1
cos k2x

)

(n ∈ [nk + 1, nk+1]). (3.9)

It is easily seen from (3.5) that

‖χn‖1 ≤ 2‖Kk2‖1 + 2‖Rk,k2‖1 < 2π + 4π =

= 6π (n ∈ [nk + 1, nk+1]). (3.10)

From (3.9) we obtain that

1− ρk,n = 0 (k ∈ N, n > nk). (3.11)

The relations (3.5)–(3.8) show that

‖χn‖c ≤ 2‖Kk2‖c + 2‖Rk,k2‖c ≤ 2
k2 + 1

2
+ 2 <

< 2k2 < αn (n ∈ [nk + 1, nk+1]). (3.12)

From (3.9), (3.10), and (3.11) we can conclude that {χn} is the desired
sequence.

It is not difficult to see that

‖χn‖c = O(n) (n →∞).
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